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Raumnetz Thusis*
D. Schneider

Résumé

Dans le calcul conventionnel des réseaux de triangulation,

le modèle géométrique utilisé n'est souvent pas
satisfaisant pour les régions montagneuses. La géodésie
tridimensionnelle décrit d'une manière plus complète les
relations géométriques dans les réseaux spaciaux. En
plus des coordonnées et des altitudes, les déviations de
la verticale sont aussi calculées simultanément pour
chaque point. Dans le réseau de Domleschg (GR) les

erreurs moyennes ne dépassent pas 30 mm en position,
34 mm en altitude et 6.2CC pour les déviations de la
verticale. Les erreurs du modèle dans la compensation
conventionnelle ont causé des erreurs jusqu'à 10 cm en
position et 23 cm en altitude.

1. Einleitung

Bei der trigonometrischen Fixpunktbestimmung geht
es grundsätzlich darum, die räumliche Lage von Punkten

der Erdoberfläche gegenüber einem geeigneten
Bezugssystem mit genügender Genauigkeit zu bestimmen.
Bei der konventionellen Ausgleichung von
Triangulationsnetzen in der Vermessungspraxis wird die
Lageausgleichung getrennt von der Ausgleichung der Höhen
durchgeführt. Die Lageausgleichung erfolgt auf einer
mathematisch einfach beschreibbaren geometrischen
Bezugsfläche (Projektionsebene, Ellipsoid), während die
Höhen üblicherweise auf das Geoid bezogen werden,
obwohl diese physikalisch definierte Bezugsfläche im
allgemeinen gar nicht exakt bekannt ist.

Die unregelmässige Massenverteilung der Erdkruste
in Gebirgszonen bewirkt einen unruhigen Verlauf des

Geoids. Die Abweichungen des Geoids vom Ellipsoid
(beschreibbar durch Lotabweichungen und Geoidhöhen)
nehmen in diesen Gebieten grosse, innerhalb kurzer
Entfernungen sich stark ändernde Beträge an. Das
mathematische Modell der konventionellen Methode berücksichtigt

diese Abweichungen nicht und führt deshalb zu
spürbaren Modellfehlern.

Bei den Methoden der dreidimensionalen Geodäsie
werden alle Unbekannten gemeinsam aus der Gesamtheit

aller Beobachtungen in einem einheitlichen, rein
geometrischen Bezugssystem bestimmt. Geeignete
Bezugssysteme sind vor allem lokale oder geozentrische
kartesische Koordinatensysteme. Die Methode kommt
ohne jede Definition von Modellflächen (Ellipsoid,
Geoid) aus.

Die Idee der dreidimensionalen Geodäsie ist schon
seit dem letzten Jahrhundert bekannt (Bruns, 1878). Für
die Berechnung von Triangulationsnetzen wurde die
Methode aber nur selten angewendet, da die anfallende
Rechenarbeit kaum zu bewältigen war. Im Computer-

* Bericht über eine Diplomaufgabe des Instituts für Geodäsie
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Zeitalter kann der grössere Rechenaufwand kein Hindernis

mehr sein.
Im Juli 1976 haben Schürer und Bauersima [1] an

dieser Stelle über eine rationelle Methode zur Behandlung

der dreidimensionalen Geodäsie berichtet. Anstelle
der unübersichtlichen, mühsam mit Hilfe der sphärischen

Trigonometrie hergeleiteten Formeln der klassischen

dreidimensionalen Geodäsie [2] gelingt es den
Verfassern dank der Verwendung der räumlichen
Rotationen und der Matrizenarithmetik, das mathematische
Modell leicht überschaubar darzustellen. Die Art der
Behandlung ist nebenbei auch von den modernen
Methoden der Aerotriangulation in der analytischen
Photogrammetrie bekannt. Eine weitgehende Analogie der

Problemstellung und Lösung ist erkennbar.
Diese Veröffentlichung hat den Wunsch aufkommen

lassen, sich mit der Behandlung von Raumnetzen
eingehend zu befassen und die «rationelle Methode» praktisch

anzuwenden. Der Verfasser hatte die Möglichkeit,
sich schon im 8. Semester im geodätischen Praktikum II
mit dem Problem vertraut zu machen, einige
Computerprogramme zu entwickeln und anhand von Beispielen
zu testen. Unter der Oberleitung der Professoren Schürer

und Conzett wurden im Diplomkurs 1976 in Thusis
die notwendigen Beobachtungen zur dreidimensionalen
Ausgleichung eines kleinen Testnetzes durchgeführt.

