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Uber Matrizen

G. Kirschmer, Miinchen

1. Auch fiir Geoddten gehoren die Zahlen, genauer die
reellen Zahlen, zum fundamentalen Bestandteil ihrer Ar-
beit. Die Zahlenoperationen sind so geldufig, dass sich
kaum jemand Gedanken iiber die ihnen innewohnenden
Gesetze macht, die iiber das fiir die praktische Arbeit
Notwendige hinausgehen. Das gilt auch fiir konse-
quente Erweiterungen des Zahlenbegriffes, etwa die
komplexen Zahlen, die dualen Zahlen, die Quaternionen.
Zwar ist es irrefiilhrend — wie sich im Verlaufe dieses
Aufsatzes ergibt — von einer «Erweiterung des Zahlen-
begriffes» zu sprechen, weil letzten Endes immer nur
reelle Zahlen im Spiele sind. Ein einfaches Beispiel da-
fiir: Fir Zahlenpaare (a;; a,), (b;; b,),..., wo a,, a.;
by, b,; ... reelle Zahlen sind, kdnnen Operationen fol-
gendermassen definiert werden: Addition (a;; a,) +
(by; by) = (a, + a,; b, + b,); Multiplikation (a,; a,)
(by; b,) = (a;b, + ka,b,; a,b, +a,b,), wo k eine vorge-
gebene reelle Zahl ist. Im Falle k = —1 spricht man von
komplexen Zahlen. Ist k = 0, so hat man es mit den
reellen Zahlen selbst zu tun, und fiir jedes beliebige feste
k sind die Zahlenpaare identisch mit der Kombination
(a, + ay - VKk), (b, + b,- Vk), ... Beide Operationen, die
Addition und die Multiplikation, gehorchen den vier fol-
genden Gesetzen: a) Durch eine Operation entsteht ein
neues Zahlenpaar von genau der gleichen Art wie die
beiden Einzelpaare; b) eine Operation mit drei Zahlen-
paaren fiihrt zum gleichen Ergebnis, ob nun entweder
das erste mit dem zweiten und deren Ergebnis mit dem
dritten Paar, oder das erste Paar mit dem Ergebnispaar
aus dem zweiten und dritten Paar verkniipft wird; c) es
existiert ein Zahlenpaar, die sog. Einheit, das, mit jedem
andern verkniipft, dieses nicht dndert; d) zu jedem Zah-
lenpaar existiert ein inverses, das mit jenem zusammen
verkniipft die unter ¢) genannte Einheit erzeugt. — Diese
Eigenschaften von «Elementen», im obigen Beispiel von
den Zahlenpaaren, zusammen mit einer wohldefinierten
Operation, nennt man eine mathematische Gruppe. Im
Zahlenreiche selbst sind zahlreiche Gruppen zu finden,
deren besondere Stiarke darin liegt, dass sie in sich abge-
schlossen sind. Die Anzahl der Elemente kann endlich
oder unendlich gross sein (endliche beziehungsweise un-
endliche Gruppe). — Indessen besteht ein wesentlicher
Unterschied zwischen einer additiven und einer multipli-
kativen Gruppe; denn am Beispiel der vorigen Zahlen-
paare ist leicht zu zeigen, dass die unter c) erwihnte
Einheit bei der Addition das Element (0; 0), bei der
Multiplikation (1; 0) ist. Fiir die Addition gibt es unter
allen moglichen reellen Zahlen keine Ausnahme unter
allen denkbaren Elementen der Gruppe; bei der Multi-
plikation hingegen muss das Element (0; 0) wegen der
Eigenschaft d) aus den Gruppenelementen grundsitzlich
ausgeschlossen werden.

