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letzteres ist definitionsgemaiss das gleiche fiir Geoid und
Ellipsoid.
Standardatmosphare. Fiir die Beriicksichtigung atmo-
sphdrischer Einfliisse, auf elektronische Distanzmessun-
gen ebenso wie auf Schweremessungen, braucht man
eine geeignete Standardatmosphire. Hier gibt es vor
allem zwei:
1. CIRA (COSPAR International Reference Atmos-
phere), zuletzt 1972 veroffentlicht;
2. U.S. Standard Atmosphere 1962, mit Ergidnzungen
1966.
Keine dieser Standardatmosphiren ist unmittelbar fiir
geoddtische Anwendungen bestimmt. CIRA ist primir
fiir Zwecke der Weltraumforschung gedacht, daher wird
das Hauptgewicht auf grossere Hohen gelegt. Die US-
Standardatmosphére dient vor allem der Luftfahrt. Sie
gibt deswegen auch mehr Details in geringen Hohen.
Die World Meteorological Organization (WMO) hat die
U.S. Standard Atmosphere zum Gebrauch angenom-
men. Die Erstellung einer Standardatmosphire fiir geo-
ditische Zwecke erscheint wiinschenswert; mittlerweile
konnte die U. S. Standard Atmosphere mit dem gebote-
nen Verstdndnis verwendet werden.
Weitere Einzelheiten und Literaturhinweise konnen dem
Bericht der IAG-Studiengruppe 5.39, «Fundamental
Geodetic Constants», der der Generalversammlung in

Grenoble vorgelegt werden wird, entnommen werden.
Das Problem der geoditischen Konstanten gibt einen
aufschlussreichen Einblick in die heutige Geodasie. Die
Lichtgeschwindigkeit c¢ liefert iiber die elektronische
Entfernungsmessung den Massstab fiir die geoditische
Léngenbestimmung. Die Satellitengeodésie hat unsere
Kenntnis der Erdparameter entscheidend bereichert:
klassische Parameter wie die grosse Halbachse ‘a sind
nun wesentlich genauer bekannt, und neue physikalisch
definierte Parameter wie GM und J, sind als geoddtische
Fundamentalgrossen eingefiihrt worden, denen gegen-
iiber etwa die geometrische Erdabplattung f als abge-
leitete Grosse gilt. So sieht man, dass Geometrie und
Physik sich heute in der Geoddsie untrennbar mitein-
ander verbinden.

Die relative Genauigkeit, mit der die Gestalt der Erde
und ihre physikalischen Parameter bekannt sind, liegt
heute etwa bei 10-6. In den kommenden Jahren wird,
insbesondere durch die Genauigkeitssteigerung der La-
sermessung zu Satelliten, eine um eine oder gar zwei
Grossenordnungen hohere Genauigkeit erhofft.

Adresse des Verfassers:

o. Prof. Dipl. Ing. Dr. techn. Helmut Moritz,

Institut fiir Erdmessung und Physikalische Geodisie,
Technische Hochschule Graz, Steyrergrasse 17, A-8010 Graz

Die geoditischen Linien und die Mechanik

Max Schiirer

Die Differentialgleichungen der geoditischen Linien auf
einer Fliche lassen sich in kanonischer Form schrei-
ben (1). Speziell gilt fiir das Rotationsellipsoid mit den
Koordinaten b und 1 (reduzierte Breite und Linge):

db B oH dp oH
ds op ds T E)_
dl oH dq oH
ds N 9q ds T —ST
db di
B ds 1=6 ds

Die unabhingig Verdnderliche s ist die Bogenlinge,
E und G sind die Koeffizienten der metrischen Funda-
mentalform:

ds? = E - db? + G- dI2 = a2 (1 — e%cosb) db?
+ a%cosb -dI2
und

Die Gleichungen zeigen eine gewisse Analogie zur Me-
chanik (Bewegungsgleichungen eines Massenpunktes
auf einer Fliche mit dem Potential null und der Bogen-
linge s als unabhingiger Variabler anstelle der Zeit t),
und es liegt nahe, die Analogie weiter zu verfolgen.
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Eine Losungsmethode fiir die Gleichungen in der Me-
chanik besteht in der Aufstellung der Hamilton-Jaco-
bischen Differentialgleichung:

1 1 /W 1 AW \?2 W
7{E<ab>+6 <a1> }+ s 0
Sie ist in unserem Falle durch Separation der Variablen
losbar und fiihrt, wie zu erwarten war, auf elliptische

Funktionen. Zerlegt man jedoch H in zwei Anteile H,
und R, wo

1
2a? (p2 T

so kann die Gleichung mit H, ohne Schwierigkeiten ge-
16st und R als Storungsfunktion betrachtet werden. Die
Analogie zum Storungsproblem der Himmelsmechanik
wird dadurch ersichtlich.

