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zweiten Elements der ersten Zeile sowie das zweite Ele-
ment der zweiten Zeile identisch mit dem ersten Element
der ersten Zeile ist. Im Rahmen der linearen Algebra
ldsst sich dieses Prinzip verallgemeinern: Beliebig viele
(m < n?) Elemente lassen sich als allgemeine lineare
Ausdriicke der n2 —m festen Elemente ansetzen; zwei
Matrizen A und B mit je dem gleichen Ansatz werden
miteinander multipliziert, und dann werden die Bedin-
gungen dafiir aufgestellt, dass die Produktmatrix wie-
derum denselben Ansdtzen geniigt. Dadurch werden
Matrizen mit im allgemeinen ein paar Parametern aus-
gesiebt, die in bezug auf ihre Multiplikation (und Inver-
sion) eine Gruppe bilden. Die bei drei- und mehrreihi-
gen Matrizen sehr aufwendigen Schreib- und Rechen-
arbeiten lassen sich durch ein geschicktes Schema erheb-
lich vermindern. Der Weg fiihrt konsequent zur Erfas-
sung aller moglichen Gruppen, die in den Matrizen
naturgegeben stecken; er ist sehr erfolgreich beschritten
worden und hat schon zu iiberraschenden, ungeahnten
Anwendungsbereichen offenen Ergebnissen gefiihrt. Auf
diese Weise lassen sich noch viele in den Matrizen
ruhende Maoglichkeiten aufdecken, allein aus ihrer Defi-
nition und dem Gruppencharakter heraus.

15. In Abschnitt 2 ist angedeutet worden, die Elemente
von Matrizen konnten statt reeller Zahlen selbst wie-
derum Matrizen m-ter Ordnung sein. Nachweisen ldsst
sich dies durch einfaches Rechnen. Nun ergibt sich bei
der Multiplikation zweier Matrizen n-ter Ordnung mit-
einander, deren Elemente Matrizen m-ter Ordnung sind,
ein Ergebnis, das auch eingetreten wére, wenn man in

den Ausgangsmatrizen von vornherein die Klammern
um deren Elemente weggelassen und mit gewdhnlichen
Matrizen mn-ter Ordnung gerechnet hitte. Umgekehrt
ldsst sich auf diese Weise zum Beispiel eine Matrix zwei-
ter Ordnung, deren Elemente komplexe Zahlen sind, so-
fort zu einer Matrix vierter Ordnung mit nur reellen
Zahlen umwandeln; diese stimmen im Prinzip mit allen
Operationen in den Ergebnissen iiberein, vorausgesetzt
die einzelnen Werte an den entsprechenden Stellen wer-
den richtig interpretiert.

16. Ein Umstand ist in diesem Aufsatz bewusst nicht ge-
streift worden, auf den wegen der praktischen Bedeu-
tung der Matrizen sehr viel Geist und Scharfsinn aufge-
wendet wurde: das ist die numerische Behandlung von
Matrizen, die Ausarbeitung zweckmadssiger Verfahren
fiir die Inversion, fiir die Eigenwertbestimmung, die Be-
handlung von schlecht konditionierten Matrizen, die
Aufstellung von Vergleichskriterien fiir Matrizen usw.
Hier sollte nur ein Uberblick iiber das allen Matrizen
Gemeinsame, iiber die Zusammenhénge und den Hinter-
grund der Operationen und iiber weitere Erkenntnisse,
die aus Matrizen noch gewonnen werden konnen, ge-
geben werden.

Adresse des Verfassers

Dr. Gottlob Kirschmer, Deutsche Geoditische Kommission
bei der Bayerischen Akademie der Wissenschaften,

D-8 Miinchen 22, Marstallplatz 8

Reflexive Prediction

A. Bjerhammar, Stockholm

Abstract: A new prediction problem is defined. For a
weakly stationary stochastic process a set of observations
is given. It is required to find a set of unknowns (obser-
vations) which have the given observations as optimal
predictions for a prescribed covariance function. The
solution of this problem is very general and includes the
Wiener-Hopf approach as a limiting case. An application
to the gravimetric boundary value problem in physical
geodesy is given. In our study we start with a condensed
presentation of the Wiener-Hopf approach for discrete
cases. Dramatic computational gains in reflexive pre-
diction and filtering are demonstrated.

We consider a stochastic process x(¢) with the expectation
E{x(#)}=0

(¢ time parameter) (1)

The covariance function Q(7) is for a weakly stationary
process

Q) =E{x(t) x(t+7)}. @
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In most applications the following estimator is used

T-+

x(O)x(t+7)de 3)

A

Q(T):TT_T)"

T+
This estimator is unbiased with

T-z
J E{x()x(t+7)}dt=0(7) 4)

T+

If this estimator converges to the true value when 7—oc
then the process is ergodic. For a non-ergodic stochastic
process we have no simple means of determining the
covariance function. Our following study is mainly
devoted to problems when the correct covariance func-
tion is not a priori given. Instead we want to find ‘obser-
vations’ which have a given covariance function.

