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Estimation stochastique de la précision des mesures

par W.K. Bachmann

Résumé

Ce bref apercu des principales méthodes, utilisées pour l'esti-
mation de la précision de mesures, a pour but essentiel d’attirer
'attention du topographe sur ces méthodes qui, hélas, semblent
souvent encore étre ignorées. A l'aide d’exemples numériques,
I'utilisation des distributions X2, t et F a été montrée et 'emploi
de séries de mesures ordonnées pour Iestimation rapide es-
quissée.

Chapitre 1

Estimation par intervalles de confiance

1.1 Généralités et distribution normale

La statistique étant une science exacte, il est difficile,
voire méme impossible d’en parler sans avoir recours aux
mathématiques. Dans ce qui suit, je m’efforcerai cepen-
dant d’utiliser le moins de formules possible tout en
tachant de faire ressortir quelques idées fondamentales.

De nos jours, la statistique est si vaste et si univer-
sellement appliquée que personne ne peut prétendre la
connaitre intégralement. Aussi n’ai-je nullement I'inten-
tion de brosser un tableau d’ensemble; je me bornerai a
examiner sous un angle critique quelques différences de
conception fondamentales qui séparent la statistique de
la théorie des erreurs classique. Cela faisant, je suppri-
merai la plupart des démonstrations mathématiques, me
bornant a signaler uniquement les résultats.

Lorsqu’il s’agit de déterminer expérimentalement la
valeur d’une inconnue X, on la mesure une ou plusieurs
fois au moyen d’un équipement approprié. En répétant
la mesure, on peut poursuivre deux buts, suivant qu’il
s’agit uniquement d’un contrdle ou de la recherche d’une
plus grande précision.

Du point de vue de la statistique, I’ensemble des valeurs
qu’une grandeur X peut prendre au cours du processus
de mesure constitue une population et chaque valeur
possible est un individu de cette population.

Dans ces conditions, une population n’est jamais connue
completement, et les observations servent précisément a
la découvrir, a la saisir dans la mesure du possible.

Mais il y a d’autres cas, ou la population peut étre
connue complétement grace aux observations. Il en est
généralement ainsi lorsque la population n’est constituée
que par un nombre fini d’individus. Citons comme
exemple le recensement des habitants d’une contrée.

En géodésie, la situation est autre en ce sens que la
population est constituée par toutes les mesures qu’on
pourrait effectuer sur I'inconnue si I'on était 8 méme de
les faire; mais pour des raisons d’ordre pratique et
économique, le nombre de mesures est toujours trés
limité dans ce domaine. On voit que dans ce cas la

Zusammenfassung

Diese kurze Darstellung der wichtigsten statistischen Methoden
zur Schitzung der Genauigkeit von Messungen bezweckt vor
allem den Vermessungs-Fachmann auf diese Methoden, die leider
immer noch etwas stiefmiitterlich behandelt werden, aufmerk-
sam zu machen. Es wird die Verwendung der X?, t und F-Vertei-
lungen anhand numerischer Beispiele gezeigt und die Bedeutung
der geordneten Messreihen zur angendherten Schitzung der er-
reichten Genauigkeit kurz dargelegt.

population totale, comportant une infinité d’individus,
est purement fictive; c’est une conception de l’esprit.

Si une série de n mesures nous fournit les valeurs x1, X2,
-+, Xp, celles-ci constituent un échantillon de taille n de la
population X. Mais dans tout échantillon les éléments
X1, X2, ..., X, doivent étre indépendants et choisis ,,au
hasard‘‘ dans la population. Pour étre précis, il faudrait
naturellement définir ce que I'on entend par ’expression
»au hasard*. Cette définition est d’autant plus impor-
tante qu’on utilise aujourd’hui en statistique expéri-
mentale des échantillons engendrés par un ordinateur, ce
qui nous dispense d’avoir recours a des mesures. Aussi un
certain nombre des exemples que nous donnerons ont-ils
été | fabriqués‘‘ par ordinateur.

Pour des raisons d’ordre pratique, la taille d’un échan-
tillon obtenu par un procédé de mesure sera toujours
trés limitée et de ce fait ’échantillon ne donnera qu’une

Histogrammes dun _méme _échantillon

4t = largeur des classes

f = fréguence

700 — f

Fig. 1.1.1
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vue approchée de ’ensemble de la population. Mais il est
entendu que la quantité d’information augmente avec le
nombre des mesures, & condition que celles-ci soient
exemptes d’erreurs systématiques.

Les expressions ,,échantillon‘‘ et ,,échantillonnage‘‘ ont
leur origine dans les applications industrielles, ou I’on
contrdle périodiquement la qualité du produit fabriqué
par des sondages, c’est-a-dire par des échantillonnages.
La notion d’échantillon intervient cependant aussi dans
des domaines tout autres, tels que la médecine, la
pharmacologie, la biologie, 1’économie, l’électronique,
l'assurance-vie, etc.

Ayant obtenu n mesures Xi, X2, ..., X, pour l'incon-
nue X, nous pouvons construire un histogramme en
reportant en abscisse les valeurs x; et en ordonnée les
fréquences ou les fréquences relatives des mesures
groupées par classes. Dans le dessin de I’histogramme, la
largeur choisie pour la classe joue un grand rdle, car si
elle est trop petite, ’histogramme prend une allure
irréguliere et si elle est trop grande, on perd une partie
de I'information.

Si tout se passe normalement, I'histogramme n’aura
qu'un seul maximum. S’il en comporte deux ou plus,
I’ensemble des mesures est hétérogéne et nous devons
admettre qu’il provient de deux populations distinctes
ou plus; voir fig. 1.1.2.

Cette méthode est par exemple utilisée en biologie pour
la séparation de deux espéces.

En mensuration, les histogrammes ne doivent comporter
qu’un seul maximum, car sans cela les mesures n’auraient
pas de sens, ou accuseraient une variation de la grandeur
a déterminer au cours du processus de mesurage
(exemple: réfraction verticale ou horizontale, due a un
changement du milieu ambiant).