Der Gruppencharakter ist nun den reellen Zahlen und
den wenigen genannten Beispielen von Zahlenkomplexen
sowohl in bezug auf die Addition als auch auf die Mul-
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tiplikation gemeinsam. Noch mehr Gemeinsamkeit aber
liegt darin, dass sie alle, samt ihren Operationen, durch
Matrizen dargestellt werden konnen, wodurch sich ihr
eigentlicher Charakter klar offenbart und jedes ver-
meintliche Geheimnis, als das etwa der Begriff der «ima-
gindren» Zahlen aufgefasst werden konnte, vermieden
wird. Das Anliegen dieses Aufsatzes ist, auf der Grund-
lage der bisherigen wenigen einfithrenden Begriffe das
Wesen der Matrizen und die Zusammenhinge ihrer
Operationen, allein von der reellen Zahl ausgehend, zu
durchleuchten sowie einen Ausblick auf weitere Mog-
lichkeiten zu geben, die in ihnen liegen. Es soll keine
Einfiihrung und Definition der Operationen gegeben
werden, diese werden fiir das Verstdndnis vorausgesetzt.
2. Eine Matrix ist ein quadratisches Zahlenfeld mit n
Zeilen und n Spalten (n-ter Ordnung), also n? reellen
Zahlen, an deren Stelle auch m-reihige Matrizen stehen
konnen; auf diese quadratischen Matrizen lassen sich
nach ihren Rechengesetzen auch alle scheinbaren Aus-
nahmen von dieser Definition zuriickfithren, von denen
in den Abschnitten 3 und 11 einige Beispiele erwdhnt wer-
den. — Zwei Matrizen A und B sind einander dann und
nur dann gleich, wenn jeweils an der gleichen Stelle (p-te
Zeile, q-te Spalte) die gleiche Zahl (oder Matrix) steht.
— Im Gegensatz zum Zahlenfeld der Matrix steht die ihr
eng verwandte Determinante, eine Zahl; denn mit den
sie kennzeichnenden Strichen anstelle der eine Matrix
einschliessenden Klammern ist der Befehl zur Berech-
nung der Zahl aus den n? Elementen nach dem Deter-
minantengesetz verbunden.

3. Oftmals sind die Zahlen in einer Matrix nach einem
bestimmten Schema gruppiert und werden dann auch
entsprechend bezeichnet. So ist eine Diagonalmatrix mit
lauter Nullen besetzt ausser in der Hauptdiagonalen
(von links oben nach rechts unten), die selbst keine Null
enthalten darf. Eine Zeilen- (oder Spalten-) Matrix be-
steht aus Nullen bis auf eine Zeile (oder Spalte), die mit
beliebigen Zahlen besetzt ist. Es gibt Rechteckmatrizen,
bestehend aus zwei oder mehr ihrer n Zeilen (be-
ziehungsweise Spalten) mit beliebigen Zahlenelementen,
deren alle anderen Elemente aber Nullen sind. Obere/
untere Dreieckmatrizen sind solche, deren Elemente
unterhalb/oberhalb der Hauptdiagonale aus Nullen be-
stehen. — Diese wenigen Beispiele mogen hier fiir viele
weitere geniigen.

4. Die Addition und Subtraktion zweier Matrizen ist
nach der der reellen Zahlen gebildet: Eine Matrix C =
A + B hat an jeder ihrer n? Stellen die Summe der bei-
den entsprechenden Elemente in den Ausgangsmatrizen
A und B. Die Matrixaddition erfiillt zusammen mit
der Subtraktion die Eigenschaften einer additiven
Gruppe (Abschnitt 1); das «Einheitselement» der Eigen-
schaft c) ist die Nullmatrix, das ist die von lauter Nullen
gespeiste Matrix mit n Zeilen und n Spalten. — Genau
wie beim Produkt reeller Zahlen die Multiplikation
zweier Zahlen aus einer Verallgemeinerung der Addition
hergeleitet wird, so wird die Vervielfachung einer Ma-
trix aus der Addition hergeleitet: das p-fache einer Ma-
trix A, also pA, ist eine neue Matrix, in der jedes Ele-
ment von A mit p multipliziert ist. — Beide Operationen,
Addition und Vervielfachung, natiirlich zusammen mit
ihren Umkehrungen, entspringen exakt den Operationen
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der reellen Zahlen. Sie sind beide «determinantenfeind-
lich», das heisst es existiert keine ihnen entsprechende
Operation der Determinanten der beteiligten Matrizen.
Dies ist ein wesentliches Merkmal dieser einfachen Ope-
rationen.

