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zweiten Elements der ersten Zeile sowie das zweite
Element der zweiten Zeile identisch mit dem ersten Element
der ersten Zeile ist. Im Rahmen der linearen Algebra
lässt sich dieses Prinzip verallgemeinern: Beliebig viele
(m < n2) Elemente lassen sich als allgemeine lineare
Ausdrücke der n2 — m festen Elemente ansetzen; zwei
Matrizen A und B mit je dem gleichen Ansatz werden
miteinander multipliziert, und dann werden die
Bedingungen dafür aufgestellt, dass die Produktmatrix
wiederum denselben Ansätzen genügt. Dadurch werden
Matrizen mit im allgemeinen ein paar Parametern
ausgesiebt, die in bezug auf ihre Multiplikation (und Inversion)

eine Gruppe bilden. Die bei drei- und mehrreihigen

Matrizen sehr aufwendigen Schreib- und Rechenarbeiten

lassen sich durch ein geschicktes Schema erheblich

vermindern. Der Weg führt konsequent zur Erfassung

aller möglichen Gruppen, die in den Matrizen
naturgegeben stecken; er ist sehr erfolgreich beschritten
worden und hat schon zu überraschenden, ungeahnten
Anwendungsbereichen offenen Ergebnissen geführt. Auf
diese Weise lassen sich noch viele in den Matrizen
ruhende Möglichkeiten aufdecken, allein aus ihrer
Definition und dem Gruppencharakter heraus.
15. In Abschnitt 2 ist angedeutet worden, die Elemente
von Matrizen könnten statt reeller Zahlen selbst
wiederum Matrizen m-ter Ordnung sein. Nachweisen lässt
sich dies durch einfaches Rechnen. Nun ergibt sich bei
der Multiplikation zweier Matrizen n-ter Ordnung
miteinander, deren Elemente Matrizen m-ter Ordnung sind,
ein Ergebnis, das auch eingetreten wäre, wenn man in

den Ausgangsmatrizen von vornherein die Klammern
um deren Elemente weggelassen und mit gewöhnlichen
Matrizen mn-ter Ordnung gerechnet hätte. Umgekehrt
lässt sich auf diese Weise zum Beispiel eine Matrix zweiter

Ordnung, deren Elemente komplexe Zahlen sind,
sofort zu einer Matrix vierter Ordnung mit nur reellen
Zahlen umwandeln; diese stimmen im Prinzip mit allen
Operationen in den Ergebnissen überein, vorausgesetzt
die einzelnen Werte an den entsprechenden Stellen werden

richtig interpretiert.
16. Ein Umstand ist in diesem Aufsatz bewusst nicht
gestreift worden, auf den wegen der praktischen Bedeutung

der Matrizen sehr viel Geist und Scharfsinn
aufgewendet wurde: das ist die numerische Behandlung von
Matrizen, die Ausarbeitung zweckmässiger Verfahren
für die Inversion, für die Eigenwertbestimmung, die
Behandlung von schlecht konditionierten Matrizen, die

Aufstellung von Vergleichskriterien für Matrizen usw.
Hier sollte nur ein Überblick über das allen Matrizen
Gemeinsame, über die Zusammenhänge und den Hintergrund

der Operationen und über weitere Erkenntnisse,
die aus Matrizen noch gewonnen werden können,
gegeben werden.
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Reflexive Prediction
A. Bjerhammar, Stockholm

In most applications the following estimator is used

T-x

GW=
l

2(T-x)
x(t)x(tyx)dt (3)

-T + %

This estimator is unbiased with

Abstract: A new prediction problem is defined. For a

weakly stationary stochastic process a set of observations
is given. It is required to find a set of unknowns
(observations) which have the given observations as optimal
predictions for a prescribed covariance function. The
solution of this problem is very general and includes the

Wiener-Hopf approach as a limiting case. An application
to the gravimetric boundary value problem in physical
geodesy is given. In our study we start with a condensed

presentation of the Wiener-Hopf approach for discrete
cases. Dramatic computational gains in reflexive
prediction and filtering are demonstrated.