Ayant dessiné I’histogramme pour un ensemble de
mesures, on est naturellement tenté de le remplacer par
une fonction f=g(x) en choisissant les valeurs mesu-
rées x pour abscisses et la fréquence pour ordonnée f.
Dans ce but, on prend pour g(x) une forme algébrique

appropriée, qui peut comporter un ou plusieurs para-
meétres. En métrologie, la courbe de Gauss a une
importance particuliére vu que la majorité des mesures
suivent a4 peu preés cette loi. En fixant la forme
algébrique de g(x), nous choisissons un modéle mathe-
matique pour la présentation de la population. Si la
correspondance entre ce modele et ’ensemble des
mesures est jugée suffisamment bonne, nous acceptons le
modele, dans le cas contraire nous le remplagons par un
autre, plus approprié. Cette procédure est bien connue
en physique, ou I’on change de modeéle presque tous les
jours pour tenir compte des derniéres découvertes. Les
géodésiens, plus conservateurs, sont restés fidéles a la loi
de Gauss! Cette derniére est donnée par la fonction de
fréquence (relative)

_ A fx-m)2
)’:f(x)=—l e 2(0)
V2n o
dans laquelle f(x) désigne la densité de probabilité au
point x, tandis que m et 0 sont deux paramétres qui
s’appellent moyenne et écart-type.

1.1.1

Comme il aurait été trop compliqué de calculer des

tables numériques pour chaque valeur de m et de 0, on a

recours a la substitution
x_

u=2"" (variable réduite)

= 1.1.2

qui raméne toutes les distributions normales N (m;0?) &
un type unique N (0;1), dit distribution normale stand-
ard ou réduite. C’est pour cette derniere qu’on a calculé
des tables donnant notamment les valeurs de

1.1.3

@ (u)=

P(coo<U<u) = (u) = — /u -4 g
—co<Ugu) =2 (u) = e 2% !
Von J_o

P(ru<U<u)=V¥(u) =) -o(-u)=2ad()-1

Sy

Mélange de 2 distributions normales Variations e fa_courbe e Gauss
-1 z-my _ _{_
f = fre’yuence I = valeurs mesurées Y Y=<~ ( o ) o= P)
f 0,4 |
40 o o=
0,2 m =|35,4 \ m =|37,65
0,1
30—
4 T T T T T T T x
3 % 35 3 w8 39 40
0,20
20—
0,15 P
170 — 0,10
0,05
o= o 4 T T T
65 (74 &9 4 73 75 2 4 6 'l
Fig. 1.1.2 Fig. 1.1.3
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Distribution normale standard N(0;1)

Ajustement de N(m;o-2) sur un échantillon
Calcul de /a moyenne et de / €cart-type

R ¥ C
Fonctron de Mesures .
5 > J v A
%2 fréguence valeurs | fréguences 2 -F ]_‘/‘ y )5 vy
Z J
J/
0,2
181 % -57% |- 5,7% 33,1776
0,/ — p@) 182 7 — 4,7 | — 4,7% 22,6576
(8) 163 z —a,% | - 752 28,2752
¢ g
0 | —— —t - u 184 7 -2,% | - 19,22 53,5232
-3 -2 -7 E 0 7 V2 & 185 7~ - 1,7% - 22,88 40,2688
a b 186 18 -0,7% | - 13,68 10, 3968
: ! 187 2 +0,24 |+ 6,2 1, 4376
: ' 168 % + 1,26 | + 19,84 24, 60106
ﬁ( u) g : 189 3 + 2,2 | + 20,0 45, 1564
e i it *ﬁ———— 190 4 + 3,2 | + 12,9 41, 9904
a0 | Fonction o pe | 2 s | v | sk
: w7 T + 5,2 |+
' distrrbution 92 d 2 z 2
%6 ' = 100 = 0,00 | 37,2400
!
- ] #8) 7 6676
A p 7 186,
m=T=-"2> ;= —=[f-x] = —— = 18,7
0,2 "7t A =] 100 Jees,
4 u
T T 1 T+ 1 T ¢ [Fvv] 9. 5
-3 -2 -1 0 102 ) 2= LS "(z;-7)%- = 227 = 3, 7802
a b -1 =7 [F]-1 99 AL
Fig. 1.1.4 Fig. 1.1.5

L ajustement de la fonction de fréquence f(x) sur un
histogramme, respectivement un échantillon

Xj, Xy, ..., X,  €chantillon 1.1.4

est un probléme bien connu qu’on peut résoudre en
appliquant la méthode du maximum de vraisemblance,
qui nous fournit les estimateurs (ou estimations)

n
o e
m=x=FZ % 1.1.5
i=1
R i & )
o’ = n-1 AZI(X"_R)
i=

On est ainsi amené a un jeu de formules bien connu qui
ne nous offre rien de nouveau. Une application numé-
rique est donnée sur les Fig. 1.1.5et 1.1.6

En introduisant ces estimateurs, nous remplagons les n
mesures X1, X2, ..., X, par les deux valeurs m et 0, dont
la premiére représente la valeur compensée de
l'inconnue X, tandis que la seconde caractérise la préci-
sion des mesures. En procédant ainsi, on perd natu-
rellement une partie de l’information fournie par les
mesures, ce qui est regrettable mais inévitable. Nous
disons dans ce cas qu'on a fait une estimation
ponctuelle.

Quoiqu’on se trouve dans un domaine bien connu en
choississant m et @, c’est ici que les premiéres difficultés
commencent. En effet, nous avons calculé m et 0 a partir
d’un ensemble de mesures X1, X2, ..., X;; bien déterminé,
mais nous ne savons pas ce que ’on aurait obtenu si 'on
avait effectué une seconde série de mesuresyfi,..., y,. La
différence entre ces deux séries aurait-elle eu une
influence significative sur m et 6 ou non? Autrement
dit, nous ne connaissons pas la confiance que nous
devons attribuer 4 m et g. On peut toutefois démontrer
que les estimateurs m et g tendent vers m et 0 sin —> oo,
ce qui nous montre que la confiance que nous pouvons
attribuer au résultat final augmente avec n.

Ajustement de N(m;o2) sur un_échantillon

f = f‘re’quence
F g

30 —

R
|

= 186,76
25 —
1,94
20 —

75 —

10 —

162
184
166 —
788
190
192

Fig. 1.1.6

Pour chiffrer cette confiance, on a recours a une
estimation par intervalle de confiance. Si l’'on connait la
valeur de l’écart-type 0, I'intervalle de confiance de m est
défini par I’équation

PX-2-0x <m<£X+2-0x)=SE=1-a

avec oy = U/vﬁ

ou «a désigne le niveau de confiance et P la probabilité,
tandis que A est une fonction de a donnée par les tables
de la distribution normale standard.

L’écart-type de x est Og=o/\/; Le niveau de confiance a
peut étre choisi arbitrairement; SE = |-« désigne la
sécurité. La relation (1.1.6) est obtenue trés facilement a
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laide de la théorie des fonctions caractéristiques qui
nous montre que X-M) a pour distribution N (0;1), ce
qui fait qu’on a X

1.1.7

X - 1 b _ly2
P(a< == sb) = f e”2" dy = o(b) - d(a)
ox Var Jy

La table (1.1.8) nous donne quelques valeurs pour
I’intervalle de confiance de m. 1.18

Intervalle de confiance de la moyenne m de la distri-
bution N (m;0?)

