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Un critére pour I'analyse des
réseaux géodésiques de controle™

H. Dupraz et W. Niemeier

Ein geodétisches Uberwachungsnetz
hat die spezielle Aufgabe, die Richtung
und die Gréssenordnung der vermute-
ten Deformationen mit ausreichender
Genauigkeit und Zuverldssigkeit zu be-
stimmen.

Dieser Artikel zeigt die geometrische
Bedeutung der gréssten Eigenwerte und
der entsprechenden Eigenvektoren der
Kovarianzmatrix der Koordinaten. Dann
schlégt er ein Kriterium vor, das zu pru-
fen erlaubt, ob das Netz zur Bestimmung
der vermuteten Deformationen geeignet
ist oder nicht.

Neben theoretischen Beispielen wird
das Uberwachungsnetz einer Sperrmau-
eruntersucht.

1. Réle d’un réseau géodésique de
controle

Le choix de la méthode géodésique
pour la détermination de déformations
suppose toujours la mise en place d'un
réseau d'observation. Par la mesure de
ce réseau, renouvelée & diverses épo-
ques, on doit pouvoir déterminer aussi
exactement que possible les déforma-
tions effectives de l'objet a surveiller,
qu’'il s'agisse d'une construction, d'un
complexe de machines ou d'un glisse-
ment de terrain. Pour des raisons d’effi-
cacité et d'économie, il est nécessaire
de connaitre, au moins de facon appro-
chée et déja avant la conception du ré-
seau de contrlle, la direction et I'ordre
de grandeur des déplacements & mesu-
rer. C'est pourquoi il faut développer un
«modeéle de déformationy» en étroite col-
laboration avec les disciplines concer-
nées, génie civil, géologie, mécanique. Il
s'agit ensuite de concevoir un réseau de
contrdle dont la structure géométrique
et stochastique permette de déterminer,
avec une sécurité suffisante, les défor-
mations et leurs directions - appelées
directions critiques - fixées par le modeé-
le de déformation.

2. Critéres généraux pour I'analyse
des réseaux géodésiques

Au cours de ces derniéres années, on
a beaucoup étudié I'analyse de la qualité

*Traduction du texte «Beurteilungskriterien
fur geodéatische Netzey, présenté au Il. Sym-
posium Uber Deformationsmessungen, FIG
Kommission 6, Bonn, September 1978.
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d'un réseau géodésique (voir par
exemple Grafarend 1974; Pelzer 1976a).
Les criteres généraux proposés dans ces
travaux seront rapidement évoqués, car
ils sont aussi utilisables dans une certai-
ne mesure pour les réseaux de controle.
Puis un critéere spécialement adapté a
I'analyse de ce type de réseau sera pré-
senté dans le chapitre 3.

Pour analyser un réseau, il suffit de
connaitre la position des points, le plan
des mesures et leur précision. Le résul-
tat d'un calcul de compensation est
contenu dans le vecteur des inconnues
x et sa matrice de covariance K,,, qui est
aussi, au facteur o3 prés, la matrice des
cofacteurs.

1
- (1)

Lorsque les points sont donnés etoy
connu, toute l'information sur les pro-
priétés stochastiques du réseau est
contenue dans Q,,; cela signifie que tou-
te modification du plan d’observation ou
de la précision des mesures agit directe-
ment sur cette matrice. C'est pourquoi
tous les critéres d'analyse s'appuient sur
cette matrice, ou surles valeurs de sa dé-
composition spectrale, décrite formelle-
ment (voir par exemple Zurmuhl 1964)
par

Q')(X = KXX

Q,=S:-D-.S7 2)
D est la matrice diagonale contenant
les valeurs propres de Q,,. S est une
matrice orthogonale dont les colonnes
s; sont les vecteurs-propres nommés
correspondant aux A;.

2.1 Criteres globaux

On appelle «globaux» les critéeres qui
dépendent de I'ensemble de la matrice
des cofacteurs Q,,. On peut citer, parmi
les plus souvent utilisés: la précision, la
fiabilité, I'ellipsoide global de confiance
La précision d'un réseau est d'autant

plus grande que la variance de fonctions

des inconnues (par exemple distances

ou angles) diminue. Comme critére pour

cette précision du réseau, Pelzer 1976

propose de minimiser la plus grande va-
leur propre de Q.
|

)\'max = (3)

En clair, un réseau est d'autant plus
précis que la valeur-propre maximum de
Q,, estpetite.