Die Hamilton-Jacobische Gleichung fiir das «unge-
storte» Problem lautet nun:

1 / OW \2 1 8W21 oW
2a2{ﬁab>+ coszb <81> ]+ as =0

Setzt man W = B (b) + L (1) + S(s), so folgt:

2 e? p2 cos?b

2az (1 — e2costb)’

H, = )und R =

coszb

W _ dS _ a? §— _ a?
as ds 2a? n 2a2 s
AW dL

o Ta L=4

<aw>_/dB>_2 5
3b (db gl
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b /72
B = f a2 — ———db
- coszb

Der Integrand muss reell sein. Man setzt deshalb
/= a-cosi, wo i der Maximalwert von b ist. Die zu
« und f kanonisch konjugierten Konstanten ¢ und 7

erhdlt man aus:

oW a b adb
£=— =—s - f
Qa a2 52
0 iy J M
coszb
a b cos b db

= _—§ —

a2 Of V/cos2b — cos?i

Das letzte Integral 16st man durch Einfiihrung einer
neuen Variablen u anstelle von b mittels: sinb = sini - sinu
Damit wird

a
f=—'s—u
a2

s N a
Setzt man fiir u = 0: s = ¢, so ist auch u = g-(s — 0)

4 db

b
oW
n=————=—-1+
/ 7

coszb -
coszb

aZ —

Hier fiihrt die Einfiihrung von w durch: tgb = tgi - sinw
auf

n=w—1

Setzt man fiirw = 0: 1 = Q,soisty = —Q

Die anschauliche Bedeutung der neu eingefiihrten Gros-
sen i, u, g, w und Q ist der Figur zu entnehmen. Das
«ungestorte» Problem ist die geoddtische Linie auf einer
Kugel (e? = 0). Variiert s, so durchlduft der Punkt P
die geoditische Linie, einen Grosskreis mit der Nei-
gung i gegen den Aquator und der Knotenldnge 0.

156

. B a3
a, COSl = —, ¢ = , Q=
a a

—n sind die «Bahnele-

mente», die nun in der «gestdrten» Bahn als variabel
betrachtet werden. Zur Herleitung der Differentialglei-
chungen fiir die «gestorten» Bahnelemente sei auf die
Lehrbiicher der Himmelsmechanik verwiesen. Fiir ein
Bahnelement E,_gilt:

dE, 3R

) { Ho } oF,

1

{E,, E,} sind die Poissonschen Klammerausdriicke, von

denen in unserem Falle nur drei von null verschieden
sind, ndmlich:

a? . B

{a,0} = —, {cosi, 6} = — —

a

= — cosi, {cosi, 2} = —
a a

Auf den rechten Seiten sind die ungestorten Elemente

; 1
einzusetzen. ¢, = a, wegen H = 5

Die Storungsfunktion R muss nun noch durch die Ele-
mente ausgedriickt werden. Wir entwickeln sie nur bis
zur ersten Potenz in e:

e? e? db\2
R = 2 costb = atcostb - [ —
2a? P 2a2 ds
.. du a . .
cosb - — = sini - cosu - — = — sini - cosu
ds ds a2
e . .. a l
R = sin21 - cos? — (s —o
2a? a2 ( ) J

Die partiellen Differentialquotienten der Storungsfunk-
tion nach den Elementen sind:

SR e . . .
= — sin? (cos?u — u - sinu - cosu)

(L7 a

°R .
=—— = — €2cosi - cos?u

dcosi

SR e . . .