Intervalle Sécurité SE = Niveau de con-
100-0% fiance a %

X+ 1,645 P 90 % 10 %

X+ 1,960 N 95 % 5%

X+ 2,576 Ivi 99 % 1%

X+ 3,291 Nvi 99,9 % 0,1 %

X+ 3,891 Ny 99,99 % 0,01 %

Ce tableau nous montre que pour un niveau de confiance
a donné, lintervalle de confiance diminue lorsque n
augmente, ce qui a pour conséquence une diminution de
Iinsécurité de X, c’est-a-dire une augmentation de la
précision de X avec la racine carrée de n. Ceci n’est rien
d’autre qu’une conséquence de la loi de la propagation
des erreurs.

En ne connaissant rien de la statistique, on part
généralement de 'idée que la valeur de m doit étre située
a l'intérieur de l'intervalle

(X - og, X +0y)

mais il résulte de la théorie que nous venons d’esquisser
qu’il n’y a que le 68 % des résultats qui remplissent cette
condition; nous avons en effet

log) ~ 68% 1.1.9

m +
P (X - 205 < m< X+ 205) ~ 95%
m< X+

3op) & 99,7%

Comme il est souhaitable d’avoir au moins une sécurité
de 95 %, nous sommes obligés de compter avec des
écarts de * 2 0z de part et d’autre de la valeur com-
pensée X.

La situation devient encore plus défavorable si nous
prenons [’ellipse d’erreur moyenne, qui est d’un emploi
fréquent en triangulation et en trilatération. Dans ce cas,
la probabilité qu'un point tombe d l'intérieur de I’ellipse
n’est que de 39 %. On peut en effet démontrer que

Si nous rapportons I’ellipse d’erreur moyenne a ses
axes p et q et que my, m), désignent les coordonnées
vraies du point 4 déterminer, la probabilité P(A?)
qu’un point (x, y) tombe a I'intérieur de I’ellipse

X - my )2 y-my) 2 5
() () P

est donnée par

1.1.10

132
POY)=1-¢2V
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Le tableau ci-aprés nous donne quelques valeurs de

P (\?).
A 0,76 1,18 1,67 2,15 2,45 3,04
PA%) 25%50% 75% 90% 95 % 99 %

1.1.11

Il en résulte que si nous voulons avoir une sécurité de
95 %, qui est pratiquement souhaitable, nous devons
agrandir l’ellipse d’erreur moyenne 2,45 fois, nécessité
dont on oublie souvent de tenir compte dans les
applications pratiques.

Faisons encore une remarque au sujet des fautes (Aus-
reisser) qu’on peut trouver dans une série d’observations.
La Probabilité qu’une mesure x s’écarte de plus de 30 de
la moyenne empirique est d’environ 3 %o; vu que cette
probabilité est trés faible, on a I’habitude de rejeter ces
mesures. Cette facon de faire est cependant assez
arbitraire, car si ’on étudie le probléme de plus prés en
ayant recours a la statistique d’ordre, qui est rela-
tivement récente, on comprend plus facilement pour
quelle raison on a fréquemment des difficultés en
calculant I’ajustement d’une distribution.

1.2 Distribution t de Student

La formule (1.1.6), que nous venons de mentionner, a
cependant un défaut vu qu’elle fait intervenir 1’écart-
type 0 de la population, qui sera généralement inconnu.
On peut remédier a cet inconvénient en ayant recours a
la distribution t de Student, dont la fonction de
fréquence est représentée sur la figure (1.2.1) pour
différents degrés de liberté f=n - 1.

Distribution t de Student

fonctions de fréquence g, (t) pour

/
=n-1 =44
/: 7 30
I (t)
0,4 — J— f=30
. (& normale)
0,2
F=4
%7 \,c=/
4 T T T T T T Tt

Fig. 1.2.1

Voici comment on applique cette derniére distribution:
Régle mnémotechnique
Pour déterminer I'intervalle de confiance de la moyenne
m d’une population normale N (m;0?) d variance in-
connue, au niveau de confiance a et f=n-1 degrés de
liberté, on extrait de la population un échantillon x1,x3,
..., Xp avec lequel on calcule d’abord la variance
s o 2 . = : 2 s
empirique S° de x, puis celle de X, soit S3, en appliquant
les formules
1 % 5
(X,'- X)
=]

n-1 ~—
i

§% =

2 _1 ¢
Se=aS

=1l



Puis on choisit un niveau de confiance a et on cherche
dans une table de la fonction de distribution de t la
valeur de l,_% en fonction de o et de f = n - 1. Cela

étant, on a la formule

P(i—t,_ct/2 S}<m<i+t,+°‘/2 Sg)=1-a 1.2.1
qui nous donne le domaine de confiance de m au niveau
o. Notons que (1.2.1) nous donne un domaine de
confiance symétrique par rapport a X, qu’on a obtenu en
coupant a chaque extrémité de la distribution t la queue
de probabilité ®/, ; voir fig. 1.2.2.

.,n 1.3.2

1.33

S? étant par définition la variance empirique; c’est un
estimateur sans biais de 62. Pour connaitre la précision
de S?, on a besoin de la distribution x?, dont la fonction
de fréquence est représentée par la figure (1.3.1) pour
différentes valeurs de f= n—1.

+t’_%

ym(t)dt = /-

%2

Fig. 1.2.2

Donnons quelques valeurs de cette table afin de pouvoir
les comparer avec les résultats (1.1.8) précédemment

obtenus.
1.2.2

Valeurs de t, _%

Niveaude 40 & 10 5% 1%
confiance

Sécurité  (1-a)% - 90 % 95 % 99 %

f=n-1=2 2,920 4,303 9,925

5 2,015 2571 4,032

10 1,812 2,228 3,169

15 1,753 2,131 2,947

20 1,725 2,086 2,845

Un examen rapide de ce tableau nous montre que
a) quelle que soit la taille n, les valeurs de ‘/-"/_, sont
toujours supérieures a celles du tableau (1.1.8) pour
un niveau de confiance @ donné. Ceci est évident, car
on posséde une plus petite quantité d’informations
que précédemment du moment que 0 est inconnue.
b) pour les conditions qui devraient étre réalisées dans la
pratique, soit & = 5 %, nous obtenons par exemple
f=n-1=2 t,_% =4303 et
f=n-1=5 t,_oz/ =2,571
2

avecn=3
avecn==6

1.3 Distribution X*

Si ’on a affaire a une population normale X ~N (m;0?),
dont on ne connait ni la moyenne m ni la variance 62,
on en extrait un échantillon de taille n, soit x, X2, ..., Xp.