Un réseau est fiable lorsque des
fautes grossiéres n‘ont pratiguement
pas d’influence sur les résultats de la
compensation, c'est-a-dire lorsque les
mesures se contrélent mutuellement et
que les fautes peuvent étre décelées
avec une grande probabilit¢. Comme
critere pour la fiabilité d’'un réseau, on
peut choisir de nouveau

minimum

Nesiax i minimum (4)

On peut aussi concevoir un critére
géomeétrique, /'ellipsoide de confiance
u-dimensionnel, contenant avec une
probabilité 1-a le vecteur -vrai X, c’est-
a-dire simultanément I’ensemble des
coordonnées vraies des points. Comme
critéere, on peut demander que le volume
de ce domaine de confiance soit mini-
mum, en posant

u o
dét(Qu) =X+ Ap.. s Ay = H1x,'=min (9)
=

Pour éviter que certains axes de |'ellip-
soide restent relativement grands, bien
que le volume soit minimum, on peut
exiger, au lieu de (5), que /a somme des
longueurs des axes soit minimum, en
posant

Trace (Q.) =

!
A= minimum (6)

I Mmc

1

2.2 Criteres locaux
Les criteres globaux restent trés abs-
traits, et ne fournissent aucune indica-

Faille

Barrage

Fig. 1

Machines
Les directions critiques pour divers types d’ouvrages

Mouvements de terrain
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tion directe sur tel ou tel point du réseau;
c’est pourguoi on utilise aussi beaucoup
certains criteres locaux:

Les Ellipses de confiance donnent
pour chaque point variable j du réseau
un domaine de confiance a deux dimen-
sions et on peut planifier le réseau de
telle sorte que la grandeur de toutes ou
de certaines ellipses de confiance ne dé-
passent pas des limites préétablies. On
peut aussi utiliser des domaines de
confiance unidimensionnels, afin de dis-
cuter la précision de certaines coordon-
nées.

Citonsencore les concepts d’Homogé-
néité et d’Isotropie d'un réseau. Un ré-
seau est homogene lorsque toutes les
ellipses sont de méme grandeur. |l est
homogene et isotrope lorsqu’en outre
les ellipses sont rondes: la précision des
points est la méme dans toutes les di-
rections. Il s’agit évidemment de cas
idéaux. Le critere pour une recherche
d’homogénéité et d'isotropie peut
s'écrire:

Amax |
o == (7)

Il s’agit d'un critere demandant que les
valeurs-propres de Q,, soient autant que
possible de méme grandeur. Dans le
cas d'un réseau existant, la grandeur (7)
indique si I'on est éloigné ou non du cas
idéal, et permet la comparaison de plu-
sieurs variantes.

3. Le critére des «vecteurs-propres
principaux»

Aucun des critieres présentés dans le
chapitre précédent ne prend en considé-
ration la tache particuliere d'un réseau
de controle, a savoir le détermination de
déformations. La précision, la fiabilité,
I'homogénéité d'un réseau sont certes
souhaitables, mais plus importante en-
core est pourun réseau de contrble la né-
cessité de pouvoir déterminer avec une
grande sécurité les déformations indi-
quées par le modéle de déformation,
c’est-a-dire les éventuels déplacements
des points dans les directions critiques.

3.1 Développement du critére par
factorisation du vecteur de déformation

Lors d'une étude sur les ‘propriétés
statistiques du vecteur de déformation d
- voir (11) - le Professeur Pelzer & intro-
duit en 1976 la notion de factorisation.
Outre le but qu'il se proposait, de per-
mettre une analyse statistiquement cor-
recte des déplacements, cette méthode
permet aussi |'analyse de la structure
des réseaux de contrble. Rappelons
I'idée de base de la factorisation:

Soit x; et x, les vecteurs des incon-
nues issus de deux mesures d'époques
différentes d’un réseau. Pelzer 1971 for-
me le vecteur des différences

d =Xy~ X (8)

appelé aussi vecteur de déformation. La | choisie de telle sorte que les fo_nctions f
loi de propagation des variances donne | soient  stochastiquement  indépen-

comme matrice des cofacteurs de d dantes, normalement distribuées et de
méme précision. Pour y parvenir, il faut
Qu=Q,+Q, (9) | choisirF
avec @, @, matrices des cofacteurs des F=D-".ST (1)
deux époques.

