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Die Vermeidung von Rechenunschärfen
infolge von Gewichtsinhomogenitäten
bei einem Netzausgleich
P. Meissl, Graz

Zusammenfassung
Starke Gewichtsinhomogenitäten können bei einem Ausgleichsproblem

empfindliche Rechenunschärfen verursachen. Bei direkter

Auflösung der Normalgleichungen kann es zu Ziffernaus-
löschung bei kritischen Koeffizienten kommen. Bekannte Gegen-
massnahmen werden kurz erörtert. Ein neues Verfahren, welches

bei Ausgleichsproblemen vom Typ des Netzausgleiches
Vorteile zu bieten scheint, wird vorgeschlagen.

Summary
Strong differences in the observational weights may cause numerical

difficulties when an adjustment problem is solved. If a

direct elimination method is applied to the normal inquations,
certain critical coefficients may loose significant digits. Known
measures appropriate to deal with this situation are briefly
reviewed. A new method is proposed which seems to be

advantageous if the adjustment problem is structured like that one of
a geodetic network.

1. Problemstellung. Gewichtsinhomogenitäten können
einen sehr schädlichen Einfluss auf die Rechengenauigkeit

bei einem Ausgleichsproblem haben. Betrachten wir
das absichtlich extrem ungünstig gewählte Beispiel eines

Höhennetzes in Abbildung 1.
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In der Skizze sind gemessene Höhenunterschiede (in m
mit 3 Dezimalen) sowie die Reziprokwerte der
angenommenen Gewichte (ganze Zahlen) eingetragen. Punkt
0 hat die feste Höhe 0. Wie man sieht, erhalten die zwei
Höhenunterschiede l->2, 2-^3 vergleichsweise sehr
hohes Gewicht.
In dieser Arbeit sollen einige bekannte Massnahmen zur
Verhinderung des schlechten Einflusses der
Gewichtsunterschiede auf die Rechengenauigkeit bei direkter
Auflösung der Normalgleichungen erörtert werden. Schliesslich

soll ein Verfahren vorgeschlagen werden, welches
insbesondere bei der Ausgleichung von Netzen Vorteile
zu bieten scheint.
Viele Probleme sind ähnlich strukturiert wie das

Netzausgleichsproblem. Erwähnt sei zunächst die statische

Berechnung nach der Methode der finiten Elemente, wo
grosse Unterschiede in der Steifigkeit der Elemente
analoge numerische Schwierigkeiten verursachen.
Vergleiche Rubinstein-Rosen (1970).

Weiters erwähnen wir elektrische Netze von Widerständen.

Unser eingangs formuliertes Beispiel steht in enger
Beziehung zu einem stationären Gleichstrom-Netzwerk.
Die gesuchten Höhen sind Potentialwerte in den Knoten,
die reziproken Gewichte sind Widerstände. Die an einem
Knoten austretende Strommenge ist die Summe der mit
den Gewichten multiplizierten Beobachtungen, die an
dem Knoten beteiligt sind, unter Berücksichtigung des

Vorzeichens. Die Normalgleichungen unseres Ausgleichsproblems,

die später in Abschnitt 6 formuliert werden,
sind gleichbedeutend mit den Kirchhoffschen Regeln.
(Vergleiche auch Borre-Meissl [1974], Appendix C.)
Gewichtsinhomogenitäten bedeuten Inhomogenitäten der
Widerstände.

2. Hohe Stellengenauigkeit. Ist sie verfügbar und ökonomisch

vertretbar, so bringt sie die bequemste Abhilfe.
Obiges Beispiel nach der Methode der vermittelnden
Beobachtungen mit Gauss-Jordan-Elimination auf einer
WANG 2200 B mit 13 Dezimalstellen und Gleitkomma
durchgerechnet, ergab folgendes Resultat für die
ausgeglichenen Höhen

1.874821946182 x, 4.307823040798
x2 1.119822892176 x4 4.363829369674

x5 6.314081510503

Die relative Genauigkeit ist schätzungsweise bei 10_s
und ist sicher ausreichend.
Kritik: Hohe Stellengenauigkeit schafft nicht für alle
Probleme Abhilfe. Theoretisch kann man so starke
Gewichtsunterschiede wählen, dass selbst 13 Ziffern nicht
ausreichen. Schlimmer ist der Speicher- und Zeitaufwand
bei wirklich grossen Problemen.