Die Messarbeiten und die Auswertungen anlässlich
der Diplomarbeit im Wintersemester 1976/77 wurden
von Herrn N. Wunderlin, dipi. Ing. ETH, betreut.

2. Das mathematische Modell der Ausgleichung
dreidimensionaler Netze

Die Gleichungen des funktionalen Modells der
dreidimensionalen Ausgleichung lassen sich mit Hilfe räumlicher

Drehungen in leicht verständlicher Weise herleiten

[1]. Um dem Leser das Verständnis dieses Berichts
zu erleichtern, sind die wichtigsten Beziehungen in
diesem Kapitel noch einmal zusammengefasst.

Bezugssysteme
Bei der klassischen Geodäsie steht das Rotationsellipsoid

im Vordergrund. Im Gegensatz dazu verzichtet die
dreidimensionale Methode auf die Einführung einer
Bezugsfläche. Es kann ein beliebiges kartesisches
Koordinatensystem eingeführt werden. Das geozentrische
kartesische Koordinatensystem X, Y, Z ist als zentrales
Bezugssystem für die dreidimensionale Ausgleichung
besonders geeignet. Es steht in einfachem Zusammenhang
mit dem klassischen ellipsoidischen Bezugssystem (L,
B, H) (Abb. 1).

[X, Y, Z] [(N+H) cos B cos L, (N+H) cos B sin L,
(N(l-e2)+H)sinB] (1)

In jedem Stationspunkt P; wird ein lokales kartesisches

Koordinatensystem (f, -n, f) festgelegt. Die f-Achse
fällt mit dem physikalischen Lot im Stationspunkt (reali-
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Abb. 1 Das Rotationsellipsoid als klassische geodädtische
Bezugsfläche und das geozentrische kartesische Koordinatensystem.
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Abb. 2 Richtungskugel durch P zur Darstellung der Transformation

des Vektors PQ vom geozentrischen ins lokale kartesische

Koordinatensystem.

siert durch die Stehachse des horizontierten Theodolits)
zusammen. Die £-Achse wird durch den Orientierungswinkel

œ festgelegt (Orientierung des Richtungssatzes)
(Abb. 2).

Als Unbekannte der Ausgleichung werden die
geozentrischen kartesischen Koordinaten (Xi; Y;, Z;) jedes
Netzpunktes P; betrachtet. Mit der Bestimmung dieser
Unbekannten ist die Geometrie des Netzes eindeutig
bestimmt. Zur Verknüpfung der lokalen Koordinatensysteme

mit dem zentralen Bezugssystem werden für
jeden Netzpunkt Pj zusätzlich die unbekannten räumlichen
Orientierungswinkel a>j, #; (astronomische Breite), A,

(astronomische Länge) eingeführt. Pro Netzpunkt sind
also 6 Unbekannte zu bestimmen.

Funktionales Modell
Die zwei Stationspunkte P, Q eines Raumnetzes

definieren den freien Vektor U im zentralen bzw. u im lokalen

kartesischen System (Visurstrahl). Zu jeder freien
Visur sind folgende Grössen der Beobachtung zugänglich:

- geodätische Beobachtungen:
z': beobachtete Zenitdistanz
a: beobachtete Richtung
r': beobachtete Distanz

Auf jeder Station können zusätzlich folgende Grössen
erfasst werden:

- astronomische Beobachtungen:
X': beobachtete astronomische Länge
<Z>': beobachtete astronomische Breite
a': beobachtetes astronomisches Azimut

Die geodätischen Beobachtungen z', a, r' lassen sich
im lokalen kartesischen System (f, r\, Ç) als fingierter

Beobachtungsvektor u' der Visur PQ darstellen.

r sm z cos a

r' sin z' sin a

r' cos z'
(2)

Die räumliche Transformation des freien Vektors U
vom zentralen ins lokale System führt direkt zur
Beobachtungsgleichung für die fingierte ausgeglichene
Beobachtung (Abb. 2):

u (z, a, r) A (wP, &P, AP) • U (XP, YP, ZP, XQ, YQ, Zq)
oder symbolisch

L F(x) (3)

Die Rotationsmatrix A setzt sich aus drei elementaren
Rotationsmatrizen zusammen:

A R3(ö>) • R2(<Z>-Vt) -R3(X+n) (4)

Die Linearisierung der fingierten Beobachtungsgleichung

(3) in den Stützwerten X°, Y°, Z°, Xj>, Y°, Z°

(geozentrische Näherungskoordinaten), <y° 0, $° B,
l°p L (geodätische Koordinaten für die Unbekannten)
führt zu den fingierten vektoriellen Verbesserungsgleichungen

im (f, tj, f)-System:

v A03U + FU03co + GU03<2> + HU0cU-(u'-A0U0) (5)
oder symbolisch

v= Ax - I (5')

Zur vektoriellen Beschreibung der Verbesserungen an
den geodätischen Beobachtungen wird zusätzlich pro
Visur u ein weiteres kartesisches Koordinatensystem, das
kartesische «Visursystem» (1, 2, 3), festgelegt (Abb. 3).

\tfH
z*z rs'\r\Z.v

M

u~cC

Abb. 3 Vektorielle Darstellung der Verbesserungen an den
geodätischen Beobachtungen im kartesischen «Visursystem» (1, 2, 3).
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Die 3-Achse fällt mit dem Visurstrahl u zusammen,
während die 1-Achse in der durch u und die £-Achse
aufgespannten Ebene liegt.

Durch Multiplikation von Gleichung (5) mit der
Rotationsmatrix R R2(z0) • R3(a0) erhält man die Gleichung
der fingierten vektoriellen Verbesserung im (1, 2, 3)-
System:

w RA03U + RFU03w + RGU03$ + RHU03A

- R(u'-A0U0) (6)

wobei w

und durch eine weitere Multiplikation mit der Matrix

J_
r„

0

0

1

0

r0sinz0
0 0 1

(7)

schliesslich die zur vermittelnden Ausgleichung notwendige

vektorielle Verbesserungsgleichung für die geodätischen

Beobachtungen:

Cw

CRA03U + CRFU03w + CRGU03<Z> + CRHU03A
- CR(u'-A0U0) (8)

Die astronomischen Beobachtungen X' und &' stellen
direkte Beobachtungen der unbekannten Grössen dar.
Ihre Verbesserungsgleichungen lauten daher:

BX
(9)

(*' - K
Die Verbesserungsgleichung für die astronomische

Azimutbeobachtung a' kann als Spezialfall der Rich-
tungsverbesserungsgleichung (2. Komponente in (7))
betrachtet werden.

va (CRA03U)2 + (CRGU03<Z>)2 + (CRHU03A)2

- [a'-(a0 + ü)0)] (10)

Das funktionale Modell beschreibt die geometrischen
Zusammenhänge im Raumnetz in vollkommener Weise.
Um der physikalischen Realität bei der Messung gerecht
zu werden, enthält das Modell die Hypothese, sämtliche
Beobachtungswerte seien vorgängig von systematischen
Fehlern (Refraktion, atmosphärische Einflüsse auf die
elektronisch gemessenen Distanzen, Aberration bei
astronomischen Beobachtungen, Instrumentenfehler usw.)
befreit.

Stochastisches Modell
Die zentralen Koordinaten (X, Y, Z) und, falls keine

astronomischen Beobachtungen vorliegen, auch die
unbekannten Orientierungen w, $, l mindestens eines
Netzpunktes müssen festgehalten werden, da sonst das

Normalgleichungssystem singular wird (Einführung fehlerfreier

Grössen für die Unbekannten).
Für alle Beobachtungen sind Varianzen und Kovarianzen

a priori einzuführen.

3. Das Programmsystem RAUMTRIG
(Computerprogramme zur dreidimensionalen
Ausgleichung von Raumnetzen)

Die Ausgleichung von Raumnetzen ist nur mit Hilfe
des Computers ökonomisch durchführbar. Als erster
wesentlicher Schritt für die praktische Erprobung des

mathematischen Modells waren deshalb einige
Programme zu entwickeln.

Ein wesentlicher Vorteil der «rationellen Methode»
nach Schürer/Bauersima wurde erst jetzt deutlich spürbar.

Nachdem die Unterprogramme für die räumliche
Vektortransformation und die Matrizenoperationen
definiert waren, liessen sich sämtliche Formeln auf wenigen

Programmzeilen übersichtlich strukturiert darstellen.
Das Programmsystem RAUMTRIG räumliche

Triangulation) besteht aus den drei Programmbausteinen:

- RAUMNETZ (Berechnung der Koeffizienten der Ver¬
besserungsgleichungen)

- RAUMAUS (vermittelnde Ausgleichung)

- GEOZEB (Transformation geozentrischer Koor¬
dinaten in Landeskoordinaten)

Die Zwischenspeicherung und Übertragung der Daten
erfolgt automatisch mit Datenfiles. Das gewählte Konzept

bietet gegenüber einem einzigen grossen Programm
bedeutende Vorteile, wie beschränkter Kernspeicherbedarf

der einzelnen Module, Kontroll- und Eingriffsmöglichkeiten

bei Steuerung des Rechenablaufs von einem
Terminal aus und Möglichkeit, einzelne Programmodule
auszuwechseln.

Sämtliche Bausteine von RAUMTRIG sind in Stan-
dard-FORTRAN für die CDC 6400/6500 des RZETH
programmiert. Das System eignet sich für kleinere
Testnetze mit einem Festpunkt und könnte nach gewissen
Anpassungen auf anderen Rechenanlagen angewendet
werden.

4. Das Raumnetz Thusis

Zielsetzung des Projekts
Das Projekt RAUMNETZ THUSIS entstand im

Wintersemester 1975/76 mit folgender Zielsetzung:

- Praktische Erprobung der «rationellen Methode»
anhand von geeignetem Beobachtungsmaterial

- Bestimmung der Unbekannten X, Y, Z, co, 0, l für je¬
den Netzpunkt mit bestmöglicher Genauigkeit

- Berechnung von Richtung und Betrag der Lotabweichungen

von ausgesprochenen Hangpunkten

- Absolute Orientierung des Netzes durch die Messung
von astronomischer Länge und Breite auf mindestens
einem Netzpunkt und mindestens eines astronomischen

Azimutes

- Untersuchung der Refraktionseinflüsse auf die
beobachteten Zenitdistanzen und Richtungen.

Netzdisposition
Der Entwurf sieht ein Netz, bestehend aus einem

unregelmässigen Sechseck, mit zwei Punkten im Tal und je
zwei extremen Hangpunkten am Heinzenberg sowie am
Gegenhang vor (Abb. 4). In den Hangpunkten sind

grosse relative Lotabweichungen bezüglich der Talpunk-
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Abb. 4 Raumnetz Thusis mit Lotabweichungen als Resultate abweichungen (reproduziert mit Bewilligung der Eidg. Landes-
der räumlichen Ausgleichung und aus Massen berechneten Lot- topographie vom 30. Januar 1978).

te zu erwarten. Das Netz enthält vorwiegend steile
Visuren (bis ca. 20e), so dass bei einer konventionellen
Ausgleichung beträchtliche Einflüsse der Modellfehler
zu erwarten sind. Die mittlere Visurlänge beträgt ca.
5 km, womit die Punktdichte also etwa der eines Netzes
3. Ordnung entspricht. Höhenwinkelmessungen sind auf
diese Distanz noch möglich, wobei gute Voraussetzungen
zur Untersuchung von Refraktionseinflüssen gegeben
sind.

Ausgleichungen a priori
Um die im projektierten Raumnetz bei verschiedenen

angenommenen Messprogrammen erreichbare Genauigkeit

abschätzen zu können, wurden mit dem Programmsystem

RAUMTRIG insgesamt 10 Ausgleichungsvarianten
a priori mit unbestimmter Auflösung der

Normalgleichungen berechnet. Das schliesslich zur Ausführung
empfohlene Messprogramm sah bei Richtungs-, Distanz-
und Höhenwinkelbeobachtungen auf fast allen möglichen

Visuren folgende anzustrebenden mittleren Fehler
der Beobachtungsmittel vor:

- astronomische Beobachtungen: a a# ax 2ec

- Zenitdistanzen: oz 6CC

- Richtungen: oa 2CC

- Distanzen: ar 5 mm + D • 10~6

Auf Grund dieses stochastischen Modells berechneten
sich die mittleren Fehler a priori der Unbekannten des

am schwächsten bestimmten Punktes 6 zu:

ax 1.1 cm

öy 1.0 cm

o, 4.1 cm

aw 6.0CC

o^ 6.4CC

o- 8.5CC

(Bei fehlerfrei eingeführten Orientierungen <I>, l, œ im
Festpunkt.)

Beobachtungen
Die Messarbeiten wurden im Juli und August 1976

durch 5 Diplomanden (3 Vermessungs- und 2
Kulturingenieure) ausgeführt.

Dabei kam folgendes Instrumentarium zum Einsatz:
1 Kern DKM3 (Astro), 1 Kern DKM3, 1 Kern DKM2A,
1 AGA-Geodimeter 8, 1 Chronograph (Longines) und
1 Zeitzeichenempfänger.

Zur Signalisierung wurden Alu-Signale (ETHZ) mit
Stahlseilverspannung, Kunststoffsignale (L+T) sowie
Kern-Scheinwerfer verwendet.

Ausser der Visur zwischen den schlecht zugänglichen
Punkten 5 und 6 konnten alle Strecken z. T. mehrmals
mit dem Laser-Geodimeter gemessen werden. Die
Distanzmessungen wurden in wenigen Tagen abgeschlossen.

Die Richtungs- und Zenitdistanzmessungen verlangten

dagegen, wegen der langen Anmarschwege und der
grösstenteils ungünstigen Sicht- und Beleuchtungsverhältnisse,

viel Geduld und Ausdauer. Die Zenitdistanzmessungen

wurden über die ganze Messperiode verteilt.
Einzelne Visuren wurden an bis zu 5 Messtagen bis zu
insgesamt 14mal beobachtet. Wegen der häufigen nächtlichen

Bewölkung konnten leider nur auf Station 1

astronomische Beobachtungen ausgeführt werden.

5. Die Ausgleichung

Bei der strengen Ausgleichung von Raumnetzen wird
ein funktionales Modell verwendet, das der Realität sehr
nahe kommt. Bedeutende systematische Fehlereinflüsse
sind vor allem von der Höhen- und Seitenrefraktion zu
erwarten. Neben der Einführung eines globalen
Refraktionskoeffizienten wurden deshalb in einigen
Ausgleichungsvarianten mit Hilfe eines mathematischen Modells
berechnete Refraktionswinkel [3] berücksichtigt.

