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letzteres ist definitionsgemäss das gleiche für Geoid und
Ellipsoid.
Standardatmosphäre. Für die Berücksichtigung
atmosphärischer Einflüsse, auf elektronische Distanzmessungen

ebenso wie auf Schweremessungen, braucht man
eine geeignete Standardatmosphäre. Hier gibt es vor
allem zwei:
1. CIRA (COSPAR International Reference Atmosphere),

zuletzt 1972 veröffentlicht;
2. U. S. Standard Atmosphere 1962, mit Ergänzungen

1966.
Keine dieser Standardatmosphären ist unmittelbar für
geodätische Anwendungen bestimmt. CIRA ist primär
für Zwecke der Weltraumforschung gedacht, daher wird
das Hauptgewicht auf grössere Höhen gelegt. Die US-
Standardatmosphäre dient vor allem der Luftfahrt. Sie

gibt deswegen auch mehr Details in geringen Höhen.
Die World Meteorological Organization (WMO) hat die
U. S. Standard Atmosphere zum Gebrauch angenommen.

Die Erstellung einer Standardatmosphäre für
geodätische Zwecke erscheint wünschenswert; mittlerweile
könnte die U. S. Standard Atmosphere mit dem gebotenen

Verständnis verwendet werden.
Weitere Einzelheiten und Literaturhinweise können dem
Bericht der IAG-Studiengruppe 5.39, «Fundamental
Geodetic Constants», der der Generalversammlung in

Grenoble vorgelegt werden wird, entnommen werden.
Das Problem der geodätischen Konstanten gibt einen
aufschlussreichen Einblick in die heutige Geodäsie. Die
Lichtgeschwindigkeit c liefert über die elektronische
Entfernungsmessung den Massstab für die geodätische
Längenbestimmung. Die Satellitengeodäsie hat unsere
Kenntnis der Erdparameter entscheidend bereichert:
klassische Parameter wie die grosse Halbachse a sind
nun wesentlich genauer bekannt, und neue physikalisch
definierte Parameter wie GM und J2 sind als geodätische
Fundamentalgrössen eingeführt worden, denen gegenüber

etwa die geometrische Erdabplattung f als
abgeleitete Grösse gilt. So sieht man, dass Geometrie und
Physik sich heute in der Geodäsie untrennbar miteinander

verbinden.
Die relative Genauigkeit, mit der die Gestalt der Erde
und ihre physikalischen Parameter bekannt sind, liegt
heute etwa bei 10 ~6. In den kommenden Jahren wird,
insbesondere durch die Genauigkeitssteigerung der
Lasermessung zu Satelliten, eine um eine oder gar zwei

Grössenordnungen höhere Genauigkeit erhofft.

Adresse des Verfassers:
o. Prof. Dipl. Ing. Dr. techn. Helmut Moritz,
Institut für Erdmessung und Physikalische Geodäsie,
Technische Hochschule Graz, Steyrergrasse 17, A-8010 Graz

Die geodätischen Linien und die Mechanik
Max Schürer

Die Differentialgleichungen der geodätischen Linien auf
einer Fläche lassen sich in kanonischer Form schreiben

(1). Speziell gilt für das Rotationsellipsoid mit den
Koordinaten b und 1 (reduzierte Breite und Länge):

3Hdb 3H dp

ds 3p ds
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Die unabhängig Veränderliche s ist die Bogenlänge,
E und G sind die Koeffizienten der metrischen
Fundamentalform:

ds2

und

E • db2 + G- dl2 a2 (1 - e2cos2b) db2

+ a2cos2b -dl2

H —
2

— + —
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Die Gleichungen zeigen eine gewisse Analogie zur
Mechanik (Bewegungsgleichungen eines Massenpunktes
auf einer Fläche mit dem Potential null und der Bogenlänge

s als unabhängiger Variabler anstelle der Zeit t),
und es liegt nahe, die Analogie weiter zu verfolgen.

