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Transformationen mit ebenen
konformen Koordinaten
K. Schnädelbach, München

1. Vorbemerkung

Für Transformationsrechnungen zwischen ebenen
konformen Koordinaten (x, y) und geographischen Koordinaten

(B, 1) auf dem Ellipsoid, wobei y und 1 auf einen
Hauptmeridian bezogen sind, werden in der Regel
Reihenentwicklungen der analytischen Funktion
x + iy F (q(B) + il)
benutzt. Für die konforme Abbildung der Kugel auf die
Ebene lassen sich dagegen geschlossene Ausdrücke
angeben, die, sonst vergleichbar mit den Formeln der
sphärischen Trigonometrie, die Ordinate y stets in
Verbindung mit hyperbolischen Funktionen enthalten.
Krüger formte die Reihenentwicklungen für die Abbildung

Ellipsoid-Ebene so um, dass zu dem geschlossenen
«sphärischen» Anteil Kugel-Ebene noch sphäroidische
Zusatzglieder treten [5]. Dabei lässt sich für einige
Beziehungen erreichen, dass die Zuschlagsglieder klein
von der Ordnung e'6 werden (e' 2. numerische
Exzentrizität), wenn, was in unserem Falle zutrifft, für
diese Abschätzung

als klein von der Ordnung e'2 vorausgesetzt werden.
Der Gebrauch dieser Formeln wurde allerdings erst
durch das Erscheinen elektronischer Tischrechner
ermöglicht und nützlich. Hirvonen veröffentlichte
Algorithmen und Programme für die oben genannten
Koordinatenübergänge unter anderem in [3] und beurteilte
deren Genauigkeit für Ordinaten kleiner 200 km als
ausreichend für alle praktischen Bedürfnisse.
Ziel dieser Untersuchung soll es daher sein, die
Eignung dieses Formelapparats für die Rechnung in 3°-
beziehungsweise 6°-Meridianstreifen eingehender numerisch

zu untersuchen. Dabei werden einzelne Beziehungen

bezüglich der Grösse der Korrekturglieder in eine
noch günstigere Form gebracht werden. Schliesslich
wird auch ein Verfahren für die Umformung zwischen
benachbarten Meridianstreifen angesprochen, zu dem
sich bei Hirvonen in [2] ebenfalls erste Hinweise finden.

2. Beziehungen zwischen geographischer Breite B
und Fusspunktbreite Bf

Wir gehen aus von der Transformationsformel (zum
Beispiel [5])

B Bf - y P t, V,

beziehungsweise \ —
c +3tf2[1-3Tif2])f],

1 - -^ «Vr2 [5-4Tif2] +

(1)
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Abbildung 1: Korrekturglied JB der Formeln (2) beziehungsweise (3) für Linien konstanten Längenunterschiedes 1
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in der bedeuten:

V2 1+e'2 cos2 B 1+H*
t tg B,

y — mit c Polkrümmungshalbmesser.

Der Index f deute darauf hin, dass der indizierte Wert
an der Stelle Bf zu rechnen ist. Aus (1) leitet Krüger [5]
ab

*"-ssìM'--Mì«-&)ov,t]cosh (yV,2)

+ Gl (2)

(siehe Abb. lb), wobei im 3°-Streifen für B > 50° mit
dem «sphärischen» Anteil eine Transformationsgenauigkeit

von < 1 mm erreicht wird. Bei der Auswertung
von (3) wird allerdings ein iteratives Vorgehen notwendig,

da für die Bildung von V ein Näherungswert der
Breite B benötigt wird. Dabei kann im ersten Schritt
genügend V 1 gesetzt werden.
Aus der Umkehrung von (1)

^(l)2tcos2B[l4±_^(J_ I

2 V V
p

+
12

(V2 [5+4if]- t2) (-- )2 cos2BJ + Gl|t

Die Grösse des Korrekturgliedes in Abhängigkeit von
B und 1 lässt sich der Abbildung la entnehmen. Es
erreicht für 1 < 2° (3°-Streifen) Maximalwerte von
6 mm, für 1 <! 3,5° (6°-Streifen) Maximalwerte von
53 mm.

