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Die Vermeidung von Rechenunschéirfen
infolge von Gewichtsinhomogenit:iten
bei einem Netzausgleich

P. Meissl, Graz

Zusammenfassung

Starke Gewichtsinhomogenitdten konnen bei einem Ausgleichs-
problem empfindliche Rechenunschéarfen verursachen. Bei direk-
ter Auflosung der Normalgleichungen kann es zu Ziffernaus-
loschung bei kritischen Koeffizienten kommen. Bekannte Gegen-
massnahmen werden kurz erortert. Ein neues Verfahren, wel-
ches bei Ausgleichsproblemen vom Typ des Netzausgleiches
Vorteile zu bieten scheint, wird vorgeschlagen.

Summary

Strong differences in the observational weights may cause nume-
rical difficulties when an adjustment problem is solved: If a
direct elimination method is applied to the normal inquations,
certain critical coefficients may loose significant digits. Known
measures appropriate to deal with this situation are briefly
reviewed. A new method is proposed which seems to be advan-
tageous if the adjustment problem is structured like that one of
a geodetic network.

1. Problemstellung. Gewichtsinhomogenitidten konnen
einen sehr schddlichen Einfluss auf die Rechengenauig-
keit bei einem Ausgleichsproblem haben. Betrachten wir
das absichtlich extrem ungiinstig gew#hlte Beispiel eines
Hohennetzes in Abbildung 1.
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Abb. 1

In der Skizze sind gemessene Hohenunterschiede (in m
mit 3 Dezimalen) sowie die Reziprokwerte der ange-
nommenen Gewichte (ganze Zahlen) eingetragen. Punkt
0 hat die feste Hohe 0. Wie man sieht, erhalten die zwei
Hohenunterschiede 1—2, 2—3 vergleichsweise sehr
hohes Gewicht.

In dieser Arbeit sollen einige bekannte Massnahmen zur
Verhinderung des schlechten Einflusses der Gewichts-
unterschiede auf die Rechengenauigkeit bei direkter Auf-
16sung der Normalgleichungen erdrtert werden. Schliess-
lich soll ein Verfahren vorgeschlagen werden, welches
insbesondere bei der Ausgleichung von Netzen Vorteile
zu bieten scheint.
Viele Probleme sind dhnlich strukturiert wie das Netz-
ausgleichsproblem. Erwiéhnt sei zunidchst die statische
Berechnung nach der Methode der finiten Elemente, wo
grosse Unterschiede in der Steifigkeit der Elemente
analoge numerische Schwierigkeiten verursachen. Ver-
gleiche Rubinstein-Rosen (1970).
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Weiters erwiahnen wir elektrische Netze von Widerstin-
den. Unser eingangs formuliertes Beispiel steht in enger
Beziehung zu einem stationdren Gleichstrom-Netzwerk.
Die gesuchten Hohen sind Potentialwerte in den Knoten,
die reziproken Gewichte sind Widerstidnde. Die an einem
Knoten austretende Strommenge ist die Summe der mit
den Gewichten multiplizierten Beobachtungen, die an
dem Knoten beteiligt sind, unter Beriicksichtigung des
Vorzeichens. Die Normalgleichungen unseres Ausgleichs-
problems, die spidter in Abschnitt 6 formuliert werden,
sind gleichbedeutend mit den Kirchhoffschen Regeln.
(Vergleiche auch Borre-Meissl [1974], Appendix C.) Ge-
wichtsinhomogenitdten bedeuten Inhomogenititen der
Widerstédnde.

2. Hohe Stellengenauigkeit. Ist sie verfiigbar und 6kono-
misch vertretbar, so bringt sie die bequemste Abhilfe.
Obiges Beispiel nach der Methode der vermittelnden Be-
obachtungen mit Gauss-Jordan-Elimination auf einer
WANG 2200 B mit 13 Dezimalstellen und Gleitkomma
durchgerechnet, ergab folgendes Resultat fiir die ausge-
glichenen Hohen

1.874821946182 x; = 4.307823040798
1.119822892176 x, = 4.363829369674
X; = 6.314081510503

Xy
X2

I

Die relative Genauigkeit ist schiatzungsweise bei 10-8
und ist sicher ausreichend.