96 Mensuration, Photogrammetrie, Génie rural 4/78



Dem funktionalen Modell hoher Qualität sollte ein
gleichwertiges stochastisches Modell zur Seite gestellt
werden. Die mittleren Fehler a priori der Beobachtungen

wurden auf folgende Weise festgelegt:

- Distanzen:

or 5 mm + 1 • D IO-6 (bewährter Ansatz)

Berücksichtigung der Autokorrelation bei
Messserien (Autokorrelationskoeffizient: k 0.8 bei
Mehrfachmessungen mit At ^ 1 h)

- Richtungen:
Aus Dreiecksschlüssen bei Berücksichtigung der
Lotabweichungen:

aa (DKM3) 2.2«« (Satzmittel)
aa (DKM2A) - 2.6CC (Satzmittel)

- Zenitdistanzen:
Aus gegenseitigen Zenitdistanzen bei Berücksichtigung

der Lotabweichungen:
öz ?« 5.4CC (Mittelwert aller Visuren)
Berücksichtigung der Autokorrelation der Messserien
nach einem einfachen zeitabhängigen Autokorrelationsmodell.

- Astronomische Beobachtungen:
Aus Serienmittelbildungen und Vorausgleichungeu:

a 0.80", ö, 0.43", o, 0.36"

Als Ersatz für fehlende astronomische Beobachtungen
wurde versucht, aus sichtbaren Massen berechnete

Lotabweichungen als fingierte astronomische
Beobachtungen einzuführen. Dabei wurden folgende
mittleren Fehler a priori angenommen:

oç 1.2" a7ì 1.2"

Sämtliche Kreuzkorrelationen blieben unberücksichtigt,

da ihre Abschätzung schwierig ist und nur ein
geringer Einfluss vermutet wird.

Die Annahmen des stochastischen Modells wurden
anhand verschiedener Ausgleichungsvarianten und mit
Hilfe des Modelltests

Tabelle Mittlere Fehler der Unbekannten von Punkt 6

m*

< f
(11)

0.95

überprüft. Dabei zeigte sich, dass die Bestimmung der
räumlichen Orientierungswinkel $ und X bei Netzpunkten

ohne astronomische Beobachtungen in starkem
Masse von der Wahl des stochastischen Modells der
Zenitdistanzen abhängig ist.

Resultate

Aus den berechneten räumlichen Orientierungen <Z>

und X wurden die Lotabweichungen

f &-B und tj (X-L) ¦ cos 0 (12)

berechnet. Sie sind in Abb. 4 dargestellt und den aus
sichtbaren Massen, nach Elmiger [4] berechneten
Lotabweichungen gegenübergestellt.

In der Tabelle sind die mittleren Fehler der
Unbekannten des am schwächsten bestimmten Punktes 6 als
Resultat dreier verschiedener Ausgleichungsvarianten
angegeben. Bei Annahme einer fehlerfreien räumlichen
Orientierung des Netzes im Festpunkt wird ein mittlerer
Lagefehler von ca. 1 cm und ein mittlerer Höhenfehler

m m m m m m
Variante y x H Oi i- >.

[mm] [mm] [mm] [ce] [cc] [ce]

1 24 18 34 6.2 6.2 8.2
2 8 9 32 5.8 6.1 8.1

3 26 19 22 4.6 3.0 4.7
4 7 9 21 3.6 3.0 4.7

Variante 1: Astronomische Beobachtungen nur im Festpunkt (1).

Variante 2: Fehlerfreie Orientierung im Festpunkt (1) angenom¬
men.

Variante 3: Lotabweichungen aus Massen als fingierte astrono¬
mische Beobachtungen eingeführt.

Variante 4: Lotabweichungen aus Massen als fingierte astrono¬
mische Beobachtungen eingeführt und fehlerfreie
Orientierungen im Festpunkt (1) angenommen.

my, mx: mittlere Fehler an den Projektionskoordinaten

mH: mittlerer Fehler der ellipsoidischen Höhe

von ca. 3 cm erreicht (Variante 2). Die Einführung der
Lotabweichungen als fingierte astronomische Beobachtungen

bringt neben kleineren mittleren Fehlern an den
Orientierungswinkeln 0, X und œ eine spürbare Verbesserung

der Höhengenauigkeit. Die Höhe wird etwa mit
gleicher Genauigkeit wie die Lagekoordinaten bestimmt
(Variante 3).

Die Wirkung der mit grossem Aufwand aus
meteorologischen Daten anhand eines physikalischen Modells
berechneten Refraktionswinkel war ziemlich ernüchternd.