Cela étant, on calcule la moyenne empirique
K= L Fxt ) 13.1

qui est, nous l’avons vu plus haut, un estimateur sans
biais de m. On calcule ensuite les grandeurs

Distribution X% (chi carré)

px)
fonctions de_ fréguence
/
=14
0,25 F=1 B, e
-~ 20
0,20

0,75

0,10 —

0,05

Fig. 1.3.1

L’utilisation pratique de cette distribution est facilitée
par l'emploi de tables numériques qui donnent les
valeurs critiques de x> en fonction du niveau de
confiance o et du nombre de degrés de liberté f=n-1.
Pour calculer I'intervalle de confiance de 02, on coupe 2
chaque extrémité de la distribution une queue de
probabilité %/, ; voir fig. (1.3.2).

/ntervalle _de confrance de o2
P(X?) = fonction de fréguence de X?

b p(x?)

xz

Fig. 1.3.2

Régle mnémotechnique

Pour trouver I'intervalle de confiance de 02 en fonction
de S? et du niveau de confiance @, on extrait de la table
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2
de la distribution X? les valeurs critiques X8 e
Xéz . Cela étant, l'intervalle de confiance est donné par
la relation

n)-l stcal < n:l g2 1.3.4
X, a X2
1=, %
Application

Pour & = 5%, les tables de la distribution X*> nous
donnent

a =5%

f=n-1 xg xﬂ% f ‘{;

2 2 xl_a% Xa/2
2 0,051 7,38 0,52 6,26
3 0,216 9,35 0,57 3,73
4 0,484 11,1 0,60 2,87
S 0,831 12,8 0,63 2,45
6 1,24 14,4 0,65 2,20
7 1,69 16,0 0,66 2,04
8 2,18 17,5 0,68 1,92
9 2,70 19,0 0,69 1,83
10 3:25 20,5 0,70 1,75
11 3,82 21,9 0,71 1,70
12 4,40 233 0,72 1,65
13 5,01 24,7 0,73 1,61
14 5,63 26,1 0,73 1,58
15 6,26 27,5 0,74 1,55

ainsi que leur rapport, en placant au numérateur la plus
grande des deux valeurs S% et S%. En supposant que ce
soit Si , nous calculerons donc

K=— 1.4.3

qui a une distribution F de Snedecor avec f; =m- 1
degrés de liberté au numérateur et f) =n-1 degrés de
liberté au dénominateur. Si les deux instruments ont la
méme précision, on doit trouver K ~ 1. Si tel n’est pas le
cas, il s’agit de savoir si la différence constatée est
significative au niveau de confiance a ou non.

Exemple

Soient e; et e, deux cOtés de polygone qu’on a mesurés
plusieurs fois avec une mire horizontale en invar. Le
tableau ci-aprés nous donne les angles parallactiques,
exprimés en “‘, ainsi que les estimateurs X et =S de
chacun d’eux.

d’ol1 nous tirons par exemple
0,57S<|0]<3,738
0,718S<|0|<1,70 S

Vu que la taille des échantillons utilisés en géodésie est
généralement trés petite, nous devons compter pour
n = 4 avec un domaine de confiance de

06S<|0|<3,7S

pour n=4 : f=3
pour n=12: f=11

au niveau a =5 %.

1.4 Distribution F de Snedecor

Lorsqu’il s’agit de savoir si deux équipements de mesure
donnent la méme précision ou non, on emploie la
distribution F de Snedecor, qui est également donnée
par des tables numériques. Soient

Instrument 1 1.4.1
Instrument 2

Xy 5 X2 5000 Xm
Yis¥2s Yn

f,=m-1
f, =n-1

les valeurs obtenues en mesurant avec I'instrument 1 une
inconnue X m fois et avec I'instrument 2 une inconnue
Y n fois, lesdegrés de liberté f; =m-1etfy = n-1n’étant
pas nécessairement les mémes. On calcule ensuite les
variances empiriques.

1.4.2
1 o 2 1 &
S =T 2 (%= %) S)=—7 2 0;-9’
i=/ i=]
fi=m-1 f,=n-1
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Coté (53] Coté €r
11558¢¢ 7495¢¢
11553 7491

11552 7493

11544 7495

11542 7492

11562 7488

11550

11547

X = 11551,00¢¢ x = 7492,33¢¢
Sl = 6,78(:0 Sz = 2,66(36‘
n, = 8 n, = 6

f, =7 f,=5

Il s’agit de savoir si la différence entre les deux
écarts-types empiriques S; et S, est significative au
niveau @ = 5 %. Nous obtenons

fi=7 S, =678 S =4597 |

5

1
K = -
f=5 §,=2,66 S% = 7,08 I

=21 =650
83

La table de la distribution F nous donne pour
fi=7 =5 0=5%:

F =488

Comme on a K > F, la différence est largement signifi-
cative au niveau =5 %.

Au tableau (1.4.4), nous avons indiqué quelques valeurs
de F et v/F pour les niveaux a=5% et € =2,5% en
supposant f, =f,. Il nous donne par exemple pour
oa=5%etn=35:

f,=1f,=4 \/F= 2,53 , ce qui veut dire que si I'on a
S

— <253

S,

la différence entre S; et S, n’est pas significative. On
doit donc admettre dans ce cas que les deux instruments
ont la méme précision.

I1 en résulte que si nous voulons comparer la précision de
deux instruments, nous devons avoir recours a des
échantillons de taille suffisamment grande, par exemple
n=20.



1.4.4
a=5% a=25%
f, = f, F NG F VF
2 19,0 4,36 39,0 6,25
3 9,28 3,05 15,4 3,92
4 6,39 2,53 9,60 3,10
5 5,05 2,25 7,15 2,67
6 4,28 2,07 5,82 2,41
7 3,79 1,95 4,99 2,23
8 3,44 1,85 4,43 2,11
9 3,18 1,78 4,03 2,01
10 2,98 173 3,72 1,93
1 2,82 1,68 3,47 1,86
12 2,69 1,64 3,28 1,81
13 2,58 1,61 3,12 1,77
14 2,48 1,58 2,98 1,73
15 2,40 1,55 2,86 1,69

Chapitre 2

Statistique d’ordre

2.1 Introduction

Les statistiques d’ordre sont des fonctions des obser-
vations qui tiennent compte de l'ordre ou de la valeur
des observations.

Ainsi, si nous avons mesuré une inconnue X a n reprises,
le résultat consiste en un échantillon

X1, X2, ..., Xp

de taille n. En plagant ses éléments x;, X,, ..., X, dans
l'ordre croissant des valeurs, nous obtenons un échan-
tillon ordonné, que nous désignons par

X< Xg < <Xp<- <Xy 2.1.1
et nous dirons que X(,) est la statistique d’ordre i.