5. Die wichtigste Matrizenoperation ist die Multiplika-
tion oder das Matrizenprodukt und ihre Umkehrung, die
Matrizeninversion. Matrizen bilden in bezug auf ihre
Multiplikation und die Inversion eine multiplikative
Gruppe (Abschnitt 1). Die Multiplikation ist nicht aus
Addition und Vervielfachung ableitbar; ihr entspricht
das Determinantenprodukt: Die Determinante einer Pro-
duktmatrix ist gleich dem Produkt der Determinanten
der Einzelmatrizen. Aus dieser Tatsache folgt bereits,
dass eine Inversion einer Matrix mit Determinante Null
nicht moglich ist. Von den Gruppenelementen sind also
von vornherein alle Matrizen mit Determinantenwert
Null auszuschliessen; iiber diese sogenannten singuldren
Matrizen — im Gegensatz zu den reguldren, deren Deter-
minanten einen von Null verschiedenen Wert besitzen —
folgt mehr in Abschnitt 11.

6. Die Operation der Vervielfachung von Matrizen steht
in der Mitte zwischen der Addition und dem Produkt.
Sie ist aus der Addition direkt ableitbar, doch kann sie
auch mit dem Produkt in Zusammenhang gebracht wer-
den. Vervielfacht man eine Matrix A mit einer Zahl p,
so erzielt man den gleichen Effekt, wenn man die Ma-
trix A mit einer Diagonalenmatrix (der gleichen Ord-
nung n) mit lauter gleichen Diagonalenelementen p mul-
tipliziert. Auf diese Weise ldsst sich jede Vervielfachung
einer Matrix in ein Matrizenprodukt umwandeln, fiir das
sinngemdss auch das Determinantengesetz gilt.

7. Mit Addition, Vervielfachung und Produkt ldsst sich
ein einfacher Matrizenkalkiil aufbauen, stets natiirlich
unter der Voraussetzung einer festen Ordnungszahl n.
Dieser Kalkiil, immer innerhalb der Gruppe sich kon-
sequent bewegend, ist nahezu problemlos. Probleme
kann es, abgesehen von Rechenfehlern, nur geben, wenn
unversehens singuldre Matrizen hereinkommen, deren
Inversen eine Rolle spielen. Auf diese Weise entstehen
Trugschliisse, wie sie vom Rechnen mit reellen Zahlen
bekannt sind, wenn unbedacht durch einen Ausdruck
dividiert wird, dessen Wert Null ist.

8. Matrizen und ihr Produkt sind nicht von Theoretikern
erdacht worden. Unabhéngig voneinander ist die Multi-
plikation durch die Ausfiihrung sukzessiver linearer
Transformationen und die Inversion durch die Auf-
16sung linearer Gleichungssysteme gefunden und vom
Ausgangsproblem abstrahiert worden. Schritt fiir Schritt
wurde deren Zusammenhang und ihr Gruppencharakter
erkannt, der fiir ihre Bedeutung entscheidend ist. Viele
weitere Anwendungsmdoglichkeiten haben sich bald
offenbart. So muss es faszinierend gewesen sein, zu ent-
decken, dass die Matrizenmultiplikation auch die Multi-
plikation quantenphysikalischer Koeffizientensysteme
widerspiegelt. — Aus den Entstehungsquellen ist die Ver-
einbarung iiber die Ausfiihrungsregel des Produkts
(«Zeilen der linken mit Spalten der rechten Matrix») zu
verstehen; denn.von der Theorie her wire es gleich, wie
beim Multiplizieren kombiniert wird: man untersuche
bloss den Effekt, wenn man fiir zwei zu multiplizierende
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Matrizen abwechselnd fiir eine deren Transponierte (an
der Hauptdiagonalen Gespiegelte) setzt.

So ist die Entwicklung der Matrizentheorie im wesent-
lichen aus der Praxis heraus und zundchst nicht als ma-
thematische Disziplin fortgeschritten. Das erkldrt auch,
warum bis heute Matrizen in erster Linie als Hilfsmittel
betrachtet werden und nicht als das, was sie sind: Zah-
lenfelder als sinngemisse Erweiterung des eindimensio-
nalen Zahlenreiches auf hohere Dimensionen, und zwar
mit solchen Operationen und Strukturen (in erster Linie
Gruppencharakter), dass sie Naturgesetzen in gleicher
Weise gerecht werden wie Zahlen.

