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Über Matrizen
G. Kirschmer, München

1. Auch für Geodäten gehören die Zahlen, genauer die
reellen Zahlen, zum fundamentalen Bestandteil ihrer
Arbeit. Die Zahlenoperationen sind so geläufig, dass sich
kaum jemand Gedanken über die ihnen innewohnenden
Gesetze macht, die über das für die praktische Arbeit
Notwendige hinausgehen. Das gilt auch für
konsequente Erweiterungen des Zahlenbegriffes, etwa die
komplexen Zahlen, die dualen Zahlen, die Quaternionen.
Zwar ist es irreführend - wie sich im Verlaufe dieses
Aufsatzes ergibt - von einer «Erweiterung des

Zahlenbegriffes» zu sprechen, weil letzten Endes immer nur
reelle Zahlen im Spiele sind. Ein einfaches Beispiel
dafür: Für Zahlenpaare (a(; a2), (b,; b2),. wo a,, a»;

b,, b2; reelle Zahlen sind, können Operationen
folgendermassen definiert werden: Addition (a,; a2) +
(b,; b2) (a, + a2; b, + b2); Multiplikation (a,; a._.)

(b^ b2) (a,b, + ka2b2; a,b2 +aäbi), wo k eine
vorgegebene reelle Zahl ist. Im Falle k -1 spricht man von
komplexen Zahlen. Ist k 0, so hat man es mit den
reellen Zahlen selbst zu tun, und für jedes beliebige feste
k sind die Zahlenpaarc identisch mit der Kombination
(a, + a2 • Vk), (bi + b2- lk), Beide Operationen, die
Addition und die Multiplikation, gehorchen den vier
folgenden Gesetzen: a) Durch eine Operation entsteht ein

neues Zahlenpaar von genau der gleichen Art wie die
beiden Einzelpaare; b) eine Operation mit drei Zahlenpaaren

führt zum gleichen Ergebnis, ob nun entweder
das erste mit dem zweiten und deren Ergebnis mit dem
dritten Paar, oder das erste Paar mit dem Ergebnispaar
aus dem zweiten und dritten Paar verknüpft wird; c) es

existiert ein Zahlenpaar, die sog. Einheit, das, mit jedem
andern verknüpft, dieses nicht ändert; d) zu jedem
Zahlenpaar existiert ein inverses, das mit jenem zusammen
verknüpft die unter c) genannte Einheit erzeugt. - Diese

Eigenschaften von «Elementen», im obigen Beispiel von
den Zahlenpaaren, zusammen mit einer wohldefinierten
Operation, nennt man eine mathematische Gruppe. Im
Zahlenreiche selbst sind zahlreiche Gruppen zu finden,
deren besondere Stärke darin liegt, dass sie in sich
abgeschlossen sind. Die Anzahl der Elemente kann endlich
oder unendlich gross sein (endliche beziehungsweise
unendliche Gruppe). - Indessen besteht ein wesentlicher
Unterschied zwischen einer additiven und einer multipli-
kativen Gruppe; denn am Beispiel der vorigen Zahlenpaare

ist leicht zu zeigen, dass die unter c) erwähnte
Einheit bei der Addition das Element (0; 0), bei der

Multiplikation (1; 0) ist. Für die Addition gibt es unter
allen möglichen reellen Zahlen keine Ausnahme unter
allen denkbaren Elementen der Gruppe; bei der
Multiplikation hingegen muss das Element (0; 0) wegen der
Eigenschaft d) aus den Gruppenelementen grundsätzlich
ausgeschlossen werden.
Der Gruppencharakter ist nun den reellen Zahlen und
den wenigen genannten Beispielen von Zahlenkomplexen
sowohl in bezug auf die Addition als auch auf die Mul¬

tiplikation gemeinsam. Noch mehr Gemeinsamkeit aber

liegt darin, dass sie alle, samt ihren Operationen, durch
Matrizen dargestellt werden können, wodurch sich ihr
eigentlicher Charakter klar offenbart und jedes
vermeintliche Geheimnis, als das etwa der Begriff der
«imaginären» Zahlen aufgefasst werden könnte, vermieden
wird. Das Anliegen dieses Aufsatzes ist, auf der Grundlage

der bisherigen wenigen einführenden Begriffe das

Wesen der Matrizen und die Zusammenhänge ihrer
Operationen, allein von der reellen Zahl ausgehend, zu
durchleuchten sowie einen Ausblick auf weitere
Möglichkeiten zu geben, die in ihnen liegen. Es soll keine

