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Stehachsrichtung, auch unmittelbar nach abgeschlossener

Horizontierung.
Die anfänglich herrschenden Bedenken wegen der
Feinfühligkeit der Horizontierung erwiesen sich als

unbegründet, sie ist im Gegenteil besser als beim normalen
DKM2-A. Die Anordnung der beiden Fussschrauben in
einem rechten Winkel zueinander macht das Horizontieren

bequemer. Dadurch kommt eine Fussschraube zwar
neben die Auflagen am Stativkopf zu liegen, für das

Auge und das Gefühl ein Nachteil, der jedoch durch die
messtechnischen Vorteile mehr als aufgewogen wird.
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Vereinfachte Theorie der Deformation
eines Reflektors bei ungleichmässiger
Temperatur
A. Dalcher, Aarau

Bei der elektro-optischen Distanzmessung werden «Tri-
pelprismen»-Reflektoren verwendet. Diese reagieren auf
Temperaturänderungen.

Die Berechnung erfolgt in zwei Schritten. Zuerst wird
der Verlauf der Temperatur ermittelt, dann befassen wir
uns mit den daraus resultierenden Spannungen und
Deformationen.

Zur Vereinfachung der Rechnung reduzieren wir das

räumliche Problem auf ein ebenes. Wir berechnen den

Temperaturausgleich in einem rechtwinkligen,
gleichschenkligen Dreieck und geben einen Ansatz für die
Deformationen.

1. Die Berechnung des Temperaturausgleiches

Bezeichnungen:
L Länge einer Kathete

Wärmeleitfähigkeit
spezifische Wärme
Dichte
Wärmeübergangszahl für den Rand des Dreiecks
Zeit
Temperatur
nach aussen gerichtete Normale in einem Randpunkt

des Dreiecks

3T
3N IT (1.3)

In einigen einfachen Fällen lässt sich der Temperaturverlauf

exakt angeben. Wenn die Wärmeübergangszahl l
unendlich ist, wird nach (1.3) auf dem Rand T 0.

Abbildung 1

gen bei 1 c

Die Fortsetzung der Temperatur durch Spiegelun-

Man kann durch Spiegeln den Temperaturverlauf auf
die ganze Ebene fortsetzen, wie dies in Abbildung 1

dargestellt ist. Die Temperatur hat in x und in y die Periode
2 L, kann also durch eine Fourierreihe dargestellt werden.

Wegen T(-x, y) -T(x, y) und T (x, -y)
— T (x, y) kommen nur sin-Glieder vor. Die Koeffizienten

bezeichnen wir mit anm. Es ist

Im Innern des Dreiecks gilt die Wärmeleitungsgleichung T (x, y, t) 2 anm (t) sin n ji x/L sin m n y/L.

32J 32T

3x2
QS-

3T
3y2

Am Anfang (zur Zeit t
massig 1

T (x, y, t 0) 1.

3t
(1.1)

0) sei die Temperatur gleich-

(1.2)

Aus T(y, x) T(x, y) folgt amn anm und aus
T (L—x, L—y) — T (x, y) schliessen wir anm 0, falls
n + m eine gerade Zahl ist.
Jedes Glied der Fourierreihe muss die Differentialgleichung

(1.1) erfüllen. Dies führt auf

Dann werde die Umgebungstemperatur plötzlich auf 0

gebracht. Der Wärmeübergang am Rand genügt nun der
Gleichung

-aanm(t)(n2 + m2)7rVL2 Q S '

danm(t)

dt
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Diese Gleichung wird befriedigt durch den Ansatz

(t) Anme-<•"?'»') Qt)

mit Q
te2 a

n s L-
(1.4)

Die Konstanten Anm erhält man aus der Temperaturverteilung

zur Zeit t 0. Es ist

2L 2L

Anm tj I T (x> y> °) sin n n\fL sin m 57 y/L dx dy.

O 0

Man kann das Integrationsgebiet auf ein Dreieck
reduzieren. Mit (1.2) wird

L L-

A
um f2U Js,nnin x/L sin m n y/L dy dx.

Die Integration ergibt für m gerade und n ungerade

16 m
Amn

7r2n(m2-n2)

Die ersten Glieder der Entwicklung von T sind

32
3 .-

__ e - s q t (sin n x/l sin 2 n y/L
4- sin 2 n x/L sin 5t y/L)

32
e -13 Q * (sin 2 51 x/L sin 3 51 y/L1551'

+ sin 3 n x/L sin 2 51 y/L)..
Praktisch am wichtigsten ist der erste Term, da er den

grössten Koeffizienten hat und am langsamsten abklingt.
Eine andere Randbedingung, die sich ähnlich lösen lässt,
ist

l - 0 uf den Katheten (isoliert),
X co auf der Hypothenuse.