Eine Lösungsmethode für die Gleichungen in der
Mechanik besteht in der Aufstellung der Hamilton-Jaco-
bischen Differentialgleichung:

T
' 3W

"3b" G \ 31 j
3W

13s- 0

Sie ist in unserem Falle durch Separation der Variablen
lösbar und führt, wie zu erwarten war, auf elliptische
Funktionen. Zerlegt man jedoch H in zwei Anteile H0
und R, wo

1

H„ 2a2
p2 +

cos2b
undR

p2 cos2b

2a2 (1 - e2cos2b)'

so kann die Gleichung mit H0 ohne Schwierigkeiten
gelöst und R als Störungsfunktion betrachtet werden. Die
Analogie zum Störungsproblem der Himmelsmechanik
wird dadurch ersichtlich.
Die Hamilton-Jacobische Gleichung für das
«ungestörte» Problem lautet nun:

2a2

' 3W
y cos2b

3W
31

3W
3s

Setzt man W B (b)

3W dS a

LO)

3s
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31
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ds

dL
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2a2

S (s), so folgt:

S= -
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B n- cos2b
db

Der Integrand muss reell sein. Man setzt deshalb
ß a ¦ cosi, wo i der Maximalwert von b ist. Die zu
a und ß kanonisch konjugierten Konstanten f und n

erhält man aus:

3W a

|= -r =_S
3a a2

a
— s
a2

U

/
0

b

/

adb

ß a2f
a, cosi —, a il — t] sind die «Bahnele-

a a

mente», die nun in der «gestörten» Bahn als variabel
betrachtet werden. Zur Herleitung der Differentialgleichungen

für die «gestörten» Bahnelemente sei auf die
Lehrbücher der Himmelsmechanik verwiesen. Für ein
Bahnelement Ek gilt:

ß2

cos2b

cos b db

]/cos2b — cos2i

dEk

ds I { Ek>E, }
SR

3E,

Das letzte Integral löst man durch Einführung einer
neuen Variablen u anstelle von b mittels: sinb sini • sinu
Damit wird

Setzt man für u 0: s a, so ist auch u (s-c)

V
3W
dß - 1 / £db

{Ek, E.} sind die Poissonschen Klammerausdrücke, von
denen in unserem Falle nur drei von null verschieden
sind, nämlich:

a2 ß 1

{a,o} —, {cosi, o} — — — cosi, {cosi, Q} —
a a a

Auf den rechten Seiten sind die ungestörten Elemente
1

einzusetzen. a0 a, wegen H —.

Die Störungsfunktion R muss nun noch durch die
Elemente ausgedrückt werden. Wir entwickeln sie nur bis

zur ersten Potenz in e:

cos2b R
cos2b

2a2

e2 / db \2
p2 cos2b —- a4 cos2b • { —

2a2 V ds I

Hier führt die Einführung von w durch: tgb tgi • sinw
auf
n w — 1

Setzt man für w 0: 1 Q, so ist ij —Q

db du a
cosb • -r- sini • cosu • -r- —- sini • cosu

ds ds a2

e2a2
R - - sin2i • cos2

2a2 Ü (s - o) J

Die partiellen Differentialquotienten der Störungsfunktion
nach den Elementen sind:

3R e2 _.

3a a

3R
3cosi - e2cosi • cos2u

3R
-,CO

e2

a
sin2i ¦ sinu • cosu

SR
0

du

Mit diesen Differentialquotienten und den Poissonschen
Klammerausdrücken erhält man schliesslich die
Differentialgleichungen für die Elemente.

Die anschauliche Bedeutung der neu eingeführten Grössen

i, u, o, w und Q ist der Figur zu entnehmen. Das

«ungestörte» Problem ist die geodätische Linie auf einer
Kugel (e2 0). Variiert s, so durchläuft der Punkt P

die geodätische Linie, einen Grosskreis mit der
Neigung i gegen den Äquator und der Knotenlänge ü.

da

ds

dcosi

"dT
da

ds

dß

e2sin2i • sinu • cosu

cosi • sin2i • sinu • cosu

— e2 (cos2u — sin2i • u ¦ sinu • cosu)

— — cosi • cos2u
ds a
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Diese Differentialgleichungen lassen sich sofort
integrieren, wenn man beachtet, dass man auf der rechten
Seite die ungestörten Elemente a0 a, cosi0, o0 und Q0

einsetzen darf und ausserdem ds adu ist. Man erhält:

a a 11+— sin2i0sin2u 1

cosi cosi„ / 1 — — sin2i„sin2u

e2a

sin-'i,, \
u + sinu • cosu — —-— (sinu • cosu — u • cos2u)

