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fui if we select the carrier points not too close to the
given points. When the data for the carrier points have
been computed, then the wanted predictions are computed

with the use of the 'cross-variance' between the
carrier points and the unknowns.
Note. By choosing carrier points closer to the reference
sphere, we reduce the correlation and improve the
condition number of the equation.
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Über die Ergebnisse
freier Netzausgleichimgen und ihre Deutung
E. Gotthardt, München

S1'

Die übliche vermittelnde Ausgleichung freier Netze hat
bekanntlich mit der Schwierigkeit zu kämpfen, dass die
einfache Minimumbedingung [vv] Min zu einer sin-

gulären Normalgleichungsmatrix führt, die keine
eindeutige Lösung liefert. Nach Meissl [1] kann man diesem
Übelstand dadurch abhelfen, dass man nach genäherter
Orientierung die Zusatzforderung aufstellt, die Quadratsumme

der mittleren Koordinatenfehler der Punkte
oder, was damit gleichbedeutend ist, die Quadratsumme
der Achsen ihrer Fehlerellipsen solle ein Minimum
annehmen. Die Fachliteratur der letzten Jahre bringt
zahlreiche Veröffentlichungen, in denen trigonometrische
Netze auf diese Weise bearbeitet wurden.
Der entscheidende Kunstgriff besteht dabei darin, dass

man die gegebene singulare Normalgleichungsmatrix N
mit der aus den Eigenvektoren gebildeten Matrix S und
ST rändert (Abb. 1), wobei gilt

1 0 1 o i 0

0 1 0 i 0 i

Yl x, -yg x2... • -y„ *,

N S

ST 0

Abb. 1

Wie betont werden muss, ist es nicht erforderlich, alle
Punkte des Netzes in die Matrizen S und ST einzube-
ziehen. Man kann sich vielmehr auch auf einen Teil der
Netzpunkte beschränken. Dies ist in gewissen Fällen
sinnvoll und zweckmässig. Die Inversion der Matrix lässt
sich mit dem gewohnten Gaussschen Algorithmus nicht
ohne weiteres durchführen, bereitet jedoch nach
geeignetem Umordnen keine Schwierigkeiten.
Bei der Deutung der Ergebnisse derartiger Minimalausgleichungen

hat man zu beachten, dass die berechneten
Fehlerellipsen nicht auf ein bequem angebbares System
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bezogen sind, sondern auf die abstrakte Minimumbedingung.

Diese fordert jedoch nur einen Kleinstwert für die
Quadratsumme der Achsen der Fehlerellipsen.
Weitergehende Schlüsse lassen sich dagegen hieraus nicht
ziehen; insbesondere deutet eine besonders kleine Fehlerellipse

nicht auf eine entsprechend gute Punktbestimmung

hin.
Hinsichtlich der inneren Genauigkeit, die durch die
Minimalausgleichung ja keineswegs verbessert wird, gelten
vielmehr die üblichen Formeln. So lässt sich der mittlere
Fehler einer unter dem Richtungswinkel « zwischen den
Punkten P, und Po verlaufenden Strecke s nach wie vor
berechnen nach

m; m2 ((QVi - 2QXjX2 + Q^) cos2« + 2(QVj -

- Qx y -Qx 5. + Qx y
sino cosa + (Qy y -yy 2 2

^Qy^ + Qy^sin2«).

Dabei bezeichnet m„ den mittleren Fehler der Gewichtseinheit,

während die Q^„ die Elemente der reziproken
Normalgleichungsmatrix bedeuten. Beachtet man, dass

die Gleichungen gelten

m2Qx m2 m2 • Qy _ m2

und dass ferner mit der Bezeichnung rlir für den
Korrelationskoeffizienten zwischen den Unbekannten u„ und

u„ mit
Quu

VQu u
• Qu u

fl pt V V

die Beziehung besteht

m2 Qu u
m2 • r„v • VQU u

• Qu u rwv • mu • mu
o fi v 0 fi fi v v fi y

so folgt unter Beachtung von | rßr \ < 1

m5 <,(mx + mx | cosa I + (my + my | sina |.12 1 ti

Diese Abschätzung ist zwar etwas roh, ohne Kenntnis
der vollständigen reziproken Matrix, aber die einzig mögliche

Aussage. Analog verhält es sich mit den Winkeln
zwischen den Netzpunkten. Die bisher übliche Form der