Wir wählen nun die x-Achse nicht mehr längs einer
Kathete, sondern in der Halbierenden des rechten Winkels,
und die y-Achse parallel zur Hypothenuse. Mit H
bezeichnen wir die Länge der Hypothenuse. Die Rechnung

ist einfacher als im ersten Beispiel, da sich T als
Produkt einer Funktion von x und einer von y schreiben
lässt. Für das erste Glied erhält man

1 fa

T — e - Ql cos n x/H cos n y/H. (1.5)

Bei beliebig vorgegebenem 1 lässt sich die Spiegelungsmethode

nicht verwenden. Man braucht numerische
Verfahren, auf die ich hier nicht eingehen will.

2. Die Deformation des Dreiecks

Wir führen die folgenden Bezeichnungen ein:

ox, 0y Zugspannungen
t Schubspannung
E, G Elastizitäts- und Schubmodul
v Poissonsche Zahl

u, v Verschiebungen eines Punktes in x- und
y-Richtung

A Ausdehnungskoeffizient

Zwischen E, G und v besteht die Beziehung

E
2 (1 + v)

(vergleiche zum Beispiel Meissner und Ziegler,
Mechanik I, § 18).
Zwischen den Dehnungen und den Spannungen bestehen
die Beziehungen

3u

3x
Ä T + — (ô, - V Oy)

^ AT + — (oy-voj.

Die Schiebung beträgt

3u 3v t 2 (1 + v)

3y 3x G E

(2.1)

(2.2)

T

T,

"r

¦

A
T

V T
1

CZ

cr

Abbildung 2 Infinitesimales Quadrat und infinitesimales Dreieck

am Rand mit angreifenden Spannungen.

Die Gleichgewichtsbedingung für ein elementares

Quadrat lautet gemäss Abbildung 2

dox

TTT

3y

3y

3r

"3F

(2.3)

Da keine äussern Kräfte einwirken, hat man die
folgenden Randbedingungen:

auf der Hypothenuse

ox 0, T 0,

auf den Katheten (vergleiche Figur 2)

Oa Ov

t — ox auf x y,
x ox auf x — y.

Wir betrachten nun das Beispiel

T cos x cos y.

(2.4)

(2.5)

(2.6)
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Das Dreieck wird begrenzt durch

0 < x < nil, \
i y I < x.

Wir bilden den Ansatz

ox r cos x cos y

r ist eine noch zu bestimmende Konstante. Aus
(2.3) erhalten wir

t - r sin x sin y

(jy r cos x cos y

(2.1) wird mit T 0

(2.7) ™ _L

(2.1) gibt

3u
— A + -g- (1 - v) \ cos x cos y,

3v=j
3y

(1 — v) )cos x cos y,

A + _(l v) ] sin x cos y,

(1 — v) cos x sin y.

Nun müssen wir noch (2.2) verifizieren. Es ist

3U 3v r
~37~3ÏÏ (A + ¥(1_r))2smX Smy

2 (1 + v) 2 (1 + v)

E T=" Ë-
Es muss gelten

-r(l + v) AE + r(l - v),

r -AE/2.
Somit wird

ox — A E/2 cos x cos y,

öy — A E/2 cos x cos y,
x A E/2 sin x sin y,
u A (1 + v)/2 sin x cos y,
v A (1 + v)/2 cos x sin y.

r sin x sin y

(2.8)

Mit dieser Lösung sind aber nicht alle Randbedingungen
erfüllt. Wir suchen deshalb noch Funktionen, welche die

homogene Differentialgleichung (2.1) mit T 0, (2.2)
und (2.3) erfüllen.
Wir führen zwei komplexe Konstanten f und g ein. Mit
diesen bilden wir den Ansatz

T Ê «f x + g y

(2.3) gibt

Ox gr/f
°y fr/g

3u t,g f \ r / g V

g

3y Elvg f/' E^g2
~ T

Die linke Seite von (2.2) ist

3u 3v x i g2 f2

~3y^3l=^Ë"(l2"^,' + ^2"-)
Dies soll gleich 2 (1 + v) r/E sein. Das führt auf die
Beziehungen

(2.9)

g2 f2

f2 g2
Z>

(P + g2)2 0,

g ± i f.

So erhält man für beliebiges f die Lösung

x ef x + '! y,

ax i t,
Oy — ir,
u =-L^-(l + r),

v / *(! +

(2.10)

Nun ist aber g ± i f für jedes Vorzeichen eine
Doppelwurzel von (2.9). Man bildet deshalb für t den weitern
Ansatz x x ef x + 'f y. Durch Ableiten und Integrieren
erhält man aus den Differentialgleichungen

ify.x x et!

ox i(x - l/f)efx + ify,
Oy -i(x + l/f)efx + ify,

i
f2

l /l

(1 +.»)y ef- - 'fy,

^ + (1 + 4' ify.

(2.11)

Die zwei weitern Lösungen ergeben sich, wenn man in
(2.10) und (2.11) i durch —i ersetzt.
Diese homogenen Lösungen müssen nun, mit geeignet
gewählten komplexen f, so kombiniert werden, dass sie

zusammen mit der inhomogenen Lösung (2.8) die
Randbedingungen (2.5) erfüllen.
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