worin GB der Meridianbogen bis zur Breite B ist, wird
von Krüger zur Berechnung der Fusspunktbreite abgeleitet

tgBf
tgB

cos (VI)
1 +

Eine noch bessere Annäherung des «sphärischen» Terms
in (2) an (1) wird erreicht, wenn V in der Funktion
cosh (yVf2) an der Mittelbreite Vs (B + Bf) berechnet
wird. Dieser Wert werde mit V bezeichnet. Aus (2) folgt
dann nach einigen Zwischenrechnungen

sin B
sin Bf

y -^e'2V2 (V2-2 t2) (—)4 cos4b] + Glc. (4)

cosh (yV2)
nr2 (yVf2) ' + Gle.

Darin sind die nicht indizierten Werte t und V für die
Breite B zu berechnen. Die Grösse des Korrekturgliedes
lässt sich der Abbildung 2a entnehmen. Es erreicht

(3) maximale Beträge von 3 mm bei 3°-Streifen und 19 mm
bei 6°-Streifen.

Damit fällt gegenüber (2) im Korrekturglied der Term Durch die Einführung von V in cos(Vl) im Nenner vor
mit t2 weg, und die Maximalwerte verringern sich auf der Klammer kann auch hier, besonders für Breiten
3 mm für 3°-Streifen und 26 mm für 6°-Streifen zwischen 45° bis 70°, die Grösse des Korrekturgliedes

Ab Abcm)

60 B° 80

30
1 5 i 5°

-2

B° 90

a) b)

Abbildung 2: Korrekturglied AB der Formeln (4) beziehungsweise (5) für Linien konstanten Längenunterschiedes 1
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wirksam verkleinert werden (s. Abb. 2b). Aus (4) folgt und daraus schliesslich, wenn
dabei nach einigen Umformungen

tgB,= tgB [¦

sinh y y + -y'+ -—-y5J J 6 120J

cos (VI)

4 -eT(2V'-t') (—Vcos'B + GL
1? v n ' -Ie

beachtet wird,

(5)
V,

tg cos Bf
inh y h - -?V- S H+G,e~ (9)

Es zeigt sich, dass, bei sonst etwa gleichen Maximalwerten

wie (4), für B > 47° das Korrekturglied für
3°-Streifen < 1 mm, für 6°-Streifen < 5 mm wird.
Da cos(lV)^l, können die Formeln (4) und (5) auch
einer gleichgenauen Berechnung von B aus Bf zugrunde
gelegt werden. Aus (4) beziehungsweise (5) ergibt sich
dazu

tgB

bzw.

tg Bf cos(Vl) [y ~ e'2V2 (V2-2t2)(—)"cos'Bj(6)

Diese Formel, jedoch ohne das zweite Korrekturglied,
findet sich auch bei Hirvonen [3]. Im Gegensatz zu
Krüger [5] sind hier bereits die ersten Korrekturglieder
klein von der Ordnung e6. Ihre Grösse ist aus Abbildung

3 zu ersehen. Im Äquator werden maximale Werte
erreicht, 3 mm bei 3°-Streifen, 15 mm bei 6°-Streifen.
Ohne das Korrekturglied ist die Transformationsgenauigkeit

für 1 < 2° und B > 40° besser als 1 mm, für
I < 3,5° und B > 33° besser als 1 cm.

Al [cm]

tg B tg B, cos(Vl) fl- ^ e'2V2 (2V2-t2)(l)*cos<B].(7)
12

Die Auswertung von (5) bis (7) erfordert einen iterativen

Rechengang, da in (5) zur Berechnung von V die
Breite Bt und in (6) beziehungsweise (7) zur Berechnung

von V beziehungsweise V die Breite B bekannt
sein muss. Dabei kann jedoch, wie oben, im ersten
Rechenschritt genügend V V 1 gesetzt werden.

3. Beziehungen zwischen geographischer Länge I
und der Ordinate y

Zur Berechnung des geographischen Längenunterschieds

1 zum Hauptmeridian bei gegebener Ordinate y
gilt bekanntlich [4], [5]

B°

1.5° 60

Abbildung 3: Korrekturglied AI der Formel (9) für Linien
konstanten Längenunterschiedes 1

Für die Umkehrung y f (1) lassen sich ebenso
günstige Formeln nicht finden. Zweckmässig wird daher
von (9) ausgegangen und durch Umkehrung erhalten

- \— ^fl l(Vf2+2tf2) l^
p cos B, c i 6 v c

(fv,)
sinh y — tg I cos B, 1 + ^- y2H

Vt L o - y4 +Gie.
10 J (10)

+ -^r (5+28 tf2+24 tr2) (-^Vf)4 ± ...]

Aus (8) findet Krüger zunächst

(8)

V) (fvr)'tgl cosBf= -£-Vf + — (1 T|f^) ^V

+ T^r7 (1^4ik2-12ilf2tf2) (-^VfW...
120 v c '

Bei der Auswertung von (10) muss vorweg aus (4)
beziehungsweise (5) die Breite Bf des Fusspunktes
berechnet worden sein. Nachdem y qj 1 cos Bf und Vf ss 1,

ist die Genauigkeit der Formel (10) derjenigen von (9)
adäquat.

4. Meridiankonvergenz

Zur Berechnung der ebenen Meridiankonvergenz c
gilt [5]

Wird auf der rechten Seite Vf ausgeklammert und
zugleich auf y übergegangen, so folgt

-tg lcosBf y+ -<1 Tir") y3 +

1

120
(l-12Tif2- 12T!f2tf2)y

tg c tf [ ^Vr + i(-l+V+2Tif4) (-^)3V +

+ ß(2+2Ti,2 + 6 t,2 ^) (X-)wf5] + Glc..

Wird hierin - wie im Abschnitt 3 - Vf ausgeklammert
und auf y übergegangen, so folgt
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tg c Vftf2[y- y (1-3V-2Ti,b)y' +

+ ^ (2+6T1,2 4 6ti, t,2) y5] + GL

und, analog dem Vorgehen von Krüger, nach dem
Herausziehen von

1

-, 2
tanh y y - yy 4 — y>

Von Vincenty [6] wurde die Umformung dieser Reihen
in Abhängigkeit von cosnB beziehungsweise cos"B'
vorgeschlagen mit dem Ziel einer rationelleren Berechnung
nach dem Hornerschema. Aus (12) und (14) folgt dabei

- hier mit einer anderen Zusammenfassung der
Koeffizienten - nach einigen Rechnungen

G -^— 1 4 — n2 )2 — sin B cos B n (3 4
14-n IV 8 / p I \

15 255 \ f / 15 70
+ 12 n + 4n2 4 —n1) 4 cos2B [n2 \ y + y n +

schliesslich

[1 + n

64

4 cos2B

tg c Vf tg Bf tanh y 11 + V y2 + -e'2 y4 + Gle.. (11)

yyn2)4cos2B[-n'(
70 945

-y t -)?

Damit ist das Korrekturglied ebenfalls nur von der
Ordnung e6. Es ist für 1 < 2° kleiner als 0,0001", für 1 ^
3,5° kleiner als 0,0007" und dürfte daher nur sehr selten

zu berücksichtigen sein.

5. Meridianbogen

Bei allen Übergängen-zwischen ebenen konformen und
geographischen Koordinaten wird eine Meridianbogen-
berechnung notwendig. Nach dem Vorschlag von
Helmert [1] wird dabei, wegen der besten Konvergenz in
den Reihen für die Koeffizienten, am günstigsten von

abeiner Reihenentwicklung in Abhängigkeit von n
a 1 o

Gebrauch gemacht, worin a beziehungsweise b die grosse
beziehungsweise kleine Halbachse der Meridianellipse
bedeuten. Nach Helmert gilt dann für den Meridianbogen

G

315
4 —- n4 cos2B

4

beziehungsweise

(15)

B B' 4 psin B' cos B' K 3 — n + — n2

21 151
l y -—n +

+ cos2B

[(

4
"