Pour la factorisation, on procéde
d’abord & une transformation linéaire du
vecteur d

avec D et S selon (2). Ainsi, la matrice
Q; des cofacteurs de f devient

f=F.d (10) Q:=FQ, F =E (12)

Réseau schématique
4 inconnues Y, X;Y; X,

Q
QYIY] QY1X1 QYle Y1X2

QXMI Qlez QXlXZ S D ST
= == . .
xx QYzYz QYzXz
4 44 44 44

4 sym.
Matrice des QX2><2 Décomposition spectrale selon (2)
cofacteurs

en écriture détaillée

Vecteurs -propres Valeurs-propres -
| I's T et
| |3*I d S N—
T
I l Ss,x1 | }'2 SZ____
=|Si1[S2| |Sal o S
S A ST
| el ol | e S
- T JL o1 ks A
Vecteur - propre Valeur-propre
correspondant la plus grande

Report du 1°"
vecteur-propre principal

A

Fig.2 Schéma de calcul et de report des vecteurs-propres principaux
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Sous I'hypothese-nulle qu’il n'y a aucu-
ne déformation significative, la distribu-
tion des éléments de f est bien celle
souhaitée

f~N(0c2E) (13)
Ces éléments sont indépendants, et nor-
malement distribués avec une moyenne
nulle et une variance o2.

Nous ne développons pas les tests dé-
coulant directement de (13) et permet-
tantd’étudier le bien-fondé de I'hypothé-
se-nulle, qui était la tache premiére de la
factorisation. Nous voulons plutét ap-
profondir la signification de la transfor-
mation inverse de (10) dans le cas de
I'analyse d'un réseau de controle. Avec
une matrice inverse écrite formellement

F-'=S.D" (14)
on peut alors écrire d sous forme d'une
somme vectorielle

u
d=% A%.s-f

(19)
=i
Avec la notation
h=A"%.s, (16)
cette somme vectorielle (15) devient
u
d=I h-f (17)

Bien que les éléments f; selon (13) - qui
contiennent les mesures - soient indé-
pendants et de méme précision, ils sont
pondéres par les éléments de h; qui ne
dépendent que de la configuration. Par
exemple, les éléments f; correspondant
aux plus grandes valeurs A; ont la plus
grande contribution. L'effet géométrique
sur chacune des inconnues - c'est-a-
dire sur chacune des coordonnées - est
dicté par les vecteurs-propres s; corres-
pondant a ces plus grandes valeurs-pro-
pres. Nous les appelons «vecteurs-pro-
pres principauxy. La figure 2 montre
comment |'on peut dessiner ces vec-
teurs-propres principaux.

Cela signifie que méme si I'hypothése-
nulle est vraie, le vecteur de déformation
peut montrer des pseudo-déplacements
surtout dans la direction des vecteurs-
propres principaux. Ces pseudo-dépla-
cements ne sont pas dus a des déforma-
tions effectives, mais seulement & la
structure du réseau.

Lorsqu’on étudie un réseau de contro-
le, on peut donc admettre que sa struc-
ture est particulierement défavorable
lorsque les directions critiques du mode-
le de déformation et les directions des
vecteurs-propres principaux coincident.
Dans un tel cas, les déformations effec-
tives devraient étre considérables pour
pouvoir étre séparées sans risque d’er-
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reur des pseudo-déformations engen-
drées par la géométrie du réseau. Lors
de la planification du réseau, il faut donc
s'efforcer d’obtenir une configuration
telle que directions critiques et vec-
teurs-propres principaux soient autant
que possible perpendiculaires.

Pour ce critere comme pour d‘autres
mentionnés au chapitre 2, les valeurs-
propres jouent un role important. Mais la
signification des vecteurs-propres pour
ce nouveau critére est encore plus im-
portante, c'est pourquoi nous |'appelons
«critere des vecteurs-propresy. Remar-
quons que ces développements ne sont
rien d'autre que I'aspect géométrique de
la méthode des composantes princi-
pales bien connue en statistique multi-
variée (par exemple Gnadadesikan
1977).

Remarquons encore que cette analy-
se par les vecteurs-propres reste pos-
sible méme si le réseau n'a jamais été
observé. En effet, en supposant dans (9)
le méme plan de mesure pour les deux
époques,ona

0.1=Q-2=0. (18)

ethd=2-Q. (19)
Les matrices Q et Q44 Ontle méme syste-
me de vecteurs-propres et la méme sé-
rie de valeurs-propres, au facteur 2 pres.

