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Estimation stochastique de la précision des mesures
par W.K. Bachmann

Résumé

Ce bref aperçu des principales méthodes, utilisées pour
l'estimation de la précision de mesures, a pour but essentiel d'attirer
l'attention du topographe sur ces méthodes qui, hélas, semblent
souvent encore être ignorées. A l'aide d'exemples numériques,
l'utilisation des distributions X2, t et F a été montrée et l'emploi
de séries de mesures ordonnées pour l'estimation rapide
esquissée.

Zusam menfassung

Diese kurze Darstellung der wichtigsten statistischen Methoden
zur Schätzung der Genauigkeit von Messungen bezweckt vor
allem den Vermessungs-Fachmann auf diese Methoden, die leider
immer noch etwas stiefmütterlich behandelt werden, aufmerksam

zu machen. Es wird die Verwendung der X2, t und F-Vertei-
lungen anhand numerischer Beispiele gezeigt und die Bedeutung
der geordneten Messreihen zur angenäherten Schätzung der
erreichten Genauigkeit kurz dargelegt.

Chapitre 1

Estimation par intervalles de confiance

1.1 Généralités et distribution normale

La statistique étant une science exacte, il est difficile,
voire même impossible d'en parler sans avoir recours aux
mathématiques. Dans ce qui suit, je m'efforcerai cependant

d'utiliser le moins de formules possible tout en
tâchant de faire ressortir quelques idées fondamentales.

De nos jours, la statistique est si vaste et si
universellement appliquée que personne ne peut prétendre la
connaître intégralement. Aussi n'ai-je nullement l'intention

de brosser un tableau d'ensemble; je me bornerai à

examiner sous un angle critique quelques différences de

conception fondamentales qui séparent la statistique de
la théorie des erreurs classique. Cela faisant, je supprimerai

la plupart des démonstrations mathématiques, me
bornant à signaler uniquement les résultats.
Lorsqu'il s'agit de déterminer expérimentalement la
valeur d'une inconnue X, on la mesure une ou plusieurs
fois au moyen d'un équipement approprié. En répétant
la mesure, on peut poursuivre deux buts, suivant qu'il
s'agit uniquement d'un contrôle ou de la recherche d'une
plus grande précision.
Du point de vue de la statistique, l'ensemble des valeurs
qu'une grandeur X peut prendre au cours du processus
de mesure constitue une population et chaque valeur
possible est un individu de cette population.
Dans ces conditions, une population n'est jamais connue
complètement, et les observations servent précisément à

la découvrir, à la saisir dans la mesure du possible.
Mais il y a d'autres cas, où la population peut être
connue complètement grâce aux observations. Il en est
généralement ainsi lorsque la population n'est constituée
que par un nombre fini d'individus. Citons comme
exemple le recensement des habitