Zeitschrift: Vermessung, Photogrammetrie, Kulturtechnik: VPK = Mensuration,

photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =

Société suisse des mensurations et améliorations foncières (SSMAF)

Band: 77 (1979)

Heft: 1

Werbung

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die halbe Differenz der beiden Ablesungen ist gleich der Neigung i der Winkelhalbierenden H der beiden Auflagen B_{ll} und B_{ll} des Neigungsmessers.

Die Summe der beiden Ablesungen ergibt eine Konstante, die vom Gerät abhängt, und die dem Indexfehler bei der Höhenwinkelmessung entspricht. Bei verschiebbarer Skala S kann der Winkel β verändert werden. Die Summe ist in diesem Fall nur für einen bestimmten Einstellungszustand konstant. Dies trifft auf den DKM2–AM zu, dessen Skala am Kippachsmikrometer gegenüber einer bestimmten Stellung der Planplatte 12 (Abb. 2) verschoben werden kann.

Der geometrische Sachverhalt in Abb. 5 kann mechanisch verschieden ausgelegt werden.

- Die Winkelhalbierende H kann eine mechanisch ideale Stehachse darstellen, die ihre Richtung beim Drehen von Lage I in Lage II beibehält. Diese Interpretation gilt üblicherweise für Theodolite, deren Stehachse für die vorgesehenen Messungen als hinreichend genau angesehen werden kann.
- Die Winkelhalbierende H wird als geometrische Grösse betrachtet, die keinem mechanischen Teil entspricht. Messungen mit dem Neigungsmesser in den Lagen I und II ergeben die Neigung i von H gegenüber dem Lot L. Diese Interpretation gilt insbesondere für Passageinstrumente, über deren Stehachse nichts vorausgesetzt wird.
- Die Auflagen B_I und B_{II} können als mechanische Auflagen für den Neigungsmesser oder ebensogut als Auflagen für die Kippachse angesehen werden. Neigungsmesser und Kippachse sind beide durch die starre Stütze gegeneinader festgelegt. Zur besseren Klarheit wären in Abb. 5 zwei Auflagen B'_I und B'_I einzuführen, je eine für den Neigungsmesser und

eine für die Kippachse. Sie hätten jedoch beide dieselbe Winkelhalbierende Hzwischen beiden Lagen.

Die gemessene Neigung i ist somit gleich der Neigung des Mittels aus den Neigungen der Kippachse in den Lagen I und II. Fehlereinflüsse, die linear von der Kippachsneigung abhängen, werden eliminiert, indem am Mittelwert der Messwerte eine für den Mittelwert der Neigungen geltende Korrektur angebracht wird. Dabei wird über die Stehachse nichts vorausgesetzt.

Eine Einschränkung ist freilich zu machen. Die gemessenen Neigungen beziehen sich nicht auf die Kippachse selbst, sondern auf die Auflage der Kippachse in der Stütze. Bei den heute üblichen Herstellungsgenauigkeiten der Kippachse ist dies für Sekundentheodolite wohl zulässig, für Präzisionstheodolite hingegen müsste ein anderes Messsystem gewählt werden.

4. Korrektur der Messwerte

Es ist belanglos, ob die Neigung i der Neigungskomponenten einer idealen Stehachse entspricht, oder ob sie aus verschiedenen Neigungen i_u und $i_{u+\pi}$ einer fehlerhaften Stehachse hervorgegangen ist (Abb. 5). Die Indices u und $u+2\pi$ beziehen sich auf das Azimut des verwendeten Zielpunktes in beiden Lagen. Gute Stehachsen sind trotzdem nicht zwecklos, da sie bei guter Horizontierung und nicht allzu steilen Visuren Korrekturen überflüssig machen.

Die am Mittel I' aus beiden Fernrohrlagen einer Horizontalrichtung anzubringende Korrektur k wird

$$k = i \cdot \operatorname{ctg} z$$

mit z als Zenitdistanz der beobachteten Richtung und i als Neigung der Winkelhalbierenden H gegenüber dem Lot. Die korrigierte Richtung I ergibt sich aus dem Mittel I' als

| = |' + k |

Dadurch ist das Vorzeichen von i bestimmt. Es ist für einen im Uhrzeigersinn geteilten Kreis positiv, wenn vom Beob-

achter in Richtung auf das Ziel gesehen die Winkelhalbierende H nach rechts geneigt ist. Damit ist auch die Bezifferungsrichtung der Skala S festgelegt, da die Differenz der Ablesung im üblichen Sinne der Differenzbildung a_{II} – a_I positiv sein muss.

5. Richtungsmessungen mit dem DKM2-AM

Das Kippachsmikrometer des DKM2-AM weicht aus konstruktiven Gründen von der in Abschnitt 4 gegebenen Vorzeichenregelung ab. Damit die Differenz a_{II} - a_I das richtige Vorzeichen annimmt, müsste die Skala am Rändelknopf in der entgegengesetzten Richtung beziffert sein. Dies könnte wegen der ungewohnten Bezifferungsrichtung zu Ablesefehlern führen. In der Berechnung ist daher ein Vorzeichen zu vertauschen, am einfachsten durch Vorzeichenwechsel der Differenz der Ablesungen, d. h. durch

$$i = \frac{a_l - a_{ll}}{2}$$

Die Messung einer Horizontalrichtung umfasst zusätzlich zur Kreisablesung noch die Ablesung des Kippachsmikrometers, die im Feldbuch für jede Fernrohrlage in einer separaten Kolonne neben den Richtungsmessungen aufgeschrieben wird.

Literatur

Patentschrift Schweiz Nr. 532243.
H. Aeschlimann: Der neue Sekundentheodolit Kern DKM2-A, Vermessung, Photogrammetrie, Kulturtechnik, Fachblatt 1/72
A. Miserez: Détermination géodésique des déformations d'un barrage avec le théodolite DKM2-AM. Vermessung, Photogrammetrie, Kulturtechnik 1/79.

Adresse des Verfassers: Dr. H. Aeschlimann, Kern & Co. AG, CH–5001 Aarau

GRANITSTEINBRÜCHE CH-6799 PERSONICO Tel. 092 72 24 52

MARKSTEINE BORNES