3.2 Interprétation du critére des
vecteurs-propres dans le cas de
faiblesses du réseau

Les travaux de Meissl 1969, Pelzer
1974, Grafarend et Schafrin 1974 et d'au-
tres ont montré que dans le cas de ré-

seaux géodésiques libres, la situation,
|'orientation, et cas échéant I'échelle
étaient indéterminées. La consé-
quence de ce «datum géodésiquey indé-
terminé est un défaut de rang de la ma-
trice des équations normales de la com-
pensation. Le calcul d'une inverse géné-
ralisée de la matrice singuliere N devient
plus clair lorsqu'on procéde d'abord a
une décomposition spectrale - voir (2) -
de cette matrice, comme le propose no-
tamment Pelzer 1974

N=S.C.S™=

. c.. 0 W (20)
i - |0 |
O :C

Dans cette décomposition spectrale -
cas échéant apres reclassement - la ma-
trice diagonale Cy contient les valeurs
propres non-nulles; la matrice Cg les va-
leurs-propres nulles correspondant aux
paramétres indéterminés du datum géo-
désique.

Les matrices H et G correspondent a
une partition correspondante de la ma-
trice S des vecteurs-propres.

Pour calculer I'inverse de N, lorsque la
décomposition spectrale est effectuée, il
suffit d'inverser la matrice € des va-
leurs-propres.

La matrice des cofacteurs a trace mi-
nimum N+ est obtenue en utilisant com-
me inverse généralisée de C

0

0

(21)

]
1
1
I
1
|

>
A\ 4

v
v

v

Réseau de directions
Echelle indéterminée

® Point fixe <4—» 1 seule coordonnée libre

Réseau de distances
Rotation indéterminée

A\ 4
v

+——>

Réseau de distances

Translation Y indéterminée

Fig.3a 3réseauxavec une indétermination isolée du datum géodésique

Ay Ao As

At Aa A

2 translations + 1 rotation
indéterminées

Fig.3b Réseau de distances avec triple indétermination du datum géodésique
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Fig.4 ‘Réseau de contréle du barrage de Montsalvens, avec les deux premiers vecteurs-pro-
pres principaux, les ellipses de confiance et 100 simulations
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Elément diagonal isolé :

Sous-matrice (2x2)

Matrice compléte

Variances des inconnues

Ellipses de confiance des points

Ellipsoide selon (7) (8)
Précision du réseau selon (3)
Fiabilité du réseau selon (4)
Homogénéité, Isotropie selon (10)

Vecteurs-propres principaux selon ch. 3

Fig.5 Degré d'utilisation de la matrice de covariance par les divers critéres d’analyse

donc, en conservant les éléments nuls
de la sous-matrice diagonale inférieure.
De maniére purementformelle, les élé-
ments inverses de la diagonale de Cg
sont tous.des valeurs indéterminées de
type 3. La figure3 montre dans le cas
d’un réseau simple les vecteurs-propres
G correspondant a ces valeurs, pour plu-
sieurs cas d'indétermination du datum
géodésique.
Cette figure montre la correspondance
evidente entre le vecteur-propre et le
type d'indétermination du datum. En pré-
sence de plusieurs degrés d'indétermi-

nation, comme dans le cas de la figure
3b, l'interprétation de chaque vecteur-
propre n'est plus aussi évidente, mais
celle de leur somme reste tres claire. On
peut en tirer une interprétation intéres-
sante, quoique mathématiquement peu
rigoureuse, si on donne aux éléments in-
verses de Cg la valeur formelle .

Les vecteurs-propres représentés
sont ceux correspondant aux valeurs-
propres les plus grandes - dans ce cas
infinies - de la matrice des cofacteurs.
Leur effet est le méme pour chaque
point du réseau; ils agissent donc sur

Vermessung, Photogrammetrie, Kulturtechnik 4/79

I'ensemble du réseau et expriment bien
- comme la théorie I'affirmait - une indé-
termination du datum. Ainsi les valeurs-
propres infiniment grandes de Q peu-
vent étre interprétées comme. des indé-
terminations du datum géodésique,
dont l'effet géomeétrique sur les coor-
données est indiqué par les vecteurs-
propres correspondants de G.