Les éléments x;, X,, .., X, de I’échantillon sont
indépendants et ont la méme distribution que la popula-
tion X. Les statistiques d’ordre X/;), Xp), ..., Xy, par
contre, sont dépendantes vu que la probabilité de
chacune d’elles dépend de la réalisation des précédentes.

La statistique d’ordre a pour but I'étude des variables
ordonnées (2.1.1) et de leurs fonctions. Les grandeurs les
plus importantes sont les valeurs extrémes X1), X et le
range w = Xgy - X(7), qu’on appelle aussi étendue de
I’échantillon.

Notons en passant que les valeurs extrémes interviennent
entre autres dans I’étude de la sécheresse, de I'écoule-
ment des fluides, de la fatigue des matériaux, etc. Mais
elles peuvent également jouer un certain role en topo-
graphie.

Le range w permet une estimation rapide de 'écart-type
0.0n y a recours pour le controle du rendement ou de la
qualité de produits fabriqués en grande quantité.

Les valeurs extrémes constituent la base pour I’étude des
,outliers* (Ausreisser) en ce sens que si X(n) S'écarte trop
de la moyenne empirique

de ’échantillon, il y a nécessairement des éléments dans
I’échantillon qui accusent des anomalies; nous disons
dans ce cas qu’ils ont été contamineés.

Pour lestimation des paramétres d’'une population, on se
sert de fonctions linéaires de l’échantillon ordonné en
ayant recours au théoréme de Gauss-Markov relatif a la
méthode des moindres carrés. La statistique d’ordre se
révéle particulierement efficace lorsqu’une ou plusieurs
mesures doivent étre rejetées, car dans une telle situation
les méthodes classiques sont laborieuses et conduisent
souvent a des conclusions douteuses.

Les test sur la longévité sont une illustration idéale de
Papplication de la statistique d’ordre. En effet, vu que
ces observations sont toujours de trés longue durée, on
est souvent obligé de les interrompre aprés un certain
laps de temps et de les reprendre ultérieurement. Dans
ces conditions, la statistique d’ordre permet facilement
de tenir compte aprés coup des observations complémen-
taires, ce qui n’est pas le cas de la méthode classique.

Au cours de ces derniéres années, la statistique d’ordre a
recu de nouvelles impulsions dans différentes directions,
grice aux ordinateurs, qui ont permis d’étudier les
observations sous différents angles, ce qui a conduit a
une véritable analyse des observations.

Nous voyons donc que la statistique d’ordre tient
compte, comme la statistique classique, de la valeur des
observations, et de ce fait le résultat final dépendra de la
distribution de la population. Mais il y a possibilité de
s’en rendre indépendant en ayant recours a une théorie
plus générale, qui est la statistique de rang.

En appliquant la statistique d’ordre, on perd naturelle-
ment, comme avec toute statistique du reste, une
certaine quantité de l'information. Ce fait est do a la
méthode de calcul méme. Mais par rapport a la méthode
classique, la statistique d’ordre a I’avantage d’étre rrés
rapide si 'on dispose de tables numériques appropriées;
en outre, elle dépend moins des conditions initiales
(suppositions) que la méthode classique.

2.2 Distribution de la valeur la plus grande X(n) d’un
échantillon

La valeur la plus grande X/,,} d’un échantillon de taille n
étant d’un emploi fréquent, nous allons chercher sa
distribution. Voici ce qu’il faut entendre par la: pour
chaque échantillon de taille n, nous pouvons former une
suite ordonnée X;) < -+ < Xy avec les mesures. 11 est
évident que la valeur la plus grande X; varie d’un
échantillon a Tautre, et par conséquent X est une
variable aléatoire ayant une certaine fonction de distri-
bution, que nous allons calculer a partir de la distri-
bution de la population X.

Soit v une valeur fixe quelconque de X; voir fig. (2.2.1).

Pour que I’événement X(,,)<v se réalise, il faut que
toutes les valeurs x;, X, ..., X, de I’échantillon soient

P(X(,,)<v) = /'/n(V)

F————0——¢ X
z, x; Z, z, Z; ~
X=v
Fig. 2.2.1
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inférieures av. La probabilité P de cet événement est
donnée par

P (X(y<v) =P (x etx,et etx,<v) 2.2.1

Cette formule nous montre que la probabilité de
I'événement X(,,)<v est une fonction dev. Pour la
calculer, il suffit de remarquer qu’on a

P(x;<v)=F(v i=12..,n 222

ou F(v) désigne la fonction de distribution de la
population X. Mais comme les observations x;, Xz, ...,
X, sont indépendantes, nous avons

P(Xy<v) =P (x;<v) - P(x,<V) .- P(x,<v) 223
ce qui nous donne avec (2.2.2)
P(Xu<v) =H,w)=|FW|" 2.2.4
Nous constatons donc que
2.2.5

La probabilité de 'événement X/ < v est com-
pletement déterminée par la fonction de distribution
F (x) de la population.

et qu’elle peut facilement étre calculée a I'aide de la
formule (2.2.4).

La figure (2.2.2) nous montre la représentation gra-
phique de H,(v) pour la population normale standard
N (0;1).

Drstribution oe /fa_valeur fa_plus yrana’e
pour_une  population normale standard

N(o;7)

Fonctions _de _distribution H,(v)

70T ——mmmmmmmmm————m - -

9,8

0,6

0,4

0,27

Fig. 2.2.2

Vu qu'on a pour n’importe quelle distribution
0 < F(v) <1, il résulte de (2.2.4) que pour une valeur
fixe quelconque de v la probabilité de I’événement
Xm<v diminue lorsque la taille n de I’échantillon
augmente, ce qui est du reste évident.

Pour obtenir la densité de probabilité h,(v) de Xy, il
suffit de dériver (2.2.4) par rapport a v, ce qui nous
donne
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h,(V)=n- { F (V) } n=1 (y) 2.2.6

La figure (2.2.3) nous montre la représentation gra-
phique de h, (v) pour la population normale standard
X~ N (0;1).

Drstribution de /fa_valeur fa_plus grande
pour_une_ population normale standard
N(0;1)

Fonctions de fréquence A, (v)

hn (V)

77 = 50

70

0,8

7
77
0,6
7”7

0,4
0,2
o - v
2 4 0 4 2 3 4 5
Fig. 2.2.4

Ce résultat étant acquis, nous voulons calculer linter-
valle de confiance de X(n- En vertu de (2.2.4) et (2.2.6),
nous avons

P(v< Xy <v+dv)=h,(v)dv 2.2.7
ou bien, en vertu de (2.2.6),
P(v<X(,,)<v+dv)=n-{F(v)}n_’f(v)dv 2.2.8

ou F(v) désigne la fonction de distribution de la
population, tandis que f(v) est sa fonction de fréquence.