We consider a stochastic process x(t) with the expectation

E{x(t)} 0 (r time parameter) (1)

The covariance function Q(x) is for a weakly stationary
process

Q(r) E{x(t)x(t+x)}. (2)

E{Q(x)}'
2{T-x)

E{x(t)x(t + x)}dt Q(x) (4)

-Ta

If this estimator converges to the true value when T-><x>

then the process is ergodic. For a non-ergodic stochastic

process we have no simple means of determining the

covariance function. Our following study is mainly
devoted to problems when the correct covariance function

is not a priori given. Instead we want to find
'observations' which have a given covariance function.
Most technical studies of the theory of weakly stationary
processes result in non ergodic applications. This is a

highly unsatisfactory situation and we find it natural to
look for a solution, where we make our predictions with
the use of auxilliary 'unknown observations' which are
determined in such a way that they for a prescribed
covariance function give optimal predictions, that are
identical with the given observations.
Problem: From a weakly stationary stochastic process
we take a set of n observations (outcomes). It is required
to find m unknown observations in the outcome space
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of the stochastic process which have the given observations

as optimal predictions for a prescribed covariance
function.

Definition: Optimal prediction prediction with minimum

variance.

Solution:
From the Wiener-Hopf approach we recall the general
prediction formula

/ —£ a h

with

h vector of observations £[h] 0

/ unknown prediction
e prediction error
a predictor (vector)

(5)

(mXI)
(1X1)
(1X1)
(lXm)

Wiener wanted to determine the predictor that gives
minimum variance for the selected covariance function.
We have

££=ahh'raT-2ah-/+//

with expectations

o2 aQaT-2ak+ £{//}

where

E{hhT} Q; £{/,hT}=k.
2aQ — 2k 0 for a minimum

a=kQ -i

and we obtain the optimal prediction

/= k Q"1 h (6)
1.1 l.m, m.m, m.l

We now reverse this problem and introduce the following

modifications
1:0 All obervations / are considered 'given predictions',
2:0 The h-values are considered unknown for selected

carrier points,
3:0 The prescribed covariance function is valid for the

unknown h-values.
We now use all the given observations and obtain the

following matrix equation

This type of 'reflexive prediction' is very general and
gives as a limiting case the classical Wiener-Hopf
approach when the carrier points and the given points
coincide.
The reader will note that our new type of solution will
require
1:0 selection of covariance function,
2:0 selection of carrier points.
The choice of covariance function is here less dramatic
then in the classical case. We normally choose the 'best
available' covariance function for the given observations
and apply it to the 'unknown observations'. The choice
of carrier points is more intricate. In the simpliest case

we use the same number of carrier points and given
observations.
The main advantage of the new prediction technique is

obtained, when combining the prediction with filtering
(see below).
We identify some of the interesting solutions.

Case 1 : Prediction without filtering
n m and full rank of K
x=K f

Case 2: Prediction and filtering
n>m and full rank of K
Prediction
x (KTPK) iRTPf

with

(9)

(10)

(f-Kx)Tp(f-Kx)=min
p-! covariance matrix from the noise of f.

Case 3: Pure prediction with redundant carrier points
n<.m and K full rank
x p-iKT(KP-iKT)-if (11)

with
xTPx min

Case 4: K of any rank and R covariance matrix (gen¬
eralized inverses)

x=RKT(KRKT) K(KPK) KTPf

minimizing

(Kx-f)fp(Kx-f)

(12)

f K Q-'h K x
n.l n.ra, m.m, m.l n.m, m.l

(7)

We note that the ^-matrix is (a-)symmetric. The inversion

of the g-matrix is, of course, not needed for a
determination of the x-vector.
When the x-vector is obtained, then any new prediction
g is given by the relation

g £{ghT}x (8)

and then
x'R'x.

Application
Our new prediction technique will be applied to a study
of gravity anomalies (zig). We use the following co-
variance function for the gravity anomalies at two points
Pj and P, (from the Poisson integral)

E{AglAgi} £on2(2« + lX^Ay.)^ + 2)Pn(cosWji)
n 0

where wyi is the geocentric angle between the two points,
Pn(cosa)) is the Legendre polynominal of order n, r0
radius of an internal sphere and finally rj; r- are the

geocentric distances to the actual points.
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The cross-covariance matrix is

K £{zlgjzlgiT} (zfgj and zlgj are here vectors)

The unknown x-vector is obtained from the matrix
equation

z)gj Kx

The gravity anomaly Agp at the point p is now
(prediction)

,lgp £{/1gI)zfgiT}x

(JgiT gravity vector of carrier points)

oo

E{AgpAgi} 2on2(2«+ l)(r02/rpri)(»^)Pn(cosa)pi)
n 0

or for an2=l

E{AgpAg,} (t*-ti)/cj, t r^/rpr,; o2=l+r2-2rcoscopi.

The disturbance potential Tp at the point p is

Tp E{TpzlgiT}x

E{TpAg?}
oo

r02o„2(2/i+ l)(n -1) - '(r.VJ"+ 2)P„(coso)pi);
n=0

and for on2=l

EjTpZlgi} rpt2(2g ~1 — 3o +1 — 5/cosoj-j — 3rcoscopiln0)

0 1 + o- fcoséupì)/2.