Das dreidimensionale Fehlerellipsoid
Der geometrische Ort gleicher Wahrscheinlichkeit für

die Stichprobe eines Zufallsvektors (*, y) in der Ebene
ist die mittlere Fehlerellipse. Sie wird zur Beschreibung
der Lagegenauigkeit von Punkten bei der ebenen
Ausgleichung benützt. Analog dazu kann ein Punkt im
Raum als dreidimensionale Stichprobe des Zufallsvektors

(x, Yj z) betrachtet werden. Der geometrische Ort
gleicher Wahrscheinlichkeit im m-dimensionalen Raum
ist ein m-dimensionales Fehlerellipsoid. Die Wahrscheinlichkeit

1 — a, dass die Spitzen der Vektoren (x. y, z) aller
Stichproben innerhalb des mittleren Fehlerellipsoids
liegen, ist im dreidimensionalen Fall nur noch 20 % gegenüber

39 % im ebenen und 68 % im eindimensionalen
Fall.

Zur Beschreibung der Genauigkeit der Punktbestimmung

im Raum werden mit Vorteil die Grössen der drei
Halbachsen des mittleren Fehlerellipsoids und ihre
räumliche Orientierung bezüglich eines lokalen
Koordinatensystems (z. B. [£, rj, f]-Systems des Festpunktes)
angegeben. Die Qxx-Teilmatrix der Koordinatenunbekannten

kann mit der Transformation

A Q AT (13)

ins (f, r\, f)-System überführt werden. Zur Bestimmung
der Hauptachsen des mittleren Fehlerellipsoids ist eine
dreidimensionale Hauptachsentransformation erforderlich.

An Stelle der strengen Lösung (Eigenwertproblem)
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führt eine iterative Methode, in der numerischen Mathematik

als Jacobi-Rotation bekannt, rasch zum Ziel.
Eine Möglichkeit zur Darstellung der räumlichen

Netzkonfigurationen und der dreidimensionalen mittleren

Fehlerellipsoide ist das Anaglyphenverfahren mit
Komplementärfarben. Der Berechnungsvorgang zur
Herstellung der Bilder entspricht der Simulation einer
stereophotogrammetrischen Aufnahme mit Hilfe der zen-
tralperspektiven Abbildung.

6. Vergleich mit der ebenen, konventionellen
Ausgleichung

Mit der Berechnung von Lage und Höhe sowie der
Lotabweichnungen der Netzpunkte und der Berechnung

der mittleren Fehler dieser Unbekannten war die eigentliche

Diplomaufgabe gelöst. Nachträglich wurden zur
Ergänzung die Resultate der Raumausgleichung mit den

Ergebnissen einer konventionellen Lage- und Höhenausgleichung

verglichen. Diese Unterschiede stellen die
Einflüsse der üblicherweise vernachlässigten Modellfehler
auf die Punktbestimmung dar. Sie sind für den Praktiker
besonders aufschlussreich.

Zur konventionellen Lage- und Höhenausgleichung
wurde jenes Triangulationsprogramm benützt, das in der
Schweizerischen Landestriangulation heute fast
ausnahmslos Anwendung findet (Programm LANDTOP der
Eidg. Landestopographie). Das diesem Rechenprogramm
zugrunde liegende funktionale Modell berücksichtigt
die Lotabweichungen und Geoidhöhen nicht. Die
Lagekoordinaten werden vorgängig und getrennt von der
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Höhenausgleichung in der Projektionsebene berechnet.
Für die Reduktion der schiefen Distanzen werden die
Mittelwerte gegenseitiger Höhenwinkelbeobachtungen
verwendet.

Das Beobachtungsmaterial und das stochastische Modell

der dreidimensionalen Ausgleichung wurden unverändert

übernommen.