Most technical studies of the theory of weakly stationary
processes result in non ergodic applications. This is a
highly unsatisfactory situation and we find it natural to
look for a solution, where we make our predictions with
the use of auxilliary ‘unknown observations’ which are
determined in such a way that they for a prescribed
covariance function give optimal predictions, that are
identical with the given observations.

Problem: From a weakly stationary stochastic process
we take a set of n observations (outcomes). It is required
to find m unknown observations in the outcome space

& 1
E{Q(r)}=m
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of the stochastic process which have the given observa-
tions as optimal predictions for a prescribed covariance
function.

Definition: Optimal prediction =
mum variance.

prediction with mini-

Solution:
From the Wiener-Hopf approach we recall the general
prediction formula

f—e=a-h (5)
with

h = vector of observations E[h]=0 (mX1)
f = unknown prediction (1X1)
¢ = prediction error (1X1)
a = predictor (vector) (1Xm)

Wiener wanted to determine the predictor that gives

minimum variance for the selected covariance function.
We have

ce=ahhTaT—2ah-f + ff
with expectations

o?=aQa" — 2ak+E{ff}

where

E{hhT}=Q; E{fhT}=k.
2aQ—2k=0 for a minimum
a=kQ-!

and we obtain the optimal prediction

f=k Q' h

1.1 1m, m.m, m.1

(6)

We now reverse this problem and introduce the follow-

ing modifications

1:0 All obervations f are considered ‘given predictions’,

2:0 The h-values are considered unknown for selected
carrier points,

3:0 The prescribed covariance function is valid for the
unknown h-values.

We now use all the given observations and obtain the

following matrix equation

f=KQ'h =

n.l  n.m, m.m, m.1

K x

n.m, m.1

™)

We note that the K-matrix is (a-)symmetric. The inver-
sion of the Q-matrix is, of course, not needed for a deter-
mination of the x-vector.
When the x-vector is obtained, then any new prediction
g is given by the relation

g=FE{ghT}x

®)
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This type of ‘reflexive prediction’ is very general and
gives as a limiting case the classical Wiener-Hopf ap-
proach when the carrier points and the given points
coincide.

The reader will note that our new type of solution will
require

1:0 selection of covariance function,

2:0 selection of carrier points.

The choice of covariance function is here less dramatic
then in the classical case. We normally choose the ‘best
available’ covariance function for the given observations
and apply it to the ‘unknown observations’. The choice
of carrier points is more intricate. In the simpliest case
we use the same number of carrier points and given
observations.

The main advantage of the new prediction technique is
obtained, when combining the prediction with filtering
(see below).

We identify some of the interesting solutions.

Case 1: Prediction without filtering
n=m and full rank of K
x=K-f 9)

Case 2: Prediction and filtering

n>m and full rank of K

Prediction

x=(KTPK) - 'KTPf (10)

with

(f—Kx)TP(f —Kx)=min

P -!=covariance matrix from the noise of f.
Case 3: Pure prediction with redundant carrier points
n<m and K full rank
x=P-KT(KP-'KT")-'f (11)
with

xTPx=min
Case 4: K of any rank and R = covariance matrix (gen-
eralized inverses)

x=RKT(KRK")- K(K'PK) - 'KTPf (12)

minimizing
(Kx—£)TP(Kx—f)

and then
xTR-1x.

Application

Our new prediction technique will be applied to a study
of gravity anomalies (4g). We use the following co-
variance function for the gravity anomalies at two points
P; and P; (from the Poisson integral)

E{48,48)) =S0,22n+1)(r,2/r;r)= 2P, (coswy,)
n=0

where w;; is the geocentric angle between the two points,
P, (cosw) is the Legendre polynominal of order n, r,
radius of an internal sphere and finally r;, r; are the
geocentric distances to the actual points.
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The cross-covariance matrix is

K=E{4g;Ag"}  (4g; and Ag; are here vectors)

The unknown x-vector is obtained from the matrix
equation

Ag;=Kx

The gravity anomaly Ag, at the point p is now (pre-
diction)

Agp = E{Agp/]giT}x
(Ag,T=gravity vector of carrier points)
E{Ag,A8,} =S0,2(2n+1)(r,2/r,r)®+2P,(cosw,)
n=0
or for g,2=1
E{4g, 48} =(2— 1Y)/ 0% t=r2rr;; 0®*=1+1—2tcoswy;.
The disturbance potential T, at the point p is
T,=E{T 4gT}x
E{T,4g"}=

roS0,22n+1)(n—1)-1(r,Yr,r) @+ DP, (cosw,);

n=0
and for ¢,2=1
E{T,4g,}=r,?(20~1—30+1—5tcosw;;— 3tcoswInD)
&=(1+0—tcosw,;)/2.