Prolongement logique de cette inter-
prétation, la prochaine «plus grande va-
leur-propre» de Q ne correspond plus a
une véritable indétermination du réseau,
mais a une «faiblesse» de celui-ci. Son
effet géomeétrique n’est plus le méme
pour chaque point: ici encore, il est dé-
crit par le vecteur-propre correspondant.
La figure4 montre un réseau pour le
contrdle d’'un barrage ou les deux vec-
teurs-propres principaux, c'est-a-dire
ceux correspondant aux deux plus
grandes valeurs-propres, sont repré-
sentés. On reconnait facilement les «fai-
blesses» a savoir les points 5 et 8 mal dé-
terminés par la structure. Un déplace-
ment effectif de ces points dans la direc-
tion des vecteurs-propres principaux se-
rait difficile a établir.

3.3 Gain d'information par rapport a
I'analyse avec ellipses de confiance

Les faiblesses d'un réseau apparais-
sent aussi grace aux ellipses de confian-
ce. Dans I'exemple de la figure4, les
vecteurs-propres principaux et les el-
lipses de confiance des points 5 et 8
conduisent a une conclusion similaire.
L'avantage principal d'une analyse spec-
trale tient dans le fait que toute I'infor-
mation de la matrice de covariance est
utilisée, tandis que les ellipses de
confiance n’utilisent que l'information
de sous-matrices (2x2) et négligent ain-
si des informations parfois importantes.
Nous avons repris dans la figure6
'exemple d'un réseau schématique
(Pelzer 1976b) avec quatre points fixes,
deux points nouveaux et cing distances
mesurées. On a représenté également
les résultats de 1000 compensations cal-
culées a |'aide d'observations simulées.
La corrélation des Y, qui atteint dans cet
exemple la valeur élevée r = 0.67 n‘appa-
rait absolument pas dans la représenta-
tion des ellipses de confiance car I'élé-
ment de Q,, correspondant est situé
hors des sous-matrices (2x2) qu’elles
utilisent (Fig. 6a). Dans la figure 6b, on a
représenté le vecteur-propre principal. Il
est dirigé le long des grands-axes des
ellipses, mais en plus, ses deux compo-
santes sont dirigées dans le méme sens,
ce qui indique la tendance identique des
Y. Pour confirmer cette assertion, nous
avons repris les 1000 simulations de la
figure 6a. Parmi elles, nous n’avons rete-
nu que celles dont la réalisation du point
gauche se situe a droite de la position
théorique. Les réalisations correspon-
dantes du point droite, dont plus de.75%
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se situent également a droite de leur po-
sition théorique, prouvent la corrélation
elevée des valeurs Y.

Un autre exemple du gain d’information
que procure l'analyse spectrale par rap-
port aux ellipses de confiance est donné

Fig. 6a

Fig. 6b

Fig.6 Exemple du gain d'information fourni par le critére des vecteurs-propres principaux, par

rapport a celui des ellipses de confiance.

Fig.7 Comme figure 4, mais avec un seul vecteur-propre principal et simulation conditionelle
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par la figure 7, qui est a comparer avec la
figure 4.
Parmi les 100 simulations du point 5, on
n‘a retenu que celles tombant dans la di-
rection du vecteur-propre principal en ce
point; puis nous avons représenté les
réalisations correspondantes pour les
autres points: la correspondance entre
ces réalisations et les composantes du
vecteur-propre principal est tres claire.
Une analyse spectrale, et plus précise-
ment la représentation graphique des
vecteurs-propres correspondant  aux
plus grandes valeurs-propres de la ma-
trice de covariance de la compensation,
apparait donc comme un moyen effica-
ce pour I'analyse des réseaux de contro-
le; il décele les faiblesses du réseau a
I'aide de toute l'information stochas-
tique et fournit ainsi des indications im-
portantes sur la corrélation des points et
le comportement du réseau.

4. Analyse du réseau de contrdle du
barrage de I'Edersee

L'Institut de Géodésie de I'Université

de Hannover analyse actuellement le re-
seau de contréle du barrage de I'Eder-
see. Le but de cette étude est d’'amélio-
rer le réseau de telle sorte que les er-
reurs moyennes de position des points
(selon  Helmert) ne dépassent pas
0,5mm. Pour satisfaire cette exigence,
on a procédé, apres reconnaissance sur
place de toutes les possibilités de mesu-
re, a diverses recherches sur |'optimi-
sation du plan de mesure. Nous avons
aussi envisagé l'adjonction d'un pilier
supplémentaire.
La figure 8 montre le réseau avec les
points d’appui et quelques observations.
Les points-objets (parement du barrage)
ne sont pas représentés car on a choisi
de procéder a une analyse en deux
étapes, la deétermination des points-
objets n’est analysée qu’en deuxieme
étape.