Einführung und Definition der Operationen gegeben
werden, diese werden für das Verständnis vorausgesetzt.
2. Eine Matrix ist ein quadratisches Zahlenfeld mit n
Zeilen und n Spalten (n-ter Ordnung), also n2 reellen
Zahlen, an deren Stelle auch m-reihige Matrizen stehen

können; auf diese quadratischen Matrizen lassen sich
nach ihren Rechengesetzen auch alle scheinbaren
Ausnahmen von dieser Definition zurückführen, von denen
in den Abschnitten 3 und 11 einige Beispiele erwähnt werden.

- Zwei Matrizen A und B sind einander dann und
nur dann gleich, wenn jeweils an der gleichen Stelle (p-te
Zeile, q-te Spalte) die gleiche Zahl (oder Matrix) steht.

- Im Gegensatz zum Zahlenfeld der Matrix steht die ihr
eng verwandte Determinante, eine Zahl; denn mit den
sie kennzeichnenden Strichen anstelle der eine Matrix
einschliessenden Klammern ist der Befehl zur Berechnung

der Zahl aus den n2 Elementen nach dem
Determinantengesetz verbunden.
3. Oftmals sind die Zahlen in einer Matrix nach einem
bestimmten Schema gruppiert und werden dann auch
entsprechend bezeichnet. So ist eine Diagonalmatrix mit
lauter Nullen besetzt ausser in der Hauptdiagonalen
(von links oben nach rechts unten), die selbst keine Null
enthalten darf. Eine Zeilen- (oder Spalten-) Matrix
besteht aus Nullen bis auf eine Zeile (oder Spalte), die mit
beliebigen Zahlen besetzt ist. Es gibt Rechteckmatrizen,
bestehend aus zwei oder mehr ihrer n Zeilen
(beziehungsweise Spalten) mit beliebigen Zahlenelementen,
deren alle anderen Elemente aber Nullen sind. Obere/
untere Dreieckmatrizen sind solche, deren Elemente
unterhalb/oberhalb der Hauptdiagonale aus Nullen
bestehen. - Diese wenigen Beispiele mögen hier für viele
weitere genügen.
4. Die Addition und Subtraktion zweier Matrizen ist
nach der der reellen Zahlen gebildet: Eine Matrix C
A + B hat an jeder ihrer n2 Stellen die Summe der beiden

entsprechenden Elemente in den Ausgangsmatrizen
A und B. Die Matrixaddition erfüllt zusammen mit
der Subtraktion die Eigenschaften einer additiven
Gruppe (Abschnitt 1); das «Einheitselement» der Eigenschaft

c) ist die Nullmatrix, das ist die von lauter Nullen
gespeiste Matrix mit n Zeilen und n Spalten. - Genau
wie beim Produkt reeller Zahlen die Multiplikation
zweier Zahlen aus einer Verallgemeinerung der Addition
hergeleitet wird, so wird die Vervielfachung einer Matrix

aus der Addition hergeleitet: das p-fache einer Matrix

A, also pA, ist eine neue Matrix, in der jedes
Element von A mit p multipliziert ist. - Beide Operationen,
Addition und Vervielfachung, natürlich zusammen mit
ihren Umkehrungen, entspringen exakt den Operationen
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der reellen Zahlen. Sie sind beide «determinantenfeindlich»,

das heisst es existiert keine ihnen entsprechende
Operation der Determinanten der beteiligten Matrizen.
Dies ist ein wesentliches Merkmal dieser einfachen
Operationen.