Kritik: Hohe Stellengenauigkeit schafft nicht fiir alle
Probleme Abhilfe. Theoretisch kann man so starke Ge-
wichtsunterschiede wahlen, dass selbst 13 Ziffern nicht
ausreichen. Schlimmer ist der Speicher- und Zeitaufwand
bei wirklich grossen Problemen.

3. A priori Transformationen der Unbekannten bei ver-
mittelnden Beobachtungen. Fiihrt man etwa an Stelle der
Unbekannten X, X,, X3, X;, X; die neuen Unbekannten
Yi = X Yo = Xo T Xy, Y3 = X3 T Xp, ¥y T Xy, ¥5 = X5
ein, so erhdlt man ein gut konditioniertes Normalglei-
chungssystem, welches sich problemlos nach einem di-
rekten Eliminationsverfahren 16sen ldsst. Das neue Nor-
malgleichungssystem weist zwar dhnlich wie das frithere
grosse Unterschiede in der Grosse der Koeffizienten auf.
Die Diagonalelemente und rechte Seiten zu y,, y, sind
sehr gross. Jedoch liegt keine starke Koppelung zwischen
den Unbekannten vor, und es kommt zu keinen Ziffern-
ausloschungen. Die mittleren Fehler der ausgeglichenen
Werte fiir y,, y; werden so klein, dass man vy,, y, prak-
tisch a priori als konstant einfiihren kann, wobei sich die
Werte aus den beobachteten Hohenunterschieden 1—2,
2—3 ergeben.

Kritik: A priori Transformationen miissen bei jedem
Problem oder jeder Problemklasse neu iiberlegt werden.
Daher ist ein qualifizierter Sachbearbeiter notwendig.
Ahnliches gilt fiir den folgenden Punkt 4.

4. Bedingter Ausgleich mit iiberlegter Auswahl der Be-
dingungsgleichungen. Wiahlt man die Bedingungsglei-
chungen etwa iber die 4 Schleifen 0—1—2-0,
1-2—-3—1, 2—+3—-4—2, 3—+4—5-3, so resultiert ein
gut konditioniertes Normalgleichungssystem.

5. Singular value decomposition. Dieses von Golub ent-
wickelte Verfahren ist etwa in Golub-Reinsch (1970)
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ndher beschrieben. Es umgeht bei einem vermittelnden
Ausgleichsproblem

Ax =1 (1)

mit diagonaler Gewichtsmatrix P, die Aufstellung der
Normalgleichungen

ATPAx = ATPI )

und arbeitet unmittelbar mit der Matrix P:A, deren sin-
gulare Werte berechnet und fiir die Losung beniitzt wer-
den. (P ist die Diagonalmatrix der Wurzeln aus den Ge-
wichten.) Die Kondition von P2A ist besser als jene von
ATPA. Golub-Reinsch erldutern dies an dem Beispiel

1 1 1 17
€ 0O 0 O
pia= 0 & 0 0 3)
0 0 ¢ O
0 0 0 &

wobei ¢ eine sehr kleine Zahl ist. Hier kann ATPA leicht
singular werden, wenn nidmlich die Maschinenarithmetik
1 + & durch 1 ersetzt.

Kritik: Singular value decomposition bringt eine Verbes-
serung, behebt jedoch den Einfluss von Gewichtsinhomo-
genitdten nicht vollig. Ausserdem verliert man den
Rechenvorteil bei Problemen vom Typ des Netzaus-
gleiches. Die Normalgleichungsmatrix ist dort schwach
besetzt, und die meisten Nullen bleiben beim Elimina-
tionsvorgang erhalten. Die Singular value decomposition
unterwirft die Matrix P':A gewissen Transformationen
(Householder-transformations), bei denen die schwache
Besetzung verlorengeht.