Sur cette figure sont représentées les
ellipses de confiance et le vecteur-
propre principal. Les composantes de ce
vecteur sont dirigées sensiblement dans
la direction x positive pour la partie supé-
rieure du réseau; dans la direction x né-
gative pour la partie inférieure. Selon le
chapitre 3, la «faiblesse» de ce réseau
est donc d'abord une pseudo-dilatation
dans la direction x entre ces deux parties
du réseau. Cela signifie que ce réseau
est mal adapté pour déterminer avec
grande précision un déplacement d’'en-
semble de la partie inférieure, bien que
les points 12, 14 et 15 soient sans aucun
doute situés en dehors de la zone de dé-
formation. C’est le critere des vecteurs-
propres qui a permis de déceler claire-
ment ce comportement du réseau.

L'étape suivante de calcul doit per-
mettre de déterminer les déplacements
éventuels des points du parement. En ce
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Fig.8 Réseau de contrdle du barrage de |'Edersee (D), avec les points de base, le premier
vecteur-propre principal et les ellipses de confiance

1 N
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Ré » ] 50 m.
Ellipses  isss— 2 mm.

Fig.9 Barrage de I'Edersee: réseau partiel avec 4 piliers d'observation, 5 points du parement,
le premier vecteur-propre principal, les ellipses de confiance et 100 simulations
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qui concerne la sécurité de I'ouvrage, les
mouvements entre les points du pare-
ment et les piliers d’observation situés
dans le voisinage immédiat du barrage
sont de premiere importance. La figure 9
représente ces piliers comme fixes, et
un choix de cing points du parement.

Les points du parement, déterminés
par intersections, sont représentés avec
leurs ellipses de confiance (au niveau
9590) et 100 réalisations calculées avec
des observations simulées. La corres-
pondance entre les ellipses et les simu-
lations est excellente. En outre, on a re-
présenté les composantes du vecteur-
propre principal: elles sont toutes sensi-
blement tangentes au barrage. La per-
pendicularité entre ces composantes et
les directions critiques (voir fig.1) est
donc réalisée, et le «critere des vec-
teurs-propres» proposé au chapitre 3.1
est satisfait.

Mais il faut, pour conclure valable-
ment, examiner ce «critere des vec-
teurs-propres» en étroite relation avec
ceux mentionnés au chapitre 2. Nous le
ferons grace a la figure 10, qui représen-
te la méme situation que la figure 9, mais
avec un pilier d’'observation supplémen-
taire, le numéro 17.

Pour ces deux variantes, on a calculé
les valeurs numériques des critéeres du
chapitre 2, rassemblées dans la tabelle
ci-dessous.

Par I'adjonction du pilier supplémen-
taire No 17, la valeur-propre maximum
tombe de 0.23 a 0.06. Le volume et les
axes de I'ellipsoide de confiance global
sont considérablement réduits. Ainsi,
sauf le critere d’homogénéité qui ne
marque pas une ameélioration vraiment
sensible, ces critéres montrent que la
deuxiéme variante est trés préférable, au
prix, il est vrai, d'un plus grand volume
de mesures.

Et pourtant, si I'on considére les com-
posantes du vecteur-propre principal sur
la figure 10, I'exigence de perpendicula-
rit¢ avec les directions critiques n’est
plus réalisée, bien que ce vecteur-
propre corresponde & une valeur-propre
beaucoup plus petite que dans la premie-
re variante, c’est-a-dire a un réseau plus
précis et plus fiable. Nous pouvons en ti-
rer la conclusion que le «critere des vec-
teurs-propresy est un critere géomé-
trique livrant des informations sur les fai-
blesses d'un réseau, mais pas sur sa pre-
cision générale. |l doit étre utilisé en re-
lation avec d‘autres criteres, si I'on ne
veut pas en tirer des conclusions erro-
nées. L'analyse de ces deux variantes
montre que |'adjonction du point 17 per-
met une augmentation importante de la
précision (ce que confirment les ellipses
de confiance et les simulations), mais
que la configuration optimale n’est en-
core pas atteinte. Les praticiens savent
bien que les contraintes de la topogra-
phie et le colt des mesures permettent
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Critere

Exigence

Variante ||
avec point 17

Variante |
sans point 17

Précision, Fiabilité Amax— Minimum 0.231 0.061
Ellipsoide de confiance: I[TA— minimum 5.10-13 15.10°17
volume
Ellipsoide de confiance: ZA— minimum 0.79 0.27
somme des axes

A
Homogéneité, Isotropie x - 1. 369 3.49

Tabelle: Valeurs numériques des critéres généraux du chapitre 2 pour les variantes des fi-

gures9et 10

1
2
3 4
ECHELLES
Réseau — 50 m.
Ellipses |les— 2 mm.