Q Qa cosi0 (u + sinu • cosu)

Die Gleichungen lassen den Verlauf der geodätischen
Linien auf dem Ellipsoid im Grossen erkennen.
Insbesondere stellt man nach der letzten Gleichung fest, dass
sich die Knotenlänge nach einem Umlauf (u In) um

den Betrag ;re2cosi nach rückwärts verschoben hat.
Man beachte jedoch, dass i nur genähert die Neigung
der geodätischen Linie gegen den Äquator darstellt,
und dass für diese das Clairautsche Theorem gilt, das
sofort aus der vierten kanonischen Gleichung gewonnen
werden kann. Es ist:

dq 3H
0,

ds 31

q konst. a2cos2b
dl

"dT

cosb
dl
ds

sinA,

cosb sinA konst.

Prinzipiell können mit Hilfe dieser Gleichungen auch
die geodätischen Hauptaufgaben lösen; praktisch bietet
dies jedoch kaum Vorteile.

Literatur
(1) Courant, R., und Hilbert, D.: Methoden der mathematischen

Physik II, Berlin 1937.
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Zur Bedeutung der Schwerereduktion
bei der Bestimmung der Figur
und MassenVerteilung der Erde*
H.-G. Kahle, E. Klingele und St. Müller, Zürich

Zusammenfassung
Es wird eine Übersicht über die Grundlagen und
Anwendungen von verschiedenen Schwerereduktionen
gegeben, die für geodätische und geophysikalische Zwecke
wichtig sind. Diese Reduktionen umfassen die Bouguer-,
topographische, Freiluft-, isostatische und geologische
Reduktion. Für die Reduktion der Geländewirkung in
den Alpen sind besondere Berechnungsmethoden
erforderlich. Modelle und Anwendungen dafür sind
zusammenfassend dargestellt.

A. Einleitung
Als Figur der Erde bezeichnet man jene Äquipotentialfläche

des Schwerefeldes der Erde, die etwa mit dem
mittleren Meeresniveau zusammenfällt. Diese als Geoid
bezeichnete Niveaufläche ist definiert durch das
Schwerepotential W W0 const. W enthält das Potential U
der nur von der geographischen Breite cp abhängigen
Normalschwere g(cp) und das Potential T der Störungs¬

norm
massen: W U + T. Die Kompliziertheit der Niveauflächen

legt es nahe, das Geoid auf eine Referenzfläche
zu beziehen, die man nach geometrischen oder
potentialtheoretischen Gesichtspunkten auswählen kann. Im Fall
der potentialtheoretischen Definition bezieht man das

Geoid mit dem Potential W0 const zweckmässigerweise
auf die Niveaufläche der Normalschwere g(<p). Diese

norm
Niveaufläche ist dadurch definiert, dass auf ihr das Po-
tentional U der Normalschwere genau so gross ist wie
das Schwerepotential W auf dem Geoid: UW W(p')
W0 const. Wegen ihrer kugelähnlichen Gestalt ist es

üblich, die Referenzfläche als Sphäroid (genauer als
Referenzellipsoid) zu bezeichnen (Abb. 1). Der Abstand

Meeresober flä
2_-b 'rn -er.

;p'i

'-&NM-V-xlo.

N

Abbildung 1 Geoid und Referenzellipsoid, stark überhöht
dargestellt

Geoidundulation
Lotabweichung
beobachteter Schwerevektor im Punkt P

(auf der Erdoberfläche)

Vektor der beobachteten Schwere, umgerechnet
auf den Punkt P' (auf dem Geoid)

Vektor der Normalschwere im Punkt Q

(auf dem Referenzellipsoid)

ff)

¦ff')

->(Q)
g (<?)

* Dieser Aufsatz wird als «Beitrag Nr. 115 des Institutes für
Geophysik, ETH Zürich» bezeichnet.

Auf dem Geoid herrscht das Potential W U + T, auf dem

mit T Störpotential
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