6. Das Verfahren des korrigierten reduzierten Systems.
Wir beniitzen die bekannten Formeln (vergleiche sinnge-
mass Bjerhammar [1973], S. 228 ff.) iiber die partielle
Reduktion des Normalgleichungssystems, welches wir in
der Form

(ATPA AITPAg] XN (CATPL N

\ K
(AJPA, AJPA, (X, ) A7P1 |

oder kiirzer

Ny Ny X AR

L = ’ ) (4a)
Ny Nooj (% LT )

schreiben. Eliminiert man einen Teil der Unbekannten,
etwa X, so erfiillt x, die sogenannten reduzierten Nor-
malgleichungen

NpsXs = Iy (%)
mit
Ny, = N — N, NN, 1, =1, — N, Niir, (5a)
254

wihrend x; aus

Xl +‘N-12X2 =_l‘1 (6)
mit
N, =Np'N,;, =Nzl (6a)

folgt. Wichtig fiir das folgende sind nun zwei Feststel-
lungen bekannter Tatsachen.

(a) Eliminiert man aus (4a) nach Gauss Jordan x,, so
entsteht das reduzierte System

X; + Npox, = 14

N,.X,

()

I

das heisst, es entstehen gerade (5) und (6).
(b) Zu den Gleichungen (5) gelangt man auch, wenn
man in den Beobachtungsgleichungen

Aa( ) =1 ®)

fiir x; aus (6) substituiert. Man erhilt die reduzierten
Beobachtungsgleichungen

©)

T=1-Ar

2l
I
&

> — AN (10)

Bildet man dazu formal die Normalgleichungen, so er-
gibt sich (5):

JPl=N_x, =, (11)

Das Verfahren sei nun an Hand des Beispiels demon-
striert, welches wir konsequent in Gleitkomma mit 5-
ziffriger Mantisse und korrektem Runden durchrechnen.
Die Beobachtungsgleichungen (1) und die mit 105 multi-
plizierten Gewichte sind:

0—1: x, = 1.873, 100/41
0—2: x, = 1124, 100/94
1-2: x, — x, = —0.755, 10%/97
1-3: x,—x, = 2439, 100/113
23: x, — x,= 3.188, 106/95
2—4: x,— x,= 3.240, 100/107
3-4: x, —x,= 0.062, 100/105
35 x,— x,= 2004, 100/115
4-5: x,— x,= 1.952, 100/89

Die Normalgleichungen (2) ergeben sich mit den modifi-
zierten Gewichten zu:
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1 2 3 4 5 r
1 10312 — 10309 —0.88496 0 0 7785.9
2 20837 — 10526 —0.93458 0 — 41343
3 10529 —0.95238 —0.86957 33558
5 3.0106 —1.1236 0.89370
4 1.9932 3.9359

2 1 3 4 5 r
2 1 —0.99957 — 8.8742E-5 —3.1866
1 —0.99933 —8.8713E-5 —2.4305
3 7 —1.8866 —0.86957 13
4 3.0106 —~1.1236 —2.0844
5 1.9932 3.9359

2 1 3 4 5 r
2 —0.99957 — 8.8742E-5 —3.1866
1 1 —0.99933 —8.8713E-5 —2.4305
3 6.2569 —1.8866 —0.86957 13.230
4 3.0106 —1.1236 —2.0844
5 1.9932 3.9359
Es sei erwdhnt, dass bei Auflosung nach Gauss Jordan (2—3): 0.00043x; + ... = 0.0014, 10995
mit Pivotwahl in der Reihenfolge 2, 1, 3, 4, 5 das vollig (2—4): —0.99957x; + ... = 0.0534, 100/107
falsche Resultat (3—4): —Xg3 + ...=0.062, 100/105

(3—5): —Xg + ...=2.004, 100/115
x; = 1.0666, x, = 0.3115, x, = 3.4991, x, = 3.5551, (4—5): 0 &
X; = 5.5052 o . .\

erhalten witd. Daraus ergibt sich das Element in Position (3, 3) zu
Wir eliminieren nun mit Pivotwahl liangs der Haupt- 100 100
diagonalen so lange, bis ein Pivot an die Reihe kdme, ~41 *0.999332 + 94 0.999572 + ... +
bei dem im bisherigen Verlauf der Rechnung eine emp- 100
findliche Ausldschung fiihrender Ziffern eingetreten ist. + 115 * (—1)% = 6.2569

Bei unserem Beispiel ist dies nach zwei Schritten der
Fall. Es prasentiert sich dann das System in der Form
(beachte die Permutation von 1 und 2!)

Dies entspricht (7). Die beiden ersten Zeilen ergeben

x, — 0.99933x, — 8.8713E-5x, = —2.4305
X, — 0.99957x, — 8.8742E-5x, = —3.1866

Dies entspricht (6), und zwar mit guter Genauigkeit, wo-
von man sich durch Einsetzen der Werte aus Abschnitt 2
iiberzeugt. Die letzten 3 Zeilen entsprechen (5). Es sind
Genauigkeitsverluste eingetreten. Allerdings, und das ist
bei Netzproblemen entscheidend, nur dort, wo sich ein
Netzzusammenhang mit den eliminierten Punkten ergab.
Dies sind die Positionen (3, 3) und (3, r). Die Zahlen 7
und 13 sind nach Ausloschung fithrender Ziffern iibrig-
geblieben.

Wir berechnen nun das reduzierte System neu gemiss
(9), (10), (11) und konnen uns dabei auf die Positionen
(3, 3) und (3, r) beschrinken. Die reduzierten Beobach-
tungsgleichungen (9), von denen wir nur die relevanten
Positionen, das heisst die Koeffizienten von x; und die
rechten Seiten, wiedergeben, sind

(0—1):  0.99933x, + ... = 4.3035, 100/41
(0—2):  0.99957x; + ... = 4.3106, 100/94
(1-2):  0.00024x, + ... = 0.00110, 106/97
(1-3):  0.00067x; + ... = 0.0085, 100/113
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und das Element in Position (3, 1) zu

lflo % 0.99933 % 43035 + ... +
+ i? #*(—=1) *2.004 = 13.230
115

Das korrigierte reduzierte System unterscheidet sich nur
in diesen zwei Positionen von dem fritheren und stellt
sich neu so dar

Bei diesem Beispiel treten keine weiteren ernstzuneh-
menden Ziffernausloschungen in der Diagonale auf. Das
Gauss-Jordan-Schema ergibt daher ohne weitere kor-
rektive Massnahmen das Resultat:

x, = 1.8745 x, = 1.1191 x, = 4.3075
X; = 6.3133

X, = 4.3630

Die grosste Abweichung von den genaueren Resultaten
des Abschnittes 2 ist etwa 0.0008 m. Die grosste rela-
tive Abweichung ist etwa 6 % 1074, was man bei Sziffriger
Rechnung wohl akzeptieren muss.

Kritik: Das Verfahren ldsst sich automatisieren, bedeutet
jedoch einen Mehraufwand an Programmierung. Bei
Problemen, die zu vollbesetzten Matrizen A und ATPA
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fiihren, bedeutet das Verfahren unter Umstinden auch
einen erheblichen rechnerischen Mehraufwand, da dann
ein grosser Teil der Normalgleichungen neu aufgestellt
werden muss. Fiir das in Abschnitt 5, Gleichung (3), er-
wiahnte Beispiel funktioniert es gut und mit geringem
Aufwand. Fiir grosse Netzwerke soll es demnéchst im
Computereinsatz erprobt werden.