Vertical deflections in Z and T directions are then given
by

ôTp

dX

ÒTP
??p —:TT/rP= -(fv/7p)x

OJ

yp theoretical gravity at the point p.

(/x)pi

L (/y)pì J

cosap

sinani

• [i3sinajpi(2e - s- 8 + 3(o + l)2/(2o<Z>) - 31nd>]

wpi=geocentric angle between the point p and the car¬
rier point i

api azimuth between the point p and the carrier point i

The predictions have no geophysical meaning for points
inside the physical surface of the earth.
We easily identify the following five special choices of
carrier points:

1:0 Carrier points in the given points. Classical solution
according Wiener-Hopf.

2:0 Carrier points in the given points with on2=l. Clas¬
sical Hilbert space solution with reproducing kernel.

3:0 Carrier points on the reference sphere.
Dirac approach.

4:0 Carrier points on the surface of the earth outside
the given points.

5:0 Carrier points between the surface of the earth and
the reference sphere.

6:0 Cases 1-5 with redundant carrier points and mini¬
mization of xTx.

7:0 Cases 1-5 with least squares filtering.

With any of these choices of carrier points we can combine

the four different cases of solution.

Filtering: We can still use the classical filtering according
to Wiener. However, a considerable reduction of the

computational work is obtained when using least squares
filtering according to case 2. If the number of carrier
points is reduced to 50% of the total number of
observations, then the computational work is reduced by
approximately 80% for the solution of the normal equations.

REFLEXIVE PREDICTION

Given points • e
Carrier points O 6

Normally • $

K

o

Topography

nil

o
o

eo Ph

SPECIAL CASES:
WIENER

HILBERT (repr. kernel

DIRAC IMPULSES

Non-ergodicity: When our weakly stationary stochastic

process is not ergodic, then the classical solution according

to Wiener is not relevant. If we instead, for a given
covariance function, choose a solution where the carrier
points do not coincide with the given points, then we
obtain such values for the carrier points, that an optimal
prediction from the carrier points gives exactly the given
points (eventually with filtering). Thus we let our carrier
points adapt themselves to the covariance function,
instead of adapting the covariance function to the given
points. One can expect that this method is most power-
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fui if we select the carrier points not too close to the
given points. When the data for the carrier points have
been computed, then the wanted predictions are computed

with the use of the 'cross-variance' between the
carrier points and the unknowns.
Note. By choosing carrier points closer to the reference
sphere, we reduce the correlation and improve the
condition number of the equation.
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Über die Ergebnisse
freier Netzausgleichimgen und ihre Deutung
E. Gotthardt, München

S1'

Die übliche vermittelnde Ausgleichung freier Netze hat
bekanntlich mit der Schwierigkeit zu kämpfen, dass die
einfache Minimumbedingung [vv] Min zu einer sin-

gulären Normalgleichungsmatrix führt, die keine
eindeutige Lösung liefert. Nach Meissl [1] kann man diesem
Übelstand dadurch abhelfen, dass man nach genäherter
Orientierung die Zusatzforderung aufstellt, die Quadratsumme

der mittleren Koordinatenfehler der Punkte
oder, was damit gleichbedeutend ist, die Quadratsumme
der Achsen ihrer Fehlerellipsen solle ein Minimum
annehmen. Die Fachliteratur der letzten Jahre bringt
zahlreiche Veröffentlichungen, in denen trigonometrische
Netze auf diese Weise bearbeitet wurden.
Der entscheidende Kunstgriff besteht dabei darin, dass

man die gegebene singulare Normalgleichungsmatrix N
mit der aus den Eigenvektoren gebildeten Matrix S und
ST rändert (Abb. 1), wobei gilt

1 0 1 o i 0

0 1 0 i 0 i

Yl x, -yg x2... • -y„ *,

N S

ST 0

Abb. 1

Wie betont werden muss, ist es nicht erforderlich, alle
Punkte des Netzes in die Matrizen S und ST einzube-
ziehen. Man kann sich vielmehr auch auf einen Teil der
Netzpunkte beschränken. Dies ist in gewissen Fällen
sinnvoll und zweckmässig. Die Inversion der Matrix lässt
sich mit dem gewohnten Gaussschen Algorithmus nicht
ohne weiteres durchführen, bereitet jedoch nach
geeignetem Umordnen keine Schwierigkeiten.
Bei der Deutung der Ergebnisse derartiger Minimalausgleichungen

hat man zu beachten, dass die berechneten
Fehlerellipsen nicht auf ein bequem angebbares System
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