5. Die wichtigste Matrizenoperation ist die Multiplikation
oder das Matrizenprodukt und ihre Umkehrung, die

Matrizeninversion. Matrizen bilden in bezug auf ihre
Multiplikation und die Inversion eine multiplikative
Gruppe (Abschnitt 1). Die Multiplikation ist nicht aus

Addition und Vervielfachung ableitbar; ihr entspricht
das Determinantenprodukt: Die Determinante einer
Produktmatrix ist gleich dem Produkt der Determinanten
der Einzelmatrizen. Aus dieser Tatsache folgt bereits,
dass eine Inversion einer Matrix mit Determinante Null
nicht möglich ist. Von den Gruppenelementen sind also

von vornherein alle Matrizen mit Determinantenwert
Null auszuschliessen; über diese sogenannten singulären
Matrizen - im Gegensatz zu den regulären, deren
Determinanten einen von Null verschiedenen Wert besitzen -
folgt mehr in Abschnitt 11.

6. Die Operation der Vervielfachung von Matrizen steht
in der Mitte zwischen der Addition und dem Produkt.
Sie ist aus der Addition direkt ableitbar, doch kann sie

auch mit dem Produkt in Zusammenhang gebracht werden.

Vervielfacht man eine Matrix A mit einer Zahl p,
so erzielt man den gleichen Effekt, wenn man die Matrix

A mit einer Diagonalenmatrix (der gleichen
Ordnung n) mit lauter gleichen Diagonalenelementen p
multipliziert. Auf diese Weise lässt sich jede Vervielfachung
einer Matrix in ein Matrizenprodukt umwandeln, für das

sinngemäss auch das Determinantengesetz gilt.
7. Mit Addition, Vervielfachung und Produkt lässt sich
ein einfacher Matrizenkalkül aufbauen, stets natürlich
unter der Voraussetzung einer festen Ordnungszahl n.
Dieser Kalkül, immer innerhalb der Gruppe sich
konsequent bewegend, ist nahezu problemlos. Probleme
kann es, abgesehen von Rechenfehlern, nur geben, wenn
unversehens singulare Matrizen hereinkommen, deren
Inversen eine Rolle spielen. Auf diese Weise entstehen

Trugschlüsse, wie sie vom Rechnen mit reellen Zahlen
bekannt sind, wenn unbedacht durch einen Ausdruck
dividiert wird, dessen Wert Null ist.

8. Matrizen und ihr Produkt sind nicht von Theoretikern
erdacht worden. Unabhängig voneinander ist die
Multiplikation durch die Ausführung sukzessiver linearer
Transformationen und die Inversion durch die
Auflösung linearer Gleichungssysteme gefunden und vom
Ausgangsproblem abstrahiert worden. Schritt für Schritt
wurde deren Zusammenhang und ihr Gruppencharakter
erkannt, der für ihre Bedeutung entscheidend ist. Viele
weitere Anwendungsmöglichkeiten haben sich bald
offenbart. So muss es faszinierend gewesen sein, zu
entdecken, dass die Matrizenmultiplikation auch die
Multiplikation quantenphysikalischer Koeffizientensysteme
widerspiegelt. - Aus den Entstehungsquellen ist die
Vereinbarung über die Ausführungsregel des Produkts
(«Zeilen der linken mit Spalten der rechten Matrix») zu
verstehen; denn, von der Theorie her wäre es gleich, wie
beim Multiplizieren kombiniert wird: man untersuche
bloss den Effekt, wenn man für zwei zu multiplizierende

Matrizen abwechselnd für eine deren Transponierte (an
der Hauptdiagonalen Gespiegelte) setzt.
So ist die Entwicklung der Matrizentheorie im wesentlichen

aus der Praxis heraus und zunächst nicht als
mathematische Disziplin fortgeschritten. Das erklärt auch,
warum bis heute Matrizen in erster Linie als Hilfsmittel
betrachtet werden und nicht als das, was sie sind:
Zahlenfelder als sinngemässe Erweiterung des eindimensionalen

Zahlenreiches auf höhere Dimensionen, und zwar
mit solchen Operationen und Strukturen (in erster Linie
Gruppencharakter), dass sie Naturgesetzen in gleicher
Weise gerecht werden wie Zahlen.
Hier lässt sich einwenden, die eindimensionale Zahlengerade

sei hier nur zur zweiten Dimension erweitert worden.