3. A priori Transformationen der Unbekannten bei
vermittelnden Beobachtungen. Führt man etwa an Stelle der
Unbekannten xu x2, x3, x4, x5 die neuen Unbekannten
>'i Y2 X2 >'.: xi, y5
ein, so erhält man ein gut konditioniertes
Normalgleichungssystem, welches sich problemlos nach einem
direkten Eliminationsverfahren lösen lässt. Das neue
Normalgleichungssystem weist zwar ähnlich wie das frühere
grosse Unterschiede in der Grösse der Koeffizienten auf.
Die Diagonalelemente und rechte Seiten zu y2, y3 sind
sehr gross. Jedoch liegt keine starke Koppelung zwischen
den Unbekannten vor, und es kommt zu keinen Ziffern-
auslöschungen. Die mittleren Fehler der ausgeglichenen
Werte für y2, y3 werden so klein, dass man y2, y3 praktisch

a priori als konstant einführen kann, wobei sich die
Werte aus den beobachteten Höhenunterschieden l-»-2,
2->3 ergeben.
Kritik: A priori Transformationen müssen bei jedem
Problem oder jeder Problemklasse neu überlegt werden.
Daher ist ein qualifizierter Sachbearbeiter notwendig.
Ähnliches gilt für den folgenden Punkt 4.

4. Bedingter Ausgleich mit überlegter Auswahl der
Bedingungsgleichungen. Wählt man die Bedingungsgleichungen

etwa über die 4 Schleifen 0-^1^-2^-0,
l-*-2-*-3-»T, 2^3->-4-<-2, 3->4->5->-3, so resultiert ein
gut konditioniertes Normalgleichungssystem.

5. Singular value decomposition. Dieses von Golub
entwickelte Verfahren ist etwa in Golub-Reinsch (1970)
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näher beschrieben. Es umgeht bei einem vermittelnden
Ausgleichsproblem

Ax l

mit diagonaler Gewichtsmatrix P, die Aufstellung der
Normalgleichungen

ATPAx ATP1 (2)

und arbeitet unmittelbar mit der Matrix P1/!A, deren
singulare Werte berechnet und für die Lösung benützt werden.

(Pv' ist die Diagonalmatrix der Wurzeln aus den
Gewichten.) Die Kondition von P'/!A ist besser als jene von
ATPA. Golub-Reinsch erläutern dies an dem Beispiel

während Xj aus

(1) Xj + N12X2 Tj

mit

^12 ^11 ^12' r N-!ri n i

(6)

(6a)

folgt. Wichtig für das folgende sind nun zwei Feststellungen

bekannter Tatsachen.
(a) Eliminiert man aus (4a) nach Gauss Jordan x1; so
entsteht das reduzierte System

P'A

vj

1 1 1 o
f 0 0 0
0 e 0 0
0 0 E 0
0 0 0 £

(3)

wobei e eine sehr kleine Zahl ist. Hier kann ATPA leicht
singular werden, wenn nämlich die Maschinenarithmetik
1 + £2 durch 1 ersetzt.
Kritik: Singular value decomposition bringt eine Verbesserung,

behebt jedoch den Einfluss von Gewichtsinhomogenitäten

nicht völlig. Ausserdem verliert man den
Rechenvorteil bei Problemen vom Typ des Netzausgleiches.

Die Normalgleichungsmatrix ist dort schwach
besetzt, und die meisten Nullen bleiben beim
Eliminationsvorgang erhalten. Die Singular value decomposition
unterwirft die Matrix P' =A gewissen Transformationen
(Householder-transformations), bei denen die schwache
Besetzung verlorengeht.

6. Das Verfahren des korrigierten reduzierten Systems.
Wir benützen die bekannten Formeln (vergleiche sinngemäss

Bjerhammar [1973], S. 228 ff.) über die partielle
Reduktion des Normalgleichungssystems, welches wir in
der Form

N12x, r,

N.,.,x.> r., (7)

das heisst, es entstehen gerade (5) und (6).
(b) Zu den Gleichungen (5) gelangt man auch, wenn
man in den Beobachtungsgleichungen

(8)(AiA2)( l) =1

für xt aus (6) substituiert. Man erhält die reduzierten
Beobachtungsgleichungen

A,x, 1

mit

A2 A2 - A,N12 1=1- Afa

(9)

(10)

Bildet man dazu formal die Normalgleichungen, so
ergibt sich (5):

rAJPA1 AJPA^

V.A2PAi AJPA2J

oder kürzer

rNn Ny r x,

No, N.,., x.,

schreiben. Eliminiert
etwa x1; so erfüllt x2

malgleichungen

N22X2 ~~ r2

mit

rxy
yx2j

^ATPl ^>

,ATP1 J

ATPAx

(4)

r
V, r.