Afin d’intégrer I’équation (2.2.8), nous introduisons la
substitution
t=F(v) o<t 2.2.9
F(v) étant une fonction monotone croissante, la substi-
tution (2.2.9) est bi-univoque; elle fait correspondre a
chaque valeur de v une et une seule valeur de t et vice
versa pour 0 <t < 1; voir figure (2.2.4).

¢
t=Fv)
t+dt
FXe)
¢t
X(ﬂ)
14 X(ﬂ) V+¢/V
Fig. 2.2.3



En vertu de (2.2.8), la masse aléatoire dm, portée par le
segment (v, v + dv), est 2210

dm=P(v<X,,<v+dv)=n- { F(v)}"" f (v) dv
ce qui nous donne avec (2.2.9)
dm =P (v<X,)<v+dv)=n-t""dt 2.2.11

Mais vu que la transformation (2.2.9) est bi-univoque,
nous avons nécessairement

P(t<F (X)) <t+d) =P(v<X, <v+dv) 2.2.12
d’ou il résulte avec (2.2.11)
P(t<F(Xy,)<t+d)=n-t""dt 2.2.13

En intégrant cette équation par rapport a t entre les
limites O et 3, nous obtenons

PIF(X) < 8| =5" 2.2.14
ou bien, en prenant la probabilité complémentaire,
PIF(Xu)>p|=1-p" 0<p<l  22.15

ou F désigne comme précédemment la fonction de
distribution de la population X. Cette formule est tout a
fait remarquable vu qu’elle est valable pour toute
distribution F(X).
On obtient une interprétation stochastique de (2.2.15)
en remarquant que

2.2.16
F (X(n)) donne la fraction d’individus de la popu-
lation X, dont la valeur est inférieure ou égale a
élément le plus grand X/, de I’échantillon.

Nous en concluons que

2.2.17
F(X(n)) > (8 signifie que la fraction des individus
de la population X ayant une valeur x inférieure
ou égale a I'élément le plus grand X/, de
I’échantillon est au moins égale a .

Par conséquent F (X)) > (3 désigne un événement, dont
la probabilité est donnée par (2.2.15). L’ensemble des
valeurs (- <x <Xy) est parfois appelé ,, intervalle de
tolérance statistique unilatéral*’.

Pour mieux faire ressortir 'importance pratique de la
formule (2.2.15), nous allons considérer un

Exemple numérique

Lors de la vérification d’un plan topographique, on a
contrdlé n =46 points en notant les écarts plani-
métriques (erreurs) f;, fo, ..., fs6, et soit Xy I'écart
maximum qu’on a ainsi mis en évidence. Il s’agit alors de
savoir dans quelle mesure cette valeur X(n/ nous renseigne
sur la précision de ’ensemble du lever. Dans ce but, nous
introduisons I’hypothese

2.2.18
H: au moins le 95 % des erreurs de tout le lever a
une valeur x inférieure ou égale a X(n)-

La probabilité que cette hypothése soit vraie peut étre
calculée a I’aide de la formule (2.2.15) et nous obtenons,
en prenant par exemple = 0.95,

P (H = vraie) = 1 - 87 =0,9056 ~ 91% 2.2.19

ce qui nous permet de conclure que

2.2.20
Si I’on effectue 46 mesures de contrdle,ily a91 %
de chances qu’au moins le 95 % de toutes les
erreurs du lever aient une valeur x inférieure ou
égale & I’écart maximum X/p,), mis en évidence par
les mesures de controdle.

Cette méthode d’estimation permet au vérificateur de se
rendre facilement compte, au cours de la campagne de
terrain, si le nombre de mesures qu’il a effectuées est
suffisant ou non. En utilisant de plus un monogramme
approprié (voir figure 2.2.5), il est possible de tirer des
conclusions sans effectuer aucun calcul.

Nomogramme _ pour PA) = 1-,3"

Q
nn /] U n Vi 4 7
Te Q¢ ¢ Q¢ ¢ \ )
0,999 1 1 ya
’ 4 / 0
/ / / 4»1
/ / // #
/ 117 [ i
0,995
> 7 y / g
4.99 LA LA AL LA -
$ / 4 n
/f // WA e
/064) / y / 4 n ‘
I / pARNE M0
0,95 ! 17 aw .
E— 1 wa - n =z 8
9,90 /'/' 'YX AT | LA 6
Dz T -7
0,75 <
S 3 S Q S R
< Ny Ny ﬁ Ny < Ny
Lxemple :
B=090 n=50 == P(A)=0,995

Fig. 2.2.5

La méthode que nous venons d’esquisser trouve des
applications dans les domaines les plus divers et notam-
ment aussi dans 'essai des matériaux.

2.3 Estimation de l’écart-type 0. Distribution du range
réduit.

Si 'on a un échantillon ordonné X/j), X/2), .., X(n);
provenant d’une population X ayant pour variance a?,
on appelle w = Xy - X range et

[ 1
| K=K 2.3.1

w=1

_1
V=3
range réduit de I’échantillon. Si f(X) est la fonction de
fréquence d’une variable aléatoire réduite X, I'intégrale
de probabilit¢ de W, pour un échantillon de taille n,
s’écrit
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2.3.2

Elas X+W 5,
P(W)=nff(X) [ff(u)dujl dX
— X

L’application pratique de cette formule ne devient
cependant possible que si I'on connait I'écart-type o
d’une mesure. Si tel n’est pas le cas, on prendra pour ¢
une valeur approchée résultant d’une estimation.
Lorsqu’on a affaire a4 une population normale, 'appli-
cation de la formule (2.3.2) devient trés simple étant
donné qu’on dispose de tables numériques qui nous
donnent la valeur de P(W) en fonction de W et de n; voir
par exemple ,,Biometrika Tables for Statisticians‘ de
Pearson & Hartley, vol. 1, table n° 23.