Diese Vorstellung ist nicht richtig, weil ja bei
Verwendung von Zahlen immer nur ein Zahlenwert, nicht
die Zahlengerade an sich, verwendet wird, bei Matrizen
n-ter Ordnung aber für eine Angabe n2 unabhängige
Zahlenwerte zur Verfügung stehen, die freilich, wie in
Abschnitt 14 gezeigt wird, unter Umständen weniger als
n2 sein können. Im Reiche der abstrakten Zusammenhänge,

in dem die Zahlen eine fundamentale Rolle spielen,

sind die Matrizen zunächst aus Anwendungen heraus

«erfunden» worden; sie haben sich aber als
«Entdeckung» einer neuen, mehrdimensionalen Zahlenwelt
herausgestellt.
9. In diesem Zusammenhang gehört ein Weg erwähnt,
der mit einigem Erfolg beschritten worden ist: quadratische

Zahlenfelder können zu kubischen erweitert werden,

für die ähnliche Operationen eingeführt werden wie
für Matrizen. Bisher konnten aber weder für bestimmte
Ordnungszahlen n noch für gewisse Operationen solche
Zahlenkuben gefunden werden, für die auch Inversionen
existieren. Sie bilden also nach Abschnitt 1 keine Gruppen,

und ihre Anwendungsmöglichkeiten beschränken
sich auf Einzelprobleme, wie dies auch für singulare
Matrizen gilt (Abschnitt 11).
10. Der Vergleich zweier reeller Zahlen miteinander ist

einfach: sie können einander gleich sein, oder die eine

ist grösser als die andere. - Bei zwei Matrizen lässt sich

Gleichheit oder Ungleichheit ebenfalls klar entscheiden

(vergleiche Abschnitt 2). Für ungleiche Matrizen aber

gibt es kein so klares Kriterium wie «grösser oder
kleiner». So sind zahlreiche andere Unterscheidungskriterien,

je nach Problemstellung, geschaffen worden. Man
kann die Anzahl der Nullen unter den Matrizenelementen

auszählen; oder die Anzahl positiver Elemente. Eine
wichtige Masszahl ist die Determinante einer Matrix, sie

ist auch ausschlaggebend für «reguläre» oder «singulare»

Matrizen (Determinantenwert 0 beziehungsweise

0). Eine bedeutende Stellung unter den
Masszahlen nimmt auch die «Spur» ein, das ist die Summe
aller Elemente in der Hauptdiagonalen. Diese Hinweise
mögen genügen. Indessen müssen in diesem Zusammenhang

die Eigenwerte einer Matrix erwähnt werden. Sie

spielen bei Anwendungen oftmals eine ausgezeichnete
Rolle, die hier allein von der gegebenen Matrizendefinition

aus betrachtet werden soll.
Die einfacheren, für Anwendungen weniger bedeutenden
«allgemeinen Eigenwerte» von Matrizen fliessen aus der
schlichten Fragestellung: Gibt es zu einer gegebenen
regulären Matrix A von n-ter Ordnung eine Matrix A von
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der besonders einfachen Bauart, dass alle ihre Elemente
den gleichen Wert / annehmen, so dass die Matrix
A — A singular wird? - Die Antwort ist einfach; denn
die gleich Null gesetzte Determinante der Matrix A — A
führt zu einer linearen Gleichung in X mit einem eindeutigen