Hier ldsst sich einwenden, die eindimensionale Zahlen-
gerade sei hier nur zur zweiten Dimension erweitert wor-
den. Diese Vorstellung ist nicht richtig, weil ja bei Ver-
wendung von Zahlen immer nur ein Zahlenwert, nicht
die Zahlengerade an sich, verwendet wird, bei Matrizen
n-ter Ordnung aber fiir eine Angabe n2 unabhéngige
Zahlenwerte zur Verfiigung stehen, die freilich, wie in
Abschnitt 14 gezeigt wird, unter Umstanden weniger als
n? sein konnen. Im Reiche der abstrakten Zusammen-
hinge, in dem die Zahlen eine fundamentale Rolle spie-
len, sind die Matrizen zunéchst aus Anwendungen her-
aus «erfunden» worden; sie haben sich aber als «Ent-
deckung» einer neuen, mehrdimensionalen Zahlenwelt
herausgestellt.

9. In diesem Zusammenhang gehort ein Weg erwihnt,
der mit einigem Erfolg beschritten worden ist: quadrati-
sche Zahlenfelder konnen zu kubischen erweitert wer-
den, fiir die dhnliche Operationen eingefiihrt werden wie
fiir Matrizen. Bisher konnten aber weder fiir bestimmte
Ordnungszahlen n noch fiir gewisse Operationen solche
Zahlenkuben gefunden werden, fiir die auch Inversionen
existieren. Sie bilden also nach Abschnitt 1 keine Grup-
pen, und ihre Anwendungsmoglichkeiten beschranken
sich auf Einzelprobleme, wie dies auch fiir singuldre
Matrizen gilt (Abschnitt 11).

10. Der Vergleich zweier reeller Zahlen miteinander ist
einfach: sie konnen einander gleich sein, oder die eine
ist grosser als die andere. — Bei zwei Matrizen ldsst sich
Gleichheit oder Ungleichheit ebenfalls klar entscheiden
(vergleiche Abschnitt 2). Fiir ungleiche Matrizen aber
gibt es kein so klares Kriterium wie «grosser oder klei-
ner». So sind zahlreiche andere Unterscheidungskrite-
rien, je nach Problemstellung, geschaffen worden. Man
kann die Anzahl der Nullen unter den Matrizenelemen-
ten auszdhlen; oder die Anzahl positiver Elemente. Eine
wichtige Masszahl ist die Determinante einer Matrix, sie
ist auch ausschlaggebend fiir «reguldre» oder «singu-
lare» Matrizen (Determinantenwert &= 0 beziehungs-
weise = 0). Eine bedeutende Stellung unter den Mass-
zahlen nimmt auch die «Spur» ein, das ist die Summe
aller Elemente in der Hauptdiagonalen. Diese Hinweise
mogen geniigen. Indessen miissen in diesem Zusammen-
hang die Eigenwerte einer Matrix erwahnt werden. Sie
spielen bei Anwendungen oftmals eine ausgezeichnete
Rolle, die hier allein von der gegebenen Matrizendefini-
tion aus betrachtet werden soll.

Die einfacheren, fiir Anwendungen weniger bedeutenden
«allgemeinen Eigenwerte» von Matrizen fliessen aus der
schlichten Fragestellung: Gibt es zu einer gegebenen re-
guldren Matrix A von n-ter Ordnung eine Matrix A von
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der besonders einfachen Bauart, dass alle ihre Elemente
den gleichen Wert 2 annehmen, so dass die Matrix
A — A singuldar wird? — Die Antwort ist einfach; denn
die gleich Null gesetzte Determinante der Matrix A — .1
fiihrt zu einer linearen Gleichung in 2 mit einem eindeu-
tigen Losungswert.

Ahnlich ist die Fragestellung bei den «Eigenwerten einer
Matrix»: Gibt es zu einer gegebenen reguldren Matrix A
von n-ter Ordnung eine Diagonalenmatrix A mit gleichen
Diagonalenelementen 2, so dass die Matrix A — A sin-
guldr wird? — Die Antwort ist wiederum einfach, wenn
auch die praktische Realisierung schwieriger wird; denn
die gleich Null gesetzte Determinante der Matrix A — 4
fithrt in diesem Fall zu einer Gleichung n-ten Grades in
1, die im allgemeinen n Losungen besitzt. Deren Werte
erlauben Schliisse auf die innere Struktur der Ausgangs-
matrix, zu erkennen bereits an der Koeffizientenbildung
der Gleichung, was die zahlreichen Anwendungsbereiche
der Eigenwerte erkldrt. Auch hier sind die Anwendun-
gen den theoretischen Untersuchungen der Zusammen-
hidnge vorausgegangen.

Die Eigenwerte beziehen sich auf die Hauptdiagonale
einer Matrix. Jede Matrix besitzt im ganzen n! Diagona-
len, die — der Berechnung einer Determinante entspre-
chend — jeweils n-fache Produkte sind, deren n Faktoren
alle n! Moglichkeiten einer solchen Zusammensetzung
sind, dass von jeder Zeile und jeder Spalte je ein Faktor
stammt. Grundsitzlich besitzt jede Diagonale ihre spe-
zifischen Matrizeneigenwerte, aber deren Gleichungen
n-ter Ordnung sind alle @hnlich gebildet.

11. Der Determinantenwert Null einer Matrix ist, wie
mehrmals erwihnt, fiir die Klassifizierung der Matrizen
in singuldre und regulédre entscheidend; letztere bilden
mit ihrem Produkt eine Gruppe. Grundsitzlich sind alle
singuldren Matrizen von den Gruppenelementen beziig-
lich der Multiplikation ausgeschlossen und entsprechen
damit der Null bei der Gruppe der reellen Zahlen in be-
zug auf deren Multiplikation. Nun gibt es zwar genau
eine Nullmatrix, ndmlich die mit lauter Nullelementen;
aber singulidre Matrizen gibt es unendlich viele, und viele
davon besitzen umfangreiche Anwendungsbereiche.
Allein mit Hilfe der Eigenwerte und des allgemeinen
Eigenwertes lassen sich zu jeder reguldren Matrix n-ter
Ordnung im allgemeinen n+1 spezielle singuldire Ma-
trizen angeben.

Einen Sonderfall fiir singuldre Matrizen spielen zum
Beispiel die in Abschnitt 3 genannten Rechteckmatrizen.
Hier verzichtet man beim Anschreiben auf die mit Nul-
len besetzten Spalten beziehungsweise Zeilen, rechnet
aber nach den allgemeinen Regeln so, wie wenn die Ma-
trix voll quadratisch wire, freilich unter Ausschluss einer
Inversion, die es in diesem Falle nicht geben kann. — Im
Falle nur einer Zeile bezichungsweise Spalte spricht man
von Vektoren. Fiir die Vektorrechnung ist ein leistungs-
fahiger Kalkiil entwickelt worden, der in seiner Abgren-
zung gegeniiber dem in Abschnitt 7 erwdhnten Kalkiil
mit reguldren Matrizen beispielhaft ist. — Verschieden
gebildete singuldre Matrizen bedingen verschiedene Kal-
kiilgesetze. Die Spielarten, die sich fast alle aus Anwen-
dungen ergeben, sind unerschopflich; ebenso sind es
Sonderregeln, die bei der Bildung eines solchen Kalkiils
eine Rolle spielen konnen. Es muss nicht einmal immer

242

eine feste Ordnungszahl innerhalb eines Kalkiils einge-
halten werden, diese kann springen. Auf diese Weise ge-
langt man unter bestimmten Bedingungen zu «verallge-
meinerten» oder «Pseudo»-Inversen usw. zu einer singu-
laren Matrix. In dieser Vielfalt von Mdglichkeiten ist
reichlich Spielraum sowohl fiir die Anwendung von sin-
guldren Matrizen auf Vorgédnge in der Natur, Technik,
Wirtschaft, Statistik usw. als auch fiir die Phantasie.