(4a)

J

man einen Teil der Unbekannten,
die sogenannten reduzierten Nor-

(5)

AJP1 ^y (ii)

Das Verfahren sei nun an Hand des Beispiels demonstriert,

welches wir konsequent in Gleitkomma mit 5-
ziffriger Mantisse und korrektem Runden durchrechnen.
Die Beobachtungsgleichungen (1) und die mit 10°

multiplizierten Gewichte sind:

0^1 xi 1.873, 100/41
0^2 X2 1.124, 100/94
l->2 Xg - Xl -0.755, 108/97
1-+3 x.l - Xl 2.439, 100/113
2-^3 x:i - x2 3.188, 10<V95

2^4 X4 - Xo 3.240, 100/107
3-^4 X4 ~x3 0.062, 100/105
3^5 X.ö - x3 2.004, 100/115
4^5 X5 - x4 1.952, 100/89

N22 N2 — N N_1N^21^11 ^12' r - N N-h2 21 n 1
(5a)

Die Normalgleichungen (2) ergeben sich mit den modifizierten

Gewichten zu:
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1

1

2

3

5

4

10312 10309
20837

0.88496
10526
10529

0

0.93458
0.95238
3.0106

0

0
0.86957

¦1.1236
1.9932

7785.9
41343
33558
0.89370
3.9359

2
1

3

4
5

0.99957
0.99933
7

8.8742E-5
8.8713E-5
1.8866

3.0106

0.86957

1.1236
1.9932

3.1866
2.4305
13

2.0844
3.9359

2
1

3

4
5

0.99957
0.99933
6.2569

- 8.8742E-5
8.8713E-5
1.8866

3.0106

0.86957

1.1236
1.9932

3.1866
2.4305
13.230

2.0844
3.9359

Es sei erwähnt, dass bei Auflösung nach Gauss Jordan
mit Pivotwahl in der Reihenfolge 2, 1, 3, 4, 5 das völlig
falsche Resultat

Xi 1.0666, x2 0.3115, x3 3.4991, x4 3.5551,
x5 5.5052

erhalten wird.
Wir eliminieren nun mit Pivotwahl längs der
Hauptdiagonalen so lange, bis ein Pivot an die Reihe käme,
bei dem im bisherigen Verlauf der Rechnung eine
empfindliche Auslöschung führender Ziffern eingetreten ist.
Bei unserem Beispiel ist dies nach zwei Schritten der
Fall. Es präsentiert sich dann das System in der Form
(beachte die Permutation von 1 und 2!)

Dies entspricht (7). Die beiden ersten Zeilen ergeben

Xj - 0.99933x3
x. - 0.99957xo

8.8713E-5x4 -2.4305
8.8742E-5x4 -3.1866

Dies entspricht (6), und zwar mit guter Genauigkeit, wovon

man sich durch Einsetzen der Werte aus Abschnitt 2

überzeugt. Die letzten 3 Zeilen entsprechen (5). Es sind
Genauigkeitsverluste eingetreten. Allerdings, und das ist
bei Netzproblemen entscheidend, nur dort, wo sich ein
Netzzusammenhang mit den eliminierten Punkten ergab.
Dies sind die Positionen (3, 3) und (3, r). Die Zahlen 7
und 13 sind nach Auslöschung führender Ziffern
übriggeblieben.

Wir berechnen nun das reduzierte System neu gemäss
(9), (10), (11) und können uns dabei auf die Positionen
(3, 3) und (3, r) beschränken. Die reduzierten
Beobachtungsgleichungen (9), von denen wir nur die relevanten
Positionen, das heisst die Koeffizienten von x3 und die
rechten Seiten, wiedergeben, sind

(0-1) 0.99933x3 + 4.3035, 100/41
(0-2) 0.99957x3 + 4.3106, 100/94
(1-2) 0.00024x3 + 0.00110, 108/97

(1-3) 0.00067x3 + 0.0085, 100/113

(2-3)
(2-4)
(3-4)
(3-5)
(4-5)

0.00043x3
0.99957X.,

-x3 +
-x3 +

+

0.0014,
0.0534,
0.062,
2.004,

108/95
100/107
100/105
100/115

Daraus ergibt sich das Element in Position (3, 3) zu

100

41
* 0.999332

100

94
* 0.999572 +

100

115 (-1)2 6.2569

und das Element in Position (3, r) zu

100
41

* 0.99933 * 4.3035 + +

10?-*(-!)* 2.004 13.230
11

Das korrigierte reduzierte System unterscheidet sich nur
in diesen zwei Positionen von dem früheren und stellt
sich neu so dar

Bei diesem Beispiel treten keine weiteren ernstzunehmenden

Ziffernauslöschungen in der Diagonale auf. Das
Gauss-Jordan-Schema ergibt daher ohne weitere
korrektive Massnahmen das Resultat:

xi 1.8745 Xo 1.1191 x3 4.3075

x, 6.3133
4.3630

Die grösste Abweichung von den genaueren Resultaten
des Abschnittes 2 ist etwa 0.0008 m. Die grösste relative