Berechnung, die auf ein explizit angegebenes System
bezogen war, lieferte dagegen sofort die Unsicherheit
aller Punkte relativ zu diesem System. Da man es im
allgemeinen entsprechend dem überwiegenden Interesse

an Genauigkeitsangaben wählte, sind die gegen die
althergebrachte Form der Ausgleichung erhobenen
Einwände nur zum Teil berechtigt.
Ein sehr bemerkenswertes und lehrreiches Beispiel für
die Ausgleichung freier Netze aus der Ingenieurvermessung

stammt von Heister und Welsch [2]. Die einfache
und symmetrische Messanordnung umfasst ein äusseres

Fünfeck, in dem alle Seiten und Winkel gemessen wurden

und von dessen Punkten aus die Punkte eines inneren

Fünfecks durch einfache Vorwärtsschnitte bestimmt

sind. Zusätzlich ist weiter gefordert, dass sich die Punkte
des inneren Fünfecks auf einem Kreis von unbekannter
Grösse und Lage befinden sollen (Abb. 2).

Abb. 2 T

In der Originalarbeit wird die Ausgleichung unter anderem

in der Weise durchgeführt, dass man zunächst das
äussere Fünfeck für sich ausgleicht, dann die
Innenpunkte bestimmt und schliesslich die Kreisbedingung
berücksichtigt. Der Umstand, dass die Ergebnisse der
zweistufigen Ausgleichung nicht recht mit denen einer strengen

einstufigen Ausgleichung zu vereinbaren waren,
führte den Verfasser zu einer intensiveren Beschäftigung
mit dem Problem der freien Netze. Dabei tauchte
zunächst die Frage auf, ob man anstelle der zehn Koordinaten

für die Punkte des inneren Fünfecks zuzüglich der
fünf Bedingungsgleichungen zwischen ihnen und den
drei Kreisdaten nicht auch eine direkte Lösung mit acht
Unbekannten setzen könne, nämlich den drei Kreisdaten
und fünf Richtungswinkeln zwischen dem Mittelpunkt
und den Innenpunkten. In zwei Arbeiten [3, 4] wurde
diese Frage bejahend gelöst.
Danach blieb im wesentlichen noch ein Problem übrig,
nämlich die Aufklärung der grossen Unterschiede in der
Genauigkeit der Punkte des äusseren Fünfecks, wenn
man sie einerseits für sich, anderseits zusammen mit der
Kreisbedingung und der Minimalforderung für alle
Punkte betrachtete. Nun lassen sich zwar, wie bereits
erwähnt, aus der Grösse der Fehlerellipsen in Netzen,
die der Minimalforderung unterworfen wurden, nicht
die gleichen Schlüsse über die Zuverlässigkeit der Punkte
ziehen, die bei der Zugrundelegung einer bestimmten
Basis möglich sind. Im letzteren Fall kann die zusätzliche

Berücksichtigung von weiteren Messungen die Fehler

stets nur verringern. Um dies einzusehen, nehmen
wir ein zweistufiges System an, dessen Verbesserungsgleichungen

in Matrizenschreibweise lauten mögen

Vi Aj x, - 1,

Vo A21 Xj + A22 x2 — \2

Betrachten wir das erste System allein, so lautet seine

Gewichtsgleichung

ATAl.Qn E.
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Bei Hinzunahme des zweiten Systems erhalten wir

CL Q,a\ /EATAl + AJlA2,
A22 A21

A21AK\/^11 «1«\ /E
A^Aj^QT Q22j [0

Setzt man voraus, dass A^ A nichtsingulär ist, so

kann man die zweite Gleichung mit

_ A21 A22(A22A22)_1

multiplizieren und zur ersten addieren.
So ergibt sich

A£A«KAi
-A2TlA22(Aj2A22)-1A2T2A2l)-Qll E

oder

(ATA1+AT(E-A22(ATA22)-iAT)A21)-Q11 E.

Der zweite Klammerausdruck ist in dem trivialen Fall
einer quadratischen Matrix A22 gleich Null, da dann
bereits A22-i existiert und (AJ2 A22) - »

A22 -1 (AJ) - »

gilt.
Dann verschwindet also das Zusatzglied, und Qu stimmt

mit Qn überein. Anderenfalls ist der Klammerausdruck
unter der üblichen Voraussetzung, dass die Zahl
der Beobachtungen die der Unbekannten übersteigt,
stets positiv définit. Setzt man noch AJ A N,

AJl (E - A22 (A^2 A22)-a A?2) A21 ^N' SO SÌnd dem"

nach gemäss der bekannten Formel

(N + zlN)-i
N-1 - N-MN-N-1 + N-MN-N-MN-N-1-...

die Diagonalglieder von Qn kleiner als die von Qn, wie
wir behauptet hatten. Zum gleichen Ergebnis kommt
man auch, wenn AJ At singular wird und man diesen

Fall durch Aufstellen der Minimumforderung auf
den einer regulären Matrix zurückführt. Allerdings muss
man dann zusätzlich voraussetzen, dass sich die
Zusatzbedingung in beiden Fällen auf die gleichen Punkte
bezieht. Man hat also auch bei der Gesamtausgleichung
die Minimumforderung nur für die Punkte des äusseren
Fünfecks einzusetzen.
Mit den von den Autoren von [2] angegebenen Daten
s 23.512 m, ms ±3 mm, ß 48.4033 gon, m,
± 1 mgon wurde das Ausmass der Fehlerellipsen für
eine Reihe verschiedener Fälle errechnet.

Es waren:
Fall 1 Beschränkung auf das äussere Fünfeck.
Fall 2 Ausgleichung des äusseren und des inneren

Fünfecks, Minimallage nur für die äusseren fünf
Punkte, ohne Berücksichtigung der Kreisbedingungen.

Fall 3 Wie Fall 2, jedoch unter Einbeziehung der
Kreisbedingungen.

Fall 4 Wie Fall 3, jedoch mit Minimallage für alle zehn
Punkte.

Fall 5 Wie Fall 4, jedoch mit Minimallage nur für die
inneren fünf Punkte.

Wegen der Symmetrieeigenschaften des Netzes genügt
die Angabe der Daten für je einen Punkt des äusseren
und des inneren Fünfecks, und zwar wurden die Punkte
4 und 6 gewählt, bei denen die Koordinatenrichtungen
mit denen der Achsen der Fehlerellipse zusammenfallen.

Als Werte in Millimetern ergeben sich:

Fall l 2 3 4 5

m 1.197 1.197 1.156 1.158 1.165

Punkt 4

m
y

1.314 1.314 0.224 0.246 0.720

m 1.762 0.359 0.334 0.328

Punkt 6

m
y

0.593 0.321 0.279 0.210

Kreis- m
mittcl- 0.187 0.134 0.118

punkt m

(Q +Qvxxx yy 4

(Q + Qx" ^yy'ti

3.1602 3.1602
3.4575

1.3861

0.2316
1.4006

0.1894

1.8759

0.1521

Summe S 6.6177 1.6177 1.5900 2.0280

Überraschend an diesen Zahlen waren die Werte der
Fälle 1 und 2, für die die Autoren der Originalarbeit nur
Bruchteile der angegebenen Grössen erhalten hatten,
während sie für Fall 4 innerhalb der von ihnen benutzten
Rechengenauigkeit dieselben Werte ermittelten. Bei
kritischer Betrachtung erscheinen die hier angegebenen
Werte als wesentlich glaubhafter, da bei einem Streckenfehler

einer Polygonseite von 3 mm Koordinatenfehler,
die einen Millimeter etwas übersteigen, plausibler sind
als solche, die den Millimeter erheblich unterschreiten.

Im übrigen sind als wichtige Ergebnisse der Neuberechnungen

festzuhalten:
1. Wie nach den allgemeinen Überlegungen zu erwarten

war, beeinflusst die Durchführung der einfachen
Vorwärtsschnitte die Genauigkeit der äusseren Punkte
nicht.

2. Ebenfalls in Übereinstimmung mit der Theorie ver¬
mindern sich die Grössen beider Fehlerellipsen bei
Einbeziehung der Kreisbedingungen. Überraschend
ist das Ausmass dieser Verkleinerung, das bei der

grossen Achse der inneren Punkte fast 80 °/o beträgt.
Auch bei Beachtung der beschränkten Aussagekraft
der Fehlerellipsen freier Netze spricht es sehr für die
Durchführung strenger Ausgleichungen.

3. Wie bei der hochgradigen Symmetrie des Netzes
kaum anders vermutet werden konnte, wirkt sich die
Einbeziehung aller zehn Punkte in die Minimumbedingung

oder ihre Beschränkung auf die inneren
fünf Punkte nur unwesentlich auf das Ergebnis aus.

Abschliessend ist es mir eine angenehme Pflicht, Herrn
Dr.-Ing. A. Grün für die mit der Durchführung der
Rechenarbeiten verbundene Mühe zu danken.
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Zum Aufbau eines einheitlichen Systems
astronomisch beobachteter Längen1
R. Sigi, München

Zusammenfassung
Der vorliegende Beitrag ist als Diskussionsgrundlage für
die bei der Arbeitstagung der Permanenten IAG-Kom-
mission für die Neuausgleichung der europäischen
Hauptnetztriangulationen (RETrig) vom 1. bis 3. April
1974 in München angeregte «Überprüfung der astronomisch

beobachteten Längen» gedacht. - Ausgehend von
der in der Bundesrepublik Deutschland vorliegenden
Situation werden Massnahmen für den Aufbau eines
einheitlichen Längensystems und für die Aufbereitung
vorhandener und künftiger Längenbeobachtungen empfohlen,

die in modifizierter Form auch für den Bereich des

RETrig anwendbar sein dürften.