Einflüsse der Modellfehler
Aus dem Vergleich der Verbesserungen aus dem ebenen

Näherungsabriss (Resultate der dreidimensionalen
Ausgleichung als Näherungskoordinaten eingeführt) mit
den Verbesserungen der räumlichen Ausgleichung erhält
man direkt die Einflüsse der Modellfehler der
konventionellen Ausgleichung auf die Messgrössen (Abb. 5).

Koordinatenunterschiede
Die systematischen Fehler der Punktbestimiming

infolge des unzulänglichen mathematischen Modells der
konventionellen Ausgleichung erreichen bis 10 cm bzw.
12.5 cm, falls die talüberspannenden Distanzen (4->5,
4->6, 3-»-5, 3->6) nicht eingeführt werden (Abb. 6). Die
Testgrössen des Modells: m2 / o2 erreichen 5.06 (Lage)
gegenüber 1.13 bei der vergleichbaren Variante der
dreidimensionalen Ausgleichung.

Bei der Interpretation der festgestellten Höhenänderungen

von bis zu 23 cm ist zu beachten, dass sich bei
der Raumnetzausgleichung ellipsoidische Höhen ergeben,
während bei der konventionellen Ausgleichung grob
genähert orthometrische Höhen resultieren.

7. Schlussfolgerungen für die Triangulationspraxis

Bei der Bestimmung von geodätischen Netzen in Ge-
birgsregionen ist der Wahl der mathematischen Modelle
besondere Beachtung zu schenken. Die konventionelle
Ausgleichung basiert auf einem für viele Zwecke
unzulänglichen Modell. Bei ihrer Anwendung treten systematische

Lage- und Höhenfehler auf. Zudem wird die
Genauigkeit der eingeführten Beobachtungen bei diesen
Modellen zu pessimistisch geschätzt.

Zur Verbesserung der Ausgleichungsmodelle stehen

folgende Möglichkeiten offen:

a) Dreidimensionale Ausgleichung mit Einführung von
astronomischen Stützwerten. Bestimmung der räumlichen

Orientierungen (und somit der Lotabweichungen)

als Unbekannte.

b) Getrennte Lage- und Höhenausgleichung mit
Berücksichtigung von Lotabweichungen aus Massen und
eventuell Geoidhöhen.

c) Kombinationen von a und b.

Je nach Art der gestellten Triangulationsaufgabe ist
zu entscheiden, welche der Methoden am vorteilhaftesten

anzuwenden ist.
Bei der dreidimensionalen Ausgleichung müssen

genügend Beobachtungen vorliegen, um die 6 Unbekannten

pro Netzpunkt mit genügender Überbestimmung
berechnen zu können. Schwächster Punkt bei der Bestimmung

der Lotabweichungen bei dreidimensionalen
Ausgleichungen sind die beobachteten Zenitdistanzen, ihr

Refraktionsmodell und ihr stochastisches Modell. Bei
bodennahen oder mehr als 10 km langen Visuren dürfte
ihre Genauigkeit vermutlich nicht mehr ausreichen.

Die Anwendung der dreidimensionalen Methode
dürfte für folgende geodätischen Netze in Gebirgsregio-
nen Vorteile bringen:

- Absteckungsnetze der Ingenieurvermessung, wie Tun-
neldurchschlagsnetze, Netze für Staumauern, Viadukte
usw.

- Deformationsmessungen an Bauwerken

- Gleichzeitige Bestimmung von horizontalen und
vertikalen rezenten Krustenverschiebungen

- Überprüfung von Basisvergrösserungsnetzen.
Den grössten Beitrag zur Verbesserung der

Punktbestimmung bringt die Berücksichtigung der
Lotabweichungseinflüsse. Die gemeinsame Bestimmung der Lage-
und Höhenunbekannten hat bei Visurneigungen bis 20k
eine vergleichsweise geringe Wirkung.

Welche der Möglichkeiten zur Verbesserung des
mathematischen Modells Anwendung findet, hat für die
Praxis keine grosse Bedeutung. Wesentlich ist aber, dass

die systematischen Fehler infolge des unzulänglichen
Modells der konventionellen Ausgleichungsmethode
vermieden werden.
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