Abweichung ist etwa 6 * 10~4, was man bei 5ziffriger
Rechnung wohl akzeptieren muss.
Kritik: Das Verfahren lässt sich automatisieren, bedeutet
jedoch einen Mehraufwand an Programmierung. Bei
Problemen, die zu vollbesetzten Matrizen A und ATPA
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führen, bedeutet das Verfahren unter Umständen auch
einen erheblichen rechnerischen Mehraufwand, da dann
ein grosser Teil der Normalgleichungen neu aufgestellt
werden muss. Für das in Abschnitt 5, Gleichung (3),
erwähnte Beispiel funktioniert es gut und mit geringem
Aufwand. Für grosse Netzwerke soll es demnächst im
Computereinsatz erprobt werden.
7. Dank. Den Anstoss zu dieser Arbeit gab ein
Briefwechsel mit Herrn T. Vincenty, Cheyenne, Wyoming.
Herr Vincenty berichtete über echte Schwierigkeiten
durch Gewichtsinhomogenitäten bei grössern Netzen. (Bei
dem kleinen Beispiel des Abschnittes 1 sind die
Schwierigkeiten nur aus Demonstrationsgründen konstruiert.)
Der Firma Wang sei gedankt, dass sie ihr Computersystem

WANG 2200 B für die Berechnungen zur
Verfügung stellte. Auf dieser ausserordentlich benützer-
freundlichen Maschine war die Durchrechnung des
Zahlenbeispieles samt Simulation der Rundung ein Vergnügen.
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La simulation en photogrammetrie
VV. K. Bachmann, Lausanne

La simulation est une méthode de calcul qui s'est révélée
fort utile dans de nombreux domaines. On y a généralement

recours lorsqu'on n'est pas à même de traiter un
problème par les méthodes mathématiques classiques.
En simulant un processus de mesures ou une expérience
aléatoire, nous le remplaçons par un autre processus qui
lui est similaire. Le plus souvent, la simulation est
utilisée en relation avec des expériences où le hasard
joue un rôle prépondérant. Prenons un exemple simple
en considérant un angle X dont la valeur est inconnue.
En la mesurant n fois avec un théodolite, nous
obtenons une séquence

x,, x,. (1)

dont les valeurs diffèrent légèrement les unes des autres.
Si les mesures ont été effectuées correctement, elles

doivent être groupées autour d'une certaine «valeur
centrale» et leur histogramme ne comportera qu'un seul
maximum. L'expérience montre que si le nombre n des

mesures augmente, à partir d'un certain moment l'allure
de l'histogramme ne change pratiquement plus et nous

pouvons dès lors considérer la séquence (1) comme
échantillon de taille n extrait d'une population X ayant
une fonction de fréquence f(x) bien définie. En règle
générale, il s'agit d'une population normale X ~ N (m; o2)

dont la probabilité élémentaire est

dp
v o '

V2ji o
dx (2)

L'histogramme consiste dans ce cas en la fameuse
courbe de Gauss en forme de cloche. L'équation (2)
nous montre que cette distribution est complètement
déterminée par les deux paramètres m et o2 qui ne sont

rien d'autre que la moyenne et la variance de la
population. Nous pouvons estimer leurs valeurs à partir de
la séquence (1) moyennant les expressions bien connues

m x X I<x, x)2 (3)

et le calcul des probabilités nous permet d'affirmer que
ces estimateurs sont sans biais.
Pour étudier le comportement stochastique d'une
séquence de mesures telle que (1), nous avons deux
possibilités, à savoir:
a) répéter la séquence des mesures un grand nombre

de fois,
ou

b) générer la séquence moyennant un processus
mathématique approprié, appelé simulation.

Il est évident que la deuxième de ces méthodes est plus
économique que la première lorsqu'on dispose d'une
méthode de simulation efficace suffisamment simple. Mais
la simulation d'une population normale X ~ N (m; o2),
à paramètres connus, présente quelques difficultés;
pour cette raison, on simplifie généralement le
problème en cherchant tout d'abord à simuler une
distribution uniforme dans un intervalle (— b; b), où b
désigne une valeur numérique donnée (0 < b < oo). Une
fois qu'on a obtenu une telle distribution uniforme, il
est alors facile d'en déduire une population normale en

appliquant le théorème bien connu de la limite centrale.
Pour la génération d'une distribution uniforme, on a

différentes possibilités, dont les plus connues sont:
a) le jeu de «pile ou face»

b) l'utilisation d'un dé

c) la roulette
d) l'utilisation d'une urne avec des boules de différentes

couleurs.

Ces méthodes, que nous pouvons appeler «primitives»,
ont l'inconvénient d'être lentes et de comporter parfois
un biais non négligeable, raison pour laquelle elles n'ont
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