Afin de mieux faire ressortir I'utilité pratique de cette
procédure, nous allons considérer un

Exemple numérique

Un angle parallactique a été mesuré 9 fois avec un
théodolite ayant un écart-type o= 3°C Les valeurs
extrémes de ’échantillon sont

X ()= 08784 04¢¢
X ()= 087 8416
w =X Xy = 12 (range)

w=1,-12%_, s
=g w= 3 = (range réduit)

n=9 P (W) =0,8929 (tables)

Dans ces conditions, la probabilité d’obtenir pour un
échantillon de taille n = 9 un range w < 12%est de 89 %.
Si I’on ne connait ni la moyenne m ni la variance o>
d’une population X, on en préléve un échantillon x,,
Xn, qui nous donne I’estimation ponctuelle

ceey

N

2

[

x=1%x & (x;-%)? 2.3.3

1
n-1:
1 1

Il
~

[

1

Mais on peut aussi obtenir un estimateur de 0, soit o en
n’utilisant que les valeurs extrémes X/ et Xy de
I’échantillon. On démontre en effet que

Si I’on a affaire 4 une distribution normale (N (m;0?),
dont on posséde un échantillon ordonné

Xpp<Xpg< <X

de taille n, la grandeur

~ 1 1

6=, =g, Kmw- Xa)

est un estimateur sans biais de I’¢art-type, les valeurs
du coefficient d,, étant données par la table (2.3.5).

2.3.4

2.3.5
PO
X~N(m,(52) O'Zd_(X(,,)‘X(]))
n
1 1
n — n e an
d, a,
1 - 11 0,3152
2 0,8862 12 0,3069
3 0,5908 13 0,2998
4 0,4857 14 0,2935
5 0,4299 15 0,2880
6 0,3946 16 0,2831
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7 0,3698 17 0,2787
8 0,3512 18 0,2747
9 0,3367 19 0,2711
10 0,3240 20 0,2677

Pour des échantillons de plus grande taille, voir ,,Bio-
metrika Tables for Statisticians* vol. I, de Pearson &
Hartley, éd. 3, tables 27.

Exemple

n=_8 w = 20 = 0,3512 & =102

1
(1)1
Nous voyons donc que l’estimation de I'écart-type a
laide du range est excessivement simple. Elle a surtout
été développée pour l'industrie, ou le controle doit étre
fait par du personnel non spécialisé.

£Fstmateur & = 7/— (Im) —/l’(,))
_— n
no- 1
1 dn
0,8
0,6 \
NS
0,4 T~—
0,2
5 n

2 4 é 8 0 2 14 16 1 20

Fig. 2.3.1.

La figure (2.3.1) nous donne la représentation graphique
de l/dn en fonction de la taille n de I’échantillon. On voit
par exemple qu’on a

pour n=4 ézO,SW
pour n= 10 §~03w
Exemple

On a mesuré un cdté de polygone n =8 fois avec une
mire horizontale de 2 meétres. Les valeurs de I’angle
parallactique X, exprimées en®, sont

x; = 11558 x, =11553 x3=11552 x4=11544
Xs =11542 x4 =11562 x;=11550 x5 =11547

L’estimation ponctuelle classique de la moyenne m et de
I’écart-type 0 nous donne

=l S”“ - cc
a5 11551,00
[:

n
6=1/—= (x;-%? = 6,78
=

En utilisant la statistique de range, nous obtenons
1

>
~

pour n=8 4 =03512
n
X ()= 11562 ‘
0= KX =20
X,y = 11542 I
5 = dL X=X ) = 0,3512x 20 = 7,02
n



Afin de comparer I’estimation classique ¢ de o avec celle
¢ fournie par la statistique d’ordre, nous avons traité
40 échantillons par les deux méthodes. Il s’agit de
40 codtés de polygone, dont chacun a été mesuré entre 6
et 10 fois avec la mire horizontale en invar. 0 désigne
dans ce cas I’écart-type de I'angle parallactique. Comme
il dépend de la longueur du cdté, les échantillons
proviennent de populations distinctes. Les résultats
obtenus sont indiqués au tableau (2.3.6), ou nous avons

N©O = numéro de I’échantillon.
n = taille de I’échantillon.
G estimation classique de 0, exprimée
en ¢,
& = estimation fournie par la statistique
I6_&l d’ordre, en €.
g éc . 100 = écart en % entre les deux estimations
2.3.6
No o 188l9p  No  n 18=8lig
G G
1 6 3,76 21 6 12,38
2 8 3.54 22 8 13,30
3 6 16,61 23 9 16,54
4 8 19,25 24 7 6,20
5 8 14,08 25 8 6,15
6 9 7,76 26 8 2,93
7 8 17.84 27 8 13,30
8 7 16,03 28 8 16,19
9 8 11,43 29 8 3,95
10 9 27,99 30 8 19,21
11 9 4,44 31 7 4,94
12 8 6,96 32 8 2,12
13 8 6.33 33 8 10,31
14 8 0,00 34 8 4,69
15 8 8,00 35 9 7,47
16 8 7,03 36 9 14,88
17 8 4,09 37 10 13,90
18 8 1,93 38 8 0,00
19 8 3,95 39 8 1,74
20 8 12,06 40 8 6,36

{ L 100} =924%
o moyenne

L’écart moyen entre les deux estimations n’étant que de
9 %, nous constatons que l’estimation effectuée avec la
statistique d’ordre est suffisamment précise pour pouvoir
étre appliquée dans la pratique. Pour I’échantillon n© 10,
nous avons cependant un écart de 28 %, ce qui est
inadmissible. Nous verrons par la suite que cette ano-
malie provient sans doute d’une ou de deux mesures qui
s’écartent trop des autres, raison pour laquelle il y a lieu
de les rejeter. Le rejet ne doit cependant pas s’effectuer
arbitrairement; il est préférable d’avoir recours a une
théorie appropriée que nous indiquerons au chapitre 3.

Vu que I'estimateur §, fourni par la statistique d’ordre,
ne dépend que des valeurs extréfnes Xm) et Xqg), il est
évident qu’une différence entre g et g provient essen-
tiellement de ces derniéres valeurs. Il doit donc étre
possible d’établir une théorie de -rejet d’observation
basée sur la différence G- respectivement sur le
rapport /3.

Chapitre 3

Réjection d’observations

3.1 Généralités

L’étude de la réjection d’observations est assez com-
pliquée; aussi a-t-elle donné lieu 4 de nombreuses
recherches. Elle a pour buts essentiels

a) I’élimination des ,,outliers*‘ (Ausreisser).

b) 'analyse des mesures ,,contaminées*, c’est-a-dire
Panalyse des observations qui ne proviennent pas
toutes de la méme population; observations hétéro-
génes.

c) ’étude des observations s’écartant nettement d’une
distribution moyenne, obliquité, etc.

Les résultats connus dans ce domaine ont surtout été
obtenus grace a la statistique d’ordre.