5445

64 n'y n

n2)n2

151 3291

8
n n

1097
' + —— n4 cos2B

4
(16)

+ !-fn2(l- -n2)sin4B -n1 sin 6b|
1 fi \ 4 / 48 J

2B +

(12)

16

während sich für die Umkehrung mit

Pd + n)

ad + yn2)2

B

ergibt

R R ' 1 9 n2

- —+ ~n(\ - -n2)sin2B'4 -^(21
p p 2 16 16

(13)

Insgesamt gesehen, konvergieren jedoch die Reihen (15)
und (16) schlechter. Bei gleicher Anzahl der Reihenglieder,

das heisst in (15) und (16) ohne cos7B

beziehungsweise cos7B', können für Breiten um 20° Fehler
bis 1 mm beziehungsweise 3 mm auftreten. Für Breiten
B > 50° sind allerdings die Systeme (12) bis (14)
beziehungsweise (15) und (16) gleich gut für eine

millimetergenaue Rechnung geeignet.

6. Umformungen zwischen geographischen und ebenen
konformen Koordinaten

Mit den angegebenen Formeln lassen sich nun folgende
Algorithmen zusammenstellen:

6.1 Geographische Koordinaten (B, 1) in ebene
konforme Koordinaten (x, y)

tgB,
tgB

55

151

96
n' sin 6B'

n2) sin 4B' 4

(14)

cos (VI)

x G (Bf)

y c arsinh y tg I cos B,

(17)

mit (12) bzw. (15)

(18)

(v,c= arctg IV, tg B, tanh

Wie leicht abzuschätzen ist, repräsentieren die Formeln
(12) und (14) auch ohne Glieder sin 8B eine
Transformationsgenauigkeit von besser als 1 mm für beliebige
Breiten. Die Glieder mit sin 8B beziehungsweise sin 8B'
erreichen maximale Werte von 0,03 mm beziehungsweise

0,1 mm.

Dieser Formelsatz gewährleistet über alle Breiten B
eine Transformationsgenauigkeit für 1 <, 2° von besser
als 3 mm; für 2° < 1 < 3,5° können Abweichungen
bis zu 2 cm auftreten. Allerdings kann durch die

Verwendung von
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tgB,
tgB

cos (VI)
(17a)

anstelle von (17) die Genauigkeit bei Breiten B > 47°
auf 1 mm für 1 £ 2° und 5 mm für 2° < 1 £ 3,5°
gesteigert werden. Bei der iterativen Auswertung von
(17a) wird dabei zweckmässig im ersten Schritt V 1

gesetzt.

6.2 Ebene konforme Koordinaten (x, y) in
geographische Koordinaten (B, 1)

B, G ' (x) mit (13) und (14) bzw. (16)

1 arctg -^L-sinh^
cos B, c

B arctg [tg B, cos (VI)]

(19)

(20)

(v,c arctg \V, tg B, tanh —

Zur Berechnung von (20) ist ein iterativer Schritt
notwendig, da B vorweg für V nicht bekannt ist. Dies
würde auch für die einfachere Formel mit V zutreffen.
Damit lohnt sich eine differenziertere Verfahrensweise
analog der Verwendung von (17) und (17a) nicht. Nachdem

also B zunächst aus (20) mit V 1 genügend
berechnet wurde, kann im weiteren Verlauf auch V ohne

grossen Mehraufwand bestimmt werden. Für die
Transformationsgenauigkeit gilt dann analog die obige
Bemerkung bezüglich der Verwendung von (17a).

7. Transformationen
zwischen benachbarten Meridianstreifen

Nach einem von Hirvonen skizzierten Vorschlag [2]
können die eben betrachteten Formeln auch einer
Koordinatentransformation zwischen Nachbarstreifen
unterlegt werden, also einem Rechengang über die
geographischen Koordinaten. Sind (x,, y,) die ebenen
konformen Koordinaten eines Punktes P im System 1 und
(x2, y2) im Nachbarstreifen 2, so ergibt sich dazu:

B,, =G-'(x,) (21)

wobei Bt, Fusspunktbreite im Streifen 1 mit (13),
(14) beziehungsweise (16) berechnet wird,

arctg
vi,

cos B
sinh ïl

c
(22)

I, 1, 4 3° bzw. 6C

Über (20), angewandt in beiden Streifen, folgt

cos(V,l,) tgB
tg B,, tg B,

cos (V212) cos (V2I2)
(23)

worin V, an der Stelle l/2 (B + B„) und V2 an der
Stelle V2 (B + Bt2) zu berechnen sind. Genügend
genaue Werte für B und Bt2 können dazu aus (23)
gewonnen werden, indem, wie oben, in einem ersten Schritt
Vj V2 1 gesetzt wird. Weiter ist, analog (18)

y2 c arsinh
cos B,

tgl2 (24)

sowie mit einer genäherten Meridianbogenberechnung
zwischen den nahe beieinander liegenden Breiten Bn
und Bf9

M
x2=x,+ -
worin M mit

8 c

(B, -B,,) (25)

M
(V,, + V, V'

genügend an der Stelle V2 (Bf, + B,2) erhalten wird.
Zur Beurteilung der Transformationsgenauigkeit sind
besonders die Formeln (23) und (22) mit (24) zu
betrachten. Wird Bf2 anstatt über (23) mit den erweiterten

Ausdrücken (5) und (7) berechnet, so kommt

tg Bf, tg B,

12 p'

cos(V|l|) f +
cos(V2l2)

L

- V2(2 V2-t2)cos4B(l24-l,4) J

woraus folgt, dass nur die Differenz der jeweiligen
Korrekturglieder von (5) und (7) auf Bf2 x2 wirksam
wird. Dabei kann der Einfluss eines Fehlers dl, aus (22)
vernachlässigt werden.
Zur Beurteilung der Genauigkeit der Ordinate y2 ist
zunächst von diesem Fehler dl, auszugehen, für den sich
über (9) und (22) errechnet

dl, dl,
1

¦ / ^i
y sin (21,) y,^ —

10
yy')

Weiter folgt, wenn wieder (10) statt (24) betrachtet und
zugleich der Einfluss von dl2 berücksichtigt wird,
genügend

*-(^+-S- *•)*-< Hi i-4-
10 ¦h

Da nun y, und y, in den praktischen Umformungsfällen
ungleiches Vorzeichen haben, addieren sich die jeweili-
ligen Korrekturglieder.
Auf Grund der obigen Abschätzungen für die Grösse
der Korrektionsglieder wird damit die folgende
Genauigkeitsaussage für die Transformationen mit dem

Algorithmus (21) bis (25) im doppelten Koordinatenbereich

möglich (1° £ 1 ^ 2° bei 3°-Streifen, 2,5° ^ 1

£ 3,5° bei 6°-Streifen):
3°-Streifen: ± 1 mm für Breiten B > 45°
6°-Streifen: ± 5 mm für Breiten B > 48°.
Der Maximalfehler — bei Breiten B um 20° — wird
jedoch immer kleiner i 2 cm bleiben.
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Das Geoid in der Schweiz

A. Elmiger, Zürich

1. Einleitung

Die Bestimmung des Geoides - der Niveaufläche des

Erdschwerefeldes in der mittleren Höhe der
Weltmeere - gilt seit jeher als eine der Hauptaufgaben der
Geodäsie. Auch im Zeitalter der Satellitengeodäsie und
der dreidimensionalen Berechnungsmethoden hat sie ihre
Bedeutung nicht verloren. Dies hängt damit zusammen

- das geophysikalische Interesse am Geoid an
sich sei hier nicht diskutiert -, dass aus praktischen
Gründen das Geoid immer Bezugsfläche für die Meereshöhen

bleiben wird, während für Lageberechnungen
grössern Ausmasses nach wie vor mit Vorteil ein günstig

gelagertes Referenzellipsoid verwendet wird.
Zur Reduktion der Messungen von der Erdoberfläche
auf das Ellipsoid braucht man Höhen über dem Ellipsoid,

die sich zusammensetzen aus Meereshöhen (über
dem Geoid) und Höhen des Geoides über dem Ellipsoid.