Vertical deflections in X and Y directions are then given
by

- 6Tp
Sp— _(S—IY—/}/D =— (fx/yp)x

ar.
77p: _W/yp = (fY/yp)x

7p = theoretical gravity at the point p.
(Fx)pi ] _ [ COSay; }
(Fv)pi sina;

- [Bsinw,;(20 -3 —8+3(0+1)%(20®) — 3Ind]

w,;=geocentric angle between the point p and the car-
rier point i
a,;=azimuth between the point p and the carrier point i

The predictions have no geophysical meaning for points
inside the physical surface of the earth.

We easily identify the following five special choices of
carrier points:

1:0 Carrier points in the given points. Classical solution
according Wiener-Hopf.
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2:0 Carrier points in the given points with ¢,2=1. Clas-
sical Hilbert space solution with reproducing kernel.
Carrier points on the reference sphere.

Dirac approach.

Carrier points on the surface of the earth outside
the given points.

Carrier points between the surface of the earth and
the reference sphere.

Cases 1-5 with redundant carrier points and mini-
mization of xTx.

Cases 1-5 with least squares filtering.

3:0
4:0
5:0
6:0

7:0

With any of these choices of carrier points we can com-
bine the four different cases of solution.

Filtering: We can still use the classical filtering according
to Wiener. However, a considerable reduction of the
computational work is obtained when using least squares
filtering according to case 2. If the number of carrier
points is reduced to 50° of the total number of ob-
servations, then the computational work is reduced by
approximately 80°/o for the solution of the normal equa-
tions.

REFLEXIVE PREDICTION

Given points e € K
Carrier points O e 3
Normally e & O

GeOSphere

SPECIAL CASES:
WIENER
HILBERT (repr.kernel )
DIRAC IMPULSES

Non-ergodicity: When our weakly stationary stochastic
process is not ergodic, then the classical solution accord-
ing to Wiener is not relevant. If we instead, for a given
covariance function, choose a solution where the carrier
points do not coincide with the given points, then we
obtain such values for the carrier points, that an optimal
prediction from the carrier points gives exactly the given
points (eventually with filtering). Thus we let our carrier
points adapt themselves to the covariance function,
instead of adapting the covariance function to the given
points. One can expect that this method is most power-
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ful if we select the carrier points not too close to the
given points. When the data for the carrier points have
been computed, then the wanted predictions are compu-
ted with the use of the ‘cross-variance’ between the
carrier points and the unknowns.

Note. By choosing carrier points closer to the reference
sphere, we reduce the correlation and improve the con-
dition number of the equation.
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Uber die Ergebnisse
freier Netzausgleichungen und ihre Deutung

E. Gotthardt, Miinchen

Die iibliche vermittelnde Ausgleichung freier Netze hat
bekanntlich mit der Schwierigkeit zu kdmpfen, dass die
einfache Minimumbedingung [vv] = Min zu einer sin-
guldren Normalgleichungsmatrix fiihrt, die keine ein-
deutige Losung liefert. Nach Meissl [1] kann man diesem
Ubelstand dadurch abhelfen, dass man nach gendherter
Orientierung die Zusatzforderung aufstellt, die Quadrat-
summe der mittleren Koordinatenfehler der Punkte
oder, was damit gleichbedeutend ist, die Quadratsumme
der Achsen ihrer Fehlerellipsen solle ein Minimum an-
nehmen. Die Fachliteratur der letzten Jahre bringt zahl-
reiche Veroffentlichungen, in denen trigonometrische
Netze auf diese Weise bearbeitet wurden.

Der entscheidende Kunstgriff besteht dabei darin, dass
man die gegebene singuldre Normalgleichungsmatrix N
mit der aus den Eigenvektoren gebildeten Matrix S und
ST randert (Abb. 1), wobei gilt
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1 0 1 0.... 1 O
ST = 0 1 o 1.... 0 1
YW X{ 7Y X 7Yy X
N S
sT 0
Abb. 1

Wie betont werden muss, ist es nicht erforderlich, alle
Punkte des Netzes in die Matrizen S und ST einzube-
ziehen. Man kann sich vielmehr auch auf einen Teil der
Netzpunkte beschrinken. Dies ist in gewissen Fallen
sinnvoll und zweckmassig. Die Inversion der Matrix ldsst
sich mit dem gewohnten Gaussschen Algorithmus nicht
ohne weiteres durchfiihren, bereitet jedoch nach geeig-
netem Umordnen keine Schwierigkeiten.

Bei der Deutung der Ergebnisse derartiger Minimalaus-
gleichungen hat man zu beachten, dass die berechneten
Fehlerellipsen nicht auf ein bequem angebbares System
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