Summary
This contribution has been prepared for the discussion
about the revision of the astronomically determined
longitudes, recommended by the Permanent IAG
Commission for the new adjustment of the European
Triangulation (RETrig) on its working session in Munich,
lst-3rd April 1974. - Starting with the situation in the
Federal Republic of Germany some proposals are given
for the establishment of a uniform system of longitudes
and for the treatment of existing and new observations,
which can be used after some modifications also for the
area of RETrig.

1. Zum Längensystem
in der Bundesrepublik Deutschland
Im Jahre 1904 besorgte Th. Albrecht [1] die Ausgleichung

des Zentraleuropäischen Längennetzes, in das

insgesamt 176 in den Jahren 1863 bis 1903 telegraphisch
bestimmte Längendifferenzen zwischen 79 Stationen
einbezogen waren. Mit diesem Längennetz, das sich in
West-Ost-Richtung von Brest bis Moskau, in Nord-Süd-
Richtung von Oslo bis Rom erstreckte, war für Europa
erstmals ein einheitliches System von Stationslängen hoher

Genauigkeit geschaffen worden, das über Jahrzehnte
hinweg allen wissenschaftlichen und praktischen
Fragestellungen gerecht wurde.

Obgleich nach Einführung der Radiozeitsignale Mitte
der zwanziger Jahre und verstärkt auf Grund der
Empfehlungen von 1954 der Internationalen Assoziation für
Geodäsie (IAG) ab Mitte der fünfziger Jahre in einer
Reihe von Ländern zahlreiche astronomische Längen
auf Laplace- und Lotabweichungspunkten beobachtet

wurden, kam es bis heute zu keiner Neubearbeitung
eines einheitlichen Längensystems. Dies ist um so
verwunderlicher, als auf die Notwendigkeit eines einheitlichen

Systems von Längen, insbesondere für astro-geo-
dätische Geoidbestimmungen und die Lagerung und
Orientierung des Europäischen Triangulationsnetzes
(RETrig) mehrfach hingewiesen wurde (vgl. z. B. [11])
und überdies theoretische Vorarbeiten vorliegen (vgl.
z. B.[9]).
In diesem Zusammenhang ist auch die im Geophysikalischen

Jahr 1957/58 ausgeführte Weltlängenbestimmung
zu erwähnen, aus der seit 1960 für zahlreiche Zeitdienste
astronomisch beobachtete Längen vorliegen. Diese
Weltlängenbestimmung diente der Verbesserung der
Zeitbestimmung, der Ableitung der Polbewegung, der
Untersuchung der Ausbreitung von Radiozeitsignalen und
anderes mehr. Als Resultate erbrachte sie unter anderem
eine Liste sogenannter «konventioneller Längen»
(vergleiche [17]), die durch einen Systemwechsel beim
Bureau International de l'Heure (BIH) im Jahre 1968
Änderungen erfuhren (vergleiche [7]). - Dieses System
«konventioneller Längen», das häufig - nicht ganz korrekt

- als «Weltlängennetz» bezeichnet wird, ist für
geodätische Aufgabenstellungen nicht unmittelbar geeignet.

Durch die Einführung transportabler Quarzuhren, den

Empfang durch Zeitdienste kontrollierter Zeitsignale,
die Verwendung auf Fundamentalkatalogen beruhender
Sternörter und anderes mehr ist Ende der fünfziger
Jahre bei astronomischen Längenbestimmungen auf
Feldstationen eine spürbare Genauigkeitssteigerung
eingetreten. - Bei den zur Elimination systematischer Fehler

notwendigen «Eichmessungen» machte sich das Fehlen

eines modernen übergeordneten und einheitlichen
Längennetzes hoher Genauigkeit störend bemerkbar. -
In der Bundesrepublik Deutschland wurde daher wie
folgt verfahren: Von den insgesamt etwa fünfzig zum
Beispiel auf Laplace-Punkten (vgl. z. B. [13], [14], [3])
beobachteten Längen wurde ein Teil über die Referenzstation

München an Genf und so an das mit dem
Albrechtschen Längennetz verbundene Längennetz der
Schweiz angeschlossen2 (vergleiche [4], [5], [12]). - Für
die übrigen, überwiegend in Norddeutschland gelegenen

1 Dieser Aufsatz wird eingereiht in: Lehrstuhl für Astronomische
und Physikalische Geodäsie der TU München, Mitt. Nr. 125.

2 Der damals geplante zusätzliche Anschluss an Potsdam konnte
nicht verwirklicht werden.
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