Lösungswert.
Ähnlich ist die Fragestellung bei den «Eigenwerten einer
Matrix»: Gibt es zu einer gegebenen regulären Matrix A
von n-ter Ordnung eine Diagonalenmatrix A mit gleichen
Diagonalenelementen /, so dass die Matrix A — A
singular wird? - Die Antwort ist wiederum einfach, wenn
auch die praktische Realisierung schwieriger wird; denn
die gleich Null gesetzte Determinante der Matrix A — A

führt in diesem Fall zu einer Gleichung n-ten Grades in

I, die im allgemeinen n Lösungen besitzt. Deren Werte
erlauben Schlüsse auf die innere Struktur der Ausgangsmatrix,

zu erkennen bereits an der Koeffizientenbildung
der Gleichung, was die zahlreichen Anwendungsbereiche
der Eigenwerte erklärt. Auch hier sind die Anwendungen

den theoretischen Untersuchungen der Zusammenhänge

vorausgegangen.
Die Eigenwerte beziehen sich auf die Hauptdiagonale
einer Matrix. Jede Matrix besitzt im ganzen n! Diagonalen,

die - der Berechnung einer Determinante entsprechend

- jeweils n-fache Produkte sind, deren n Faktoren
alle n! Möglichkeiten einer solchen Zusammensetzung
sind, dass von jeder Zeile und jeder Spalte je ein Faktor
stammt. Grundsätzlich besitzt jede Diagonale ihre
spezifischen Matrizeneigenwerte, aber deren Gleichungen
n-ter Ordnung sind alle ähnlich gebildet.
II. Der Determinantenwert Null einer Matrix ist, wie
mehrmals erwähnt, für die Klassifizierung der Matrizen
in singulare und reguläre entscheidend; letztere bilden
mit ihrem Produkt eine Gruppe. Grundsätzlich sind alle
singulären Matrizen von den Gruppenelementen bezüglich

der Multiplikation ausgeschlossen und entsprechen
damit der Null bei der Gruppe der reellen Zahlen in
bezug auf deren Multiplikation. Nun gibt es zwar genau
eine Nullmatrix, nämlich die mit lauter Nullelementen;
aber singulare Matrizen gibt es unendlich viele, und viele
davon besitzen umfangreiche Anwendungsbereiche.
Allein mit Hilfe der Eigenwerte und des allgemeinen
Eigenwertes lassen sich zu jeder regulären Matrix n-ter
Ordnung im allgemeinen n+l spezielle singulare
Matrizen angeben.
Einen Sonderfall für singulare Matrizen spielen zum
Beispiel die in Abschnitt 3 genannten Rechteckmatrizen.
Hier verzichtet man beim Anschreiben auf die mit Nullen

besetzten Spalten beziehungsweise Zeilen, rechnet
aber nach den allgemeinen Regeln so, wie wenn die Matrix

voll quadratisch wäre, freilich unter Ausschluss einer
Inversion, die es in diesem Falle nicht geben kann. - Im
Falle nur einer Zeile beziehungsweise Spalte spricht man
von Vektoren. Für die Vektorrechnung ist ein leistungsfähiger

Kalkül entwickelt worden, der in seiner Abgrenzung

gegenüber dem in Abschnitt 7 erwähnten Kalkül
mit regulären Matrizen beispielhaft ist. - Verschieden
gebildete singulare Matrizen bedingen verschiedene
Kalkülgesetze. Die Spielarten, die sich fast alle aus Anwendungen

ergeben, sind unerschöpflich; ebenso sind es

Sonderregeln, die bei der Bildung eines solchen Kalküls
eine Rolle spielen können. Es muss nicht einmal immer

eine feste Ordnungszahl innerhalb eines Kalküls
eingehalten werden, diese kann springen. Auf diese Weise
gelangt man unter bestimmten Bedingungen zu
«verallgemeinerten» oder «Pseudo»-Inversen usw. zu einer singulären