Dies zeigt sich besonders bei der Reduktion von
Distanzen: Während die Höhenlage der gemessenen
Distanz über dem Ellipsoid zwar nicht kritisch ist (ein
Höhenfehler von 6 m bewirkt einen Fehler an der
reduzierten Distanz von 10-°), können für die Reduktion

stark geneigter Distanzen, wie sie in der praktischen
Vermessung oft auftreten, ellipsoidische Höhendifferenzen

und damit Geoidhöhendifferenzen mit cm-Ge-
nauigkeit — für Mekometermessungen gar mit mm-Ge-
nauigkeit - nötig sein.
Auch beim Übergang von einem geodätischen Bezugssystem

in ein anderes lokales oder geozentrisches
System ist die Kenntnis der Höhen des Geoides über dem

Ellipsoid unumgänglich.

2. Kurzer Rückblick

Bevor auf neuere Arbeiten zur Geoidbestimmung in
der Schweiz eingetreten wird, sei kurz an zwei früher
ausgeführte, wesentliche Arbeiten in der Schweiz
erinnert:

a) Bestimmung von Geoidprofilen durch
astronomisches Nivellement

Vor 60 Jahren wurde mit der Bestimmung des Geoides
in Nord-Süd- und Ost-West-Profilen begonnen: Meridian

des St. Gotthard und Parallel von Zürich, die sich
im Punkt Schwerzenbach, 10 km östlich von Zürich,

schneiden. Um das Gotthardprofil im Tessin bis an
den Südzipfel der Schweiz führen zu können, musste
noch ein kleines Parallelprofil bei Locarno und ein

Meridianprofil durch Lugano gemessen werden.
Gesamthaft wurde auf 102 Punkten je eine
Lotabweichungskomponente durch astronomische Längen- oder
Breitenbeobachtungen bestimmt, und eine grössere Zahl
von Lotabweichungen interpoliert, so dass sich schliesslich

ein durchschnittlicher Punktabstand von 3 bis 5

km ergab. Der Einfluss der Lotkrümmungen wurde
aus Schweremessungen berechnet. Die Genauigkeit der
so bestimmten Geoidhöhen beträgt etwa ± 2 bis 3 cm
relativ zum Ausgangspunkt Schwerzenbach. Siehe [1]
und Bände 19, 20, 22, 24 der Astronomisch-geodätischen

Arbeiten in der Schweiz.

b) Flächenhafte Geoidbestimmung aus Höhenwinkel-
netzen im Berner Oberland

In den Jahren 1953-1967 wurde auf Vorschlag von
Prof. Kobold im Berner Oberland ein grösserer Versuch
zur flächenhaften Geoidbestimmung und
Lotabweichungsinterpolation aus Höhenwinkelmessungen mit
astronomischen Stützpunkten durchgeführt. Es zeigte
sich, dass die Methode wegen Refraktionsunsicherheiten

nur im Hochgebirge zu befriedigenden Resultaten
führt. Es ergaben sich Geoidhöhen mit mittleren Fehlern

von max. ± 10 cm und interpolierte Lotabweichungen

mit einer Genauigkeit von etwa ± 2" ± 6CC.

Näheres siehe Wunderlin [3].

3. Methoden der Geoidbestimmung

Im folgenden sollen zwei Methoden skizziert werden,
die vom Verfasser am Institut für Geodäsie und
Photogrammetrie der ETH-Z zur flächenhaften Bestimmung
des Geoides in der Schweiz benutzt worden sind.

a) Approximation mit Polynomen
Diese Methode hat schon Helmert vorgeschlagen. Eine
praktische Realisierung des Vorschlages in grösserm
Ausmass war vernünftigerweise aber erst möglich,. seit

Computer für die Durchführung der Berechnungen zur
Verfügung stehen.
Die Höhen des Geoides über dem Referenzellipsoid
werden hier durch zweidimensionale Polynome der
Form

n u
N 2 2 cik x' yk, wobei i + k <[ n

i o k=vo

approximiert. Man erhält dann Lotabweichungen
(Komponenten der Flächennormalen) für diese Ersatz-
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