7. Dank. Den Anstoss zu dieser Arbeit gab ein Brief-
wechsel mit Herrn T. Vincenty, Cheyenne, Wyoming.
Herr Vincenty berichtete iiber echte Schwierigkeiten
durch Gewichtsinhomogenititen bei grossern Netzen. (Bei
dem kleinen Beispiel des Abschnittes 1 sind die Schwie-
rigkeiten nur aus Demonstrationsgriinden konstruiert.)
Der Firma Wang sei gedankt, dass sie ihr Computer-
system WANG 2200 B fiir die Berechnungen zur Ver-
fiigung stellte. Auf dieser ausserordentlich beniitzer-
freundlichen Maschine war die Durchrechnung des Zah-
lenbeispieles samt Simulation der Rundung ein Vergnii-
gen.
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La simulation en photogrammétrie

W. K. Bachmann, Lausanne

La simulation est une méthode de calcul qui s’est révélée
fort utile dans de nombreux domaines. On y a générale-
ment recours lorsqu’on n’est pas a méme de traiter un
probleme par les méthodes mathématiques classiques.
En simulant un processus de mesures ou une expérience
aléatoire, nous le remplacons par un autre processus qui
lui est similaire. Le plus souvent, la simulation est
utilisée en relation avec des expériences ou le hasard
joue un role prépondérant. Prenons un exemple simple
en considérant un angle X dont la valeur est inconnue.
En la mesurant n fois avec un théodolite, nous ob-
tenons une séquence

(1)

dont les valeurs difféerent légerement les unes des autres.
Si les mesures ont été effectuées correctement, elles
doivent étre groupées autour d’une certaine «valeur cen-
trale» et leur histogramme ne comportera qu'un seul
maximum. L’expérience montre que si le nombre n des
mesures augmente, a partir d’un certain moment I’allure
de I’histogramme ne change pratiquement plus et nous
pouvons dés lors considérer la séquence (1) comme
échantillon de taille n extrait d’'une population X ayant
une fonction de fréquence f(x) bien définie. En régle
générale, il s’agit d’une population normale X ~ N (m; o%)
dont la probabilité élémentaire est

] ¥;(X07m)!

2)
v2n o ¥ e

dp =

L’histogramme consiste dans ce cas en la fameuse
courbe de Gauss en forme de cloche. L’équation (2)
nous montre que cette distribution est completement
déterminée par les deux parametres m et ¢2 qui ne sont
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rien d’autre que la moyenne et la variance de la popu-

lation. Nous pouvons estimer leurs valeurs a partir de
la séquence (1) moyennant les expressions bien connues

1 n
mek=L) %, 6= Y xowr O
n ? nfl‘

et le calcul des probabilités nous permet d’affirmer que
ces estimateurs sont sans biais.
Pour étudier le comportement stochastique d’une sé-
quence de mesures telle que (1), nous avons deux pos-
sibilités, a savoir:
a) répéter la séquence des mesures un grand nombre
de fois,
ou
b) générer la séquence moyennant un processus mathé-
matique approprié, appelé simulation.
Il est évident que la deuxieme de ces méthodes est plus
économique que la premiére lorsqu’on dispose d’une mé-
thode de simulation efficace suffisamment simple. Mais
la simulation d’une population normale X ~ N (m; ¢2),
a paramétres connus, présente quelques difficultés;
pour cette raison, on simplifie généralement le pro-
bléme en cherchant tout d’abord a simuler une distri-
bution uniforme dans un intervalle (—b; b), ou b dé-
signe une valeur numérique donnée (0 << b << o). Une
fois qu’on a obtenu une telle distribution uniforme, il
est alors facile d’en déduire une population normale en
appliquant le théoréme bien connu de la limite centrale.
Pour la génération d’une distribution uniforme, on a
différentes possibilités, dont les plus connues sont:
a) le jeu de «pile ou face»
b) lutilisation d’un dé
c¢) la roulette
d) l'utilisation d’une urne avec des boules de différentes
couleurs.

Ces méthodes, que nous pouvons appeler «primitives»,
ont I'inconvénient d’étre lentes et de comporter parfois
un biais non négligeable, raison pour laquelle elles n’ont
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