Matrix. In dieser Vielfalt von Möglichkeiten ist
reichlich Spielraum sowohl für die Anwendung von
singulären Matrizen auf Vorgänge in der Natur, Technik,
Wirtschaft, Statistik usw. als auch für die Phantasie.
12. Wieder zur Gruppe der regulären Matrizen n-ter
Ordnung zurückkehrend, sei an die Formulierung in
Abschnitt 1 erinnert, es gäbe endliche und unendliche
Gruppen. Letztere sind nach den gegebenen Beispielen
selbstverständlich. Für eine endliche Gruppe sei ein
Beispiel erwähnt, das ohne (platzkostende) Formeln
beschrieben werden kann. Ausgehend von der dreireihigen
Einheitsmatrix (mit Determinante 1), die ohnehin zu
allen Gruppen und Untergruppen der dreireihigen
Matrizen gehören muss, werden alle möglichen Matrizen
mit Determinante 1 gebildet, die je drei Einsen + 1 oder
— 1) und sechs Nullen aufweisen; davon gibt es 24, und
diese hängen alle miteinander durch die Multiplikation
und Potenzierungen zusammen: sie bilden eine endliche
Gruppe, die selbst wiederum mehrere Untergruppen
enthält. - Diese Gruppe lässt sich durch Variieren der
Vorzeichen so erweitern, dass auch die Elemente mit
Determinante — 1 eingeschlossen sind. Für diese immer noch
sehr übersichtliche Gruppe von 48 verschiedenen
Elementen lässt sich eine interessante, alle mit ihr
zusammenhängenden Probleme und Verknüpfungsmöglichkeiten

wiedergebende «Gruppentafel» anlegen. Geometrisch
ist diese Gruppe die Matrizendarstellung aller Transformationen

einschliesslich der Spiegelungen von Würfel
und Oktaeder in sich selbst. - Ähnliche endliche Gruppen

von Matrizen entstehen durch die entsprechenden
Transformationen in sich selbst des Tetraeders, oder von
Ikosaeder und Dodekaeder.
13. In Abschnitt 8 ist gezeigt worden, wie Matrizen
Vorgänge linearen Charakters beschreiben oder darstellen.

Erwähnt wurden in diesem Aufsatz komplexe und
duale Zahlen, Quaternionen, ein paar Transformationen.
Die Darstellungstheorie, eine Disziplin der Algebra,
wurde eigens für die Bestimmung von Matrizendarstellungen

für lineare Zusammenhänge entwickelt. Das ist
oftmals ein recht schwieriges Unternehmen.
14. In Abschnitt 8 ist von. den n2 Dimensionen einer
Matrix gegenüber den eindimensionalen reellen Zahlen
gesprochen und angedeutet worden, diese Zahl n2 könne
unterschritten werden. Das wird sie in jedem Falle, wenn
ein linearer Vorgang durch eine Matrix dargestellt wird,
etwa bei der Multiplikation komplexer Zahlen a( + ia..

(i2 - 1), die durch die Matrix/ &1

\ a2 ai

dargestellt werden: In der zweiten Zeile treten die Zahlen

a,, a.2 der ersten Zeile wieder auf, wenn auch in
anderer Reihenfolge und mit anderen festen Koeffizienten
(Parametern, hier im Beispiel bloss Vorzeichenwechsel
von a2). Entscheidend, auch für den Gruppencharakter,
ist der Umstand, dass nach Ausführen jeder Operation
in allen Matrizen, die zur Gruppe zählen, das erste
Element der zweiten Zeile gleich dem Negativen des
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zweiten Elements der ersten Zeile sowie das zweite
Element der zweiten Zeile identisch mit dem ersten Element
der ersten Zeile ist. Im Rahmen der linearen Algebra
lässt sich dieses Prinzip verallgemeinern: Beliebig viele
(m < n2) Elemente lassen sich als allgemeine lineare
Ausdrücke der n2 — m festen Elemente ansetzen; zwei
Matrizen A und B mit je dem gleichen Ansatz werden
miteinander multipliziert, und dann werden die
Bedingungen dafür aufgestellt, dass die Produktmatrix
wiederum denselben Ansätzen genügt. Dadurch werden
Matrizen mit im allgemeinen ein paar Parametern
ausgesiebt, die in bezug auf ihre Multiplikation (und Inversion)