12. Wieder zur Gruppe der reguldren Matrizen n-ter
Ordnung zuriickkehrend, sei an die Formulierung in
Abschnitt 1 erinnert, es gdbe endliche und unendliche
Gruppen. Letztere sind nach den gegebenen Beispielen
selbstverstdandlich. Fiir eine endliche Gruppe sei ein Bei-
spiel erwihnt, das ohne (platzkostende) Formeln be-
schrieben werden kann. Ausgehend von der dreireihigen
Einheitsmatrix (mit Determinante 1), die ohnehin zu
allen Gruppen und Untergruppen der dreireihigen Ma-
trizen gehoren muss, werden alle moglichen Matrizen
mit Determinante 1 gebildet, die je drei Einsen (41 oder
—1) und sechs Nullen aufweisen; davon gibt es 24, und
diese hdngen alle miteinander durch die Multiplikation
und Potenzierungen zusammen: sie bilden eine endliche
Gruppe, die selbst wiederum mehrere Untergruppen ent-
hilt. — Diese Gruppe ldsst sich durch Variieren der Vor-
zeichen so erweitern, dass auch die Elemente mit Deter-
minante —1 eingeschlossen sind. Fiir diese immer noch
sehr iibersichtliche Gruppe von 48 verschiedenen Ele-
menten ldsst sich eine interessante, alle mit ihr zusam-
menhidngenden Probleme und Verkniipfungsmoglichkei-
ten wiedergebende «Gruppentafel» anlegen. Geometrisch
ist diese Gruppe die Matrizendarstellung aller Transfor-
mationen einschliesslich der Spiegelungen von Wiirfel
und Oktaeder in sich selbst. — Ahnliche endliche Grup-
pen von Matrizen entstehen durch die entsprechenden
Transformationen in sich selbst des Tetraeders, oder von
Ikosaeder und Dodekaeder.

13. In Abschnitt 8 ist gezeigt worden, wie Matrizen
Vorginge linearen Charakters beschreiben oder darstel-
len. Erwidhnt wurden in diesem Aufsatz komplexe und
duale Zahlen, Quaternionen, ein paar Transformationen.
Die Darstellungstheorie, eine Disziplin der Algebra,
wurde eigens fiir die Bestimmung von Matrizendarstel-
lungen fiir lineare Zusammenhénge entwickelt. Das ist
oftmals ein recht schwieriges Unternehmen.

14. In Abschnitt 8 ist von den n2 Dimensionen einer
Matrix gegeniiber den eindimensionalen reellen Zahlen
gesprochen und angedeutet worden, diese Zahl n2 kdnne
unterschritten werden. Das wird sie in jedem Falle, wenn
ein linearer Vorgang durch eine Matrix dargestellt wird,
etwa bei der Multiplikation komplexer Zahlen a, + ia,

(i = — 1), die durch die Matrix( 2y az)
'_32 al

dargestellt werden: In der zweiten Zeile treten die Zah-
len a,, a, der ersten Zeile wieder auf, wenn auch in an-
derer Reihenfolge und mit anderen festen Koeffizienten
(Parametern, hier im Beispiel bloss Vorzeichenwechsel
von a,). Entscheidend, auch fiir den Gruppencharakter,
ist der Umstand, dass nach Ausfiihren jeder Operation
in allen Matrizen, die zur Gruppe zidhlen, das erste
Element der zweiten Zeile gleich dem Negativen des
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zweiten Elements der ersten Zeile sowie das zweite Ele-
ment der zweiten Zeile identisch mit dem ersten Element
der ersten Zeile ist. Im Rahmen der linearen Algebra
ldsst sich dieses Prinzip verallgemeinern: Beliebig viele
(m < n?) Elemente lassen sich als allgemeine lineare
Ausdriicke der n2 —m festen Elemente ansetzen; zwei
Matrizen A und B mit je dem gleichen Ansatz werden
miteinander multipliziert, und dann werden die Bedin-
gungen dafiir aufgestellt, dass die Produktmatrix wie-
derum denselben Ansdtzen geniigt. Dadurch werden
Matrizen mit im allgemeinen ein paar Parametern aus-
gesiebt, die in bezug auf ihre Multiplikation (und Inver-
sion) eine Gruppe bilden. Die bei drei- und mehrreihi-
gen Matrizen sehr aufwendigen Schreib- und Rechen-
arbeiten lassen sich durch ein geschicktes Schema erheb-
lich vermindern. Der Weg fiihrt konsequent zur Erfas-
sung aller moglichen Gruppen, die in den Matrizen
naturgegeben stecken; er ist sehr erfolgreich beschritten
worden und hat schon zu iiberraschenden, ungeahnten
Anwendungsbereichen offenen Ergebnissen gefiihrt. Auf
diese Weise lassen sich noch viele in den Matrizen
ruhende Maoglichkeiten aufdecken, allein aus ihrer Defi-
nition und dem Gruppencharakter heraus.