Fig. 10 Comme fig. 8, avec un pilier d'observation (No 17), supplémentaire

rarement d‘atteindre cet optimum.
Néanmoins, une mesure compléte du ré-
seau amélioré, réalisée en mars 1978, a
permis d’atteindre pour tous les points la
précision souhaitée.

Pricipaux travaux consultés

R. Gnadadesikan: Methods for statistical data
analysis of multivariate observations, John
Wiley, New-York 1977

E. Grafarend: Optimization of geodetic net-
works, IAG-Symposium, Fredericton, Can.,
1974

P. Meissl: Zusammenfassung und Ausbau
der inneren Fehlertheorie eines Punkthau-
fens, DGK, Reihe A, Nr. 61, Minchen 1969

H. Pelzer: Zur Analyse geodatischer Deforma-
tionsmessungen, DGK, Reihe C, Nr. 164,
Minchen 1971

- Zur Behandlung singuléarer Ausgleichung-
saufgaben| und I, ZfV, 99, p. 181-194 et
479-488,1974

- Genauigkeit und Zuverlassigkeit geodatis-
cher Netze Tagung «Mathematische Proble-
me der Geodasie», Oberwolfach 1976

- Uber die statistischen Eigenschaften der Er-
gebnisse von Deformationsmessungen, VII.
Int. Kurs f. Ingenieurmessungen hoher Prazi-
sion, Darmstadt 1976

R. Zurmuhl: Matrizen, 4. Auflage, Springer-
Verlag, Berlin 1964

Adresse des auteurs:

H. Dupraz, Institut de Géodésie

et Mensuration EPFL, CH-1007 Lausanne

W. Niemeier, Geodatisches Institut der Univ.
Hannover, D-3000 Hannover 1

Strukturen und Organisation bei der Einfihrung von
interaktiven numerisch-graphischen Systemen

H. Matthias

L'introduction du traitement automatique de
I'information dans la mensuration officielle
ainsi que dans certains domaines d'un ca-
dastre polyvalent conduit a I'emploi de sys-
témes interactifs numériques et graphiques. Il
en est de méme pour la création de banques
de données et de systéemes d’informations,
relatifs a la planification, a 'aménagement du
territoire, a l'estimation et a I utilisation du sol,
aux droits réels.

Réciproquement, I'introduction de tels sys-
témes interactifs est une condition nécessai-
re a la solution des problemes décrits dans le
paragraphe 2.1 ci-dessous.

Les institutions et entreprises qui offriront
leurs services dans les domaines concernés
auront une influence prépondérante sur les
structures de la mensuration en Suisse.
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1. Einleitung

Bei der Bearbeitung des Scriptums fur
die Lehrveranstaltung Amtliche Vermes-
sungswerke | und Il entstand kirzlich
das Kapitel tber den Einsatz der elektro-
nischen Datenverarbeitung bei der Par-
zellarvermessung. Den Abschluss dazu
bildet ein «Ausblick», in dem ein Ab-
schnitt mit dem Titel dieses Beitrages
vorkommt. Bei der Niederschrift kam ich
auf den Gedanken, diese Ausfihrungen
zu publizieren. Dafur gibt es verschiede-
ne Grinde: a) Wenn die wirtschaftliche
Entwicklung ohne besondere &ussere

Ereignisse fortschreitet, wird die Einfih-
rung von interaktiv numerisch-graphi-
schen Systemen (IN-GS') sicher relativ
rasch und umfassend voranschreiten.
b) Die Automationskommission des
SVVK2 behandelt zur Zeit bereits ein die-
sem Aufsatz naheliegendes Thema. Es
ist nitzlich, dass frihzeitig zu Gedanken
ber diese Frage angeregt wird. c) In

1 Diese Bezeichnung ist vom Sprachge-
brauch bei der Firma Contraves AG Uber-
nommen.

2 Schweizerischer Verein fir Vermessungs-
wesen und Kulturtechnik
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