~—— = — sin?% - sinu - cosu
cgo a

SR 0

cn

Mit diesen Differentialquotienten und den Poissonschen
Klammerausdriicken erhdlt man schliesslich die Diffe-
rentialgleichungen fiir die Elemente.

da e .
= e2sin?l - sinu - cosu
ds
dcosi e? e e e .
= — — COSl - sin2i - sinu - cosu
ds a
do . .
= — e? (cos®u — sin% - u - sinu - cosu)
ds
de e? .
= — — Cosl * cos2u
ds a
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Diese Differentialgleichungen lassen sich sofort inte-
grieren, wenn man beachtet, dass man auf der rechten
Seite die ungestorten Elemente «, = a, cosiy, ¢, und Q,
einsetzen darf und ausserdem ds = adu ist. Man erhilt:

e2

a=a (1+2

sin2iosin2u>

: s €% . ..
cosi = cosi, <1 5 sm’1051n2u>

sin?,
2

(u + sinu-cosu — (sinu-cosu — u- cos2u)>

e? : ;
Q=0,— - cosiy (u + sinu - cosu)

Die Gleichungen lassen den Verlauf der geoditischen
Linien auf dem Ellipsoid im Grossen erkennen. Insbe-
sondere stellt man nach der letzten Gleichung fest, dass
sich die Knotenldnge nach einem Umlauf (u = 2z) um

den Betrag me2cosi nach riickwirts verschoben hat.
Man beachte jedoch, dass i nur gendhert die Neigung
der geoditischen Linie gegen den Aquator darstellt,
und dass fiir diese das Clairautsche Theorem gilt, das
sofort aus der vierten kanonischen Gleichung gewonnen
werden kann. Es ist:

dq oH

ds al

~dl
= ki t. = a2 2
q ons azcoszb (ds)

cosb = SinA,

dl
ds
cosb sinA = konst.

Prinzipiell konnen mit Hilfe dieser Gleichungen auch

die geoditischen Hauptaufgaben l6sen; praktisch bietet
dies jedoch kaum Vorteile.
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Zur Bedeutung der Schwerereduktion
bei der Bestimmung der Figur
und Massenverteilung der Erde*

H.-G. Kahle, E. Klingelé und St. Miiller, Ziirich

Zusammenfassung

Es wird eine Ubersicht iiber di¢ Grundlagen und An-
wendungen von verschiedenen Schwerereduktionen ge-
geben, die fiir geodatische und geophysikalische Zwecke
wichtig sind. Diese Reduktionen umfassen die Bouguer-,
topographische, Freiluft-, isostatische und geologische
Reduktion. Fiir die Reduktion der Geldandewirkung in
den Alpen sind besondere Berechnungsmethoden erfor-
derlich. Modelle und Anwendungen dafiir sind zusam-
menfassend dargestellt.

A. Einleitung

Als Figur der Erde bezeichnet man jene Aquipotential-
fliche des Schwerefeldes der Erde, die etwa mit dem
mittleren Meeresniveau zusammenfillt. Diese als Geoid
bezeichnete Niveaufldche ist definiert durch das Schwe-
repotential W = W = const. W enthilt das Potential U
der nur von der geographischen Breite ¢ abhingigen
Normalschwere g(¢p) und das Potential T der Storungs-

norm

massen: W = U + T. Die Kompliziertheit der Niveau-
flachen legt es nahe, das Geoid auf eine Referenzfliche
zu beziehen, die man nach geometrischen oder potential-
theoretischen Gesichtspunkten auswihlen kann. Im Fall
der potentialtheoretischen Definition bezieht man das

* Dieser Aufsatz wird als «Beitrag Nr. 115 des Institutes fiir Geo-
physik, ETH Ziirich» bezeichnet.
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Geoid mit dem Potential W,=const zweckmassigerweise
auf die Niveaufliche der Normalschwere g(¢). Diese

norm

Niveaufldche ist dadurch definiert, dass auf ihr das Po-
tentional U der Normalschwere genau so gross ist wie
das Schwerepotential W auf dem Geoid: UQ = W®) =
W, = const. Wegen ihrer kugeldhnlichen Gestalt ist es
iiblich, die Referenzfldche als Sphéroid (genauer als Re-
ferenzellipsoid) zu bezeichnen (Abb. 1). Der Abstand

Meeresoberu.‘;‘che

Abbildung 1 Geoid und Referenzellipsoid, stark {iberhoht dar-
gestellt
N = Geoidundulation
é = Lotabweichung
_g’ (P) — beobachteter Schwerevektor im Punkt P
i (auf der Erdoberfldche)
_g) " — Vektor der beobachteten Schwere, umgerechnet
- (Q) auf den Punkt P’ (auf dem Geoid)
g (¢) = Vektor der Normalschwere im Punkt Q

norm
(auf dem Referenzellipsoid)

Auf dem Geoid herrscht das Potential W =U+T, auf dem
Referenzellipsoid das Potential U der Normalschwere g (@)
mit T = Storpotential

norm
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