15. In Abschnitt 2 ist angedeutet worden, die Elemente
von Matrizen konnten statt reeller Zahlen selbst wie-
derum Matrizen m-ter Ordnung sein. Nachweisen ldsst
sich dies durch einfaches Rechnen. Nun ergibt sich bei
der Multiplikation zweier Matrizen n-ter Ordnung mit-
einander, deren Elemente Matrizen m-ter Ordnung sind,
ein Ergebnis, das auch eingetreten wére, wenn man in

den Ausgangsmatrizen von vornherein die Klammern
um deren Elemente weggelassen und mit gewdhnlichen
Matrizen mn-ter Ordnung gerechnet hitte. Umgekehrt
ldsst sich auf diese Weise zum Beispiel eine Matrix zwei-
ter Ordnung, deren Elemente komplexe Zahlen sind, so-
fort zu einer Matrix vierter Ordnung mit nur reellen
Zahlen umwandeln; diese stimmen im Prinzip mit allen
Operationen in den Ergebnissen iiberein, vorausgesetzt
die einzelnen Werte an den entsprechenden Stellen wer-
den richtig interpretiert.

16. Ein Umstand ist in diesem Aufsatz bewusst nicht ge-
streift worden, auf den wegen der praktischen Bedeu-
tung der Matrizen sehr viel Geist und Scharfsinn aufge-
wendet wurde: das ist die numerische Behandlung von
Matrizen, die Ausarbeitung zweckmadssiger Verfahren
fiir die Inversion, fiir die Eigenwertbestimmung, die Be-
handlung von schlecht konditionierten Matrizen, die
Aufstellung von Vergleichskriterien fiir Matrizen usw.
Hier sollte nur ein Uberblick iiber das allen Matrizen
Gemeinsame, iiber die Zusammenhénge und den Hinter-
grund der Operationen und iiber weitere Erkenntnisse,
die aus Matrizen noch gewonnen werden konnen, ge-
geben werden.
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Reflexive Prediction

A. Bjerhammar, Stockholm

Abstract: A new prediction problem is defined. For a
weakly stationary stochastic process a set of observations
is given. It is required to find a set of unknowns (obser-
vations) which have the given observations as optimal
predictions for a prescribed covariance function. The
solution of this problem is very general and includes the
Wiener-Hopf approach as a limiting case. An application
to the gravimetric boundary value problem in physical
geodesy is given. In our study we start with a condensed
presentation of the Wiener-Hopf approach for discrete
cases. Dramatic computational gains in reflexive pre-
diction and filtering are demonstrated.

We consider a stochastic process x(¢) with the expectation
E{x(#)}=0

(¢ time parameter) (1)

The covariance function Q(7) is for a weakly stationary
process

Q) =E{x(t) x(t+7)}. @
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In most applications the following estimator is used

T-+

x(O)x(t+7)de 3)

A

Q(T):TT_T)"

T+
This estimator is unbiased with

T-z
J E{x()x(t+7)}dt=0(7) 4)

T+

If this estimator converges to the true value when 7—oc
then the process is ergodic. For a non-ergodic stochastic
process we have no simple means of determining the
covariance function. Our following study is mainly
devoted to problems when the correct covariance func-
tion is not a priori given. Instead we want to find ‘obser-
vations’ which have a given covariance function.

Most technical studies of the theory of weakly stationary
processes result in non ergodic applications. This is a
highly unsatisfactory situation and we find it natural to
look for a solution, where we make our predictions with
the use of auxilliary ‘unknown observations’ which are
determined in such a way that they for a prescribed
covariance function give optimal predictions, that are
identical with the given observations.

Problem: From a weakly stationary stochastic process
we take a set of n observations (outcomes). It is required
to find m unknown observations in the outcome space

& 1
E{Q(r)}=m
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