eine Gruppe bilden. Die bei drei- und mehrreihigen

Matrizen sehr aufwendigen Schreib- und Rechenarbeiten

lassen sich durch ein geschicktes Schema erheblich

vermindern. Der Weg führt konsequent zur Erfassung

aller möglichen Gruppen, die in den Matrizen
naturgegeben stecken; er ist sehr erfolgreich beschritten
worden und hat schon zu überraschenden, ungeahnten
Anwendungsbereichen offenen Ergebnissen geführt. Auf
diese Weise lassen sich noch viele in den Matrizen
ruhende Möglichkeiten aufdecken, allein aus ihrer
Definition und dem Gruppencharakter heraus.
15. In Abschnitt 2 ist angedeutet worden, die Elemente
von Matrizen könnten statt reeller Zahlen selbst
wiederum Matrizen m-ter Ordnung sein. Nachweisen lässt
sich dies durch einfaches Rechnen. Nun ergibt sich bei
der Multiplikation zweier Matrizen n-ter Ordnung
miteinander, deren Elemente Matrizen m-ter Ordnung sind,
ein Ergebnis, das auch eingetreten wäre, wenn man in

den Ausgangsmatrizen von vornherein die Klammern
um deren Elemente weggelassen und mit gewöhnlichen
Matrizen mn-ter Ordnung gerechnet hätte. Umgekehrt
lässt sich auf diese Weise zum Beispiel eine Matrix zweiter

Ordnung, deren Elemente komplexe Zahlen sind,
sofort zu einer Matrix vierter Ordnung mit nur reellen
Zahlen umwandeln; diese stimmen im Prinzip mit allen
Operationen in den Ergebnissen überein, vorausgesetzt
die einzelnen Werte an den entsprechenden Stellen werden

richtig interpretiert.
16. Ein Umstand ist in diesem Aufsatz bewusst nicht
gestreift worden, auf den wegen der praktischen Bedeutung

der Matrizen sehr viel Geist und Scharfsinn
aufgewendet wurde: das ist die numerische Behandlung von
Matrizen, die Ausarbeitung zweckmässiger Verfahren
für die Inversion, für die Eigenwertbestimmung, die
Behandlung von schlecht konditionierten Matrizen, die

Aufstellung von Vergleichskriterien für Matrizen usw.
Hier sollte nur ein Überblick über das allen Matrizen
Gemeinsame, über die Zusammenhänge und den Hintergrund

der Operationen und über weitere Erkenntnisse,
die aus Matrizen noch gewonnen werden können,
gegeben werden.
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Reflexive Prediction
A. Bjerhammar, Stockholm

In most applications the following estimator is used

T-x

GW=
l

2(T-x)
x(t)x(tyx)dt (3)

-T + %

This estimator is unbiased with

Abstract: A new prediction problem is defined. For a

weakly stationary stochastic process a set of observations
is given. It is required to find a set of unknowns
(observations) which have the given observations as optimal
predictions for a prescribed covariance function. The
solution of this problem is very general and includes the

Wiener-Hopf approach as a limiting case. An application
to the gravimetric boundary value problem in physical
geodesy is given. In our study we start with a condensed

presentation of the Wiener-Hopf approach for discrete
cases. Dramatic computational gains in reflexive
prediction and filtering are demonstrated.

We consider a stochastic process x(t) with the expectation

E{x(t)} 0 (r time parameter) (1)

The covariance function Q(x) is for a weakly stationary
process

Q(r) E{x(t)x(t+x)}. (2)

E{Q(x)}'
2{T-x)

E{x(t)x(t + x)}dt Q(x) (4)

-Ta

If this estimator converges to the true value when T-><x>

then the process is ergodic. For a non-ergodic stochastic

process we have no simple means of determining the

covariance function. Our following study is mainly
devoted to problems when the correct covariance function

is not a priori given. Instead we want to find
'observations' which have a given covariance function.
Most technical studies of the theory of weakly stationary
processes result in non ergodic applications. This is a

highly unsatisfactory situation and we find it natural to
look for a solution, where we make our predictions with
the use of auxilliary 'unknown observations' which are
determined in such a way that they for a prescribed
covariance function give optimal predictions, that are
identical with the given observations.
Problem: From a weakly stationary stochastic process
we take a set of n observations (outcomes). It is required
to find m unknown observations in the outcome space
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