En mesurant une inconnue plusieurs fois, il arrive
fréquemment qu’une ou deux mesures s’écartent plus ou
moins des autres éléments de ’échantillon. On est alors
obligé de les rejeter en admettant qu’elles proviennent
d’une autre population. Souvent, I’analyse des mesures
fait ressortir des éléments douteux dont on ne sait pas
8’il y a lieu de les maintenir ou s’il est préférable de les
rejeter. Mais en rejetant une mesure conforme (correcte),
ou en conservant une mesure non-conforme (conta-
minée), on risque d’introduire un biazis dans 1’échan-
tillon. Nous nous trouvons du reste dans la méme
situation lors du contrdle statistique de la qualité d’un
produit fabriqué en grande quantité. Dans ce cas, on
parle d’erreurs du typel ou du type II, notions bien
connues en statistique classique.

Rappelons toutefois que le but de cette étude n’est pas
la recherche d’erreurs grossiéres (fautes); il s’agit uni-
quement de savoir si les éléments d’un échantillon
constituent un ensemble homogéne ou si I'on doit
admettre que certaines de ces mesures proviennent d’une
autre population.

L’introduction d’un critére pour la réjection d’obser-
vations nous oblige a considérer au préalable les points
suivants:

1) Du moment que chaque mesure nous fournit une
information sur la population, il est souhaitable de
conserver toutes les mesures. On n’éliminera donc que
le strict nécessaire, et ceci uniquement lorsqu’on est
quasi certain qu’on a affaire 4 une contamination.

2) Si l'on veut obtenir une population sans conta-
mination, on doit ou bien rejeter les mesures conta-
minées si elles ont été reconnues comme telles, ou
bien avoir recours a4 des méthodes d’estimation
réduisant l'influence de la contamination au mini-
mum.

Quoiqu’on fasse, il faut veiller 4 ce que la procédure
d’épuration ne risque pas d’entrainer la réjection de
mesures conformes.

3.2 Suppositions, conditions initiales

En effectuant un essai, nous sommes obligés d’introduire
au préalable un certain nombre de suppositions ou
conditions initiales. Cela faisant, on admettra générale-
ment que

1) la taille n de I’échantillon a été fixée.
2) une proportion (1-7) des observations provient
d’une distribution normale N (m;0?).
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3) une proportion y des mesures a une autre origine, soit
qu’elle provienne
a) de la population N (m + A0;0%) ou
b) de la population N (m;A*0?)

Une telle analyse nous permet de considérer une
demi-douzaine de possibilités, qu’il serait cependant trop
long d’examiner ici. Dans ce qui suit, nous nous
bornerons a I'étude d’un seul cas, qui est celui ou le
range w et la variance empirique S sont tirés d’un méme
échantillon. C’est du reste le cas qui est & la base du
tableau (2.3.6).

3.3 Distribution de YW/S si w et S proviennent du méme
échantillon

Soit X une population normale N (m;0?), de laquelle on
posséde un échantillon ordonné de taille n

X)s X(2)y s Xy
Nous pouvons alors calculer le range w = Xy - Xg) et
I’écart-type empirique

1 n
S=A/—— (x;-%)
n-1 /5

La distribution du rapport W/g a été calculée en 1964
par Pearson & Stephens, qui ont publié une table
donnant le point de pourcentage de W/g en fonction de
w et n; voir ,,Biometrika Tables for Statisticians* vol. I,
table 29 c. Nous donnons ci-aprés un court extrait de
cette table.

3.3.1
Point de pourcentage supérieur du rapport W/S

n 100% 5,0% 2,5% 1,0 % 0,5 % 0,0 %
3 1,997 1,999 2,000 2,000 2,000 2,000
4 2,409 2,429 2,439 2,445 2,447 2,449
5 2712 2,753 2,782 2,803 2,813 2,828
6 2,949 3,012 3,056 3,095 3,115 3,162
7 3,143 3,222 3,282 3,338 3,369 3,464
8 3,308 3,399 3,471 3,543 3,585 3,742
9 3,449 3,552 3,634 3,720 37172 4,000
10 3,57 3,685 3,177 3,875 3,935 4,243

L’application de cette méthode a I’exemple considéré
sous (2.3) a donné les résultats indiqués au tableau ci-

aprés pour a =5 %. Dans celui-ci, (W/S)OFS% désigne le
point de pourcentage supérieur, tiré de la table (3.3.1).
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Si 'on a W/S < (Y/S)a,: I’échantillon est conforme. Si
nous optenons par contre W/S > ("/S)a, I'’échantillon
est 4 examiner de plus prés et 'une ou l'autre (éven-
tuellement les deux) des valeurs extrémes doit étre
rejetée. Lorsqu’on ne voit pas a priori laquelle des deux
valeurs extrémes doit étre éliminée, on a la possibilité
d’appliquer un autre test faisant intervenir la moyenne
empirique X.

No w S w/s n M/S) «=5%
1 7 2,66 2,63 6 3,012
2 20 6,78 2,95 8 3,399
3 8 2,71 2,95 6 3,012
4 18 5,30 3,40 8 3,399
5 9 2,77 3,25 8 3,399
6 12 4,38 2,74 9 3,552
7 8 3,42 2,34 8 3,399
8 9 2,87 3,14 7 3,222
9 10 3,15 3,18 8 3,399

10 14 3,68 3,80 9 3,552

11 14 4,51 3,10 9 3,552

12 7 2,30 3,04 8 3,399

13 8 3,00 2,67 8 3,399

14 9 3,16 2,85 8 3,399

15 10 3,25 3,08 8 3,399

16 13 4,27 3,04 8 3,399

17 6 2,20 2,73 8 3,399

18 6 2,07 2,90 8 3,399

19 9 3,04 2,96 8 3,399

20 9 2,82 3,19 8 3,399

21 3 1,05 2,86 6 3,012

22 5 2,03 2,46 8 3,399

23 18 5,20 3,46 9 3,552

24 9 3,55 2,54 7 3,222

25 10 3,74 2,67 8 3,399

26 8 2,73 2,93 8 3,399

27 5 2,03 2,46 8 3,399

28 5 2,10 2,38 8 3,399

29 9 3,04 2,96 8 3,399

30 6 1,77 3,39 8 3,399

31 13 5,06 2,57 7 31229

32 11 3,78 2,91 8 3,399

33 7 2,23 3,14 8 3,399

34 11 4,05 2,72 8 3,399

35 14 5,09 2,75 9 3,552

36 14 4,10 3,42 9 3,552

37 22 6,26 3,51 10 3,685

38 9 3,23 2,79 8 3,399

39 15 5,18 2,90 8 3,399

40 10 3,30 3,03 8 3,399

Dans I’exemple ci-dessus, les échantillons n© 4, 10 et 30
doivent étre revus. En faisant une représentation gra-
phique des mesures, on trouve sans autre la cause des
forts écarts mis en évidence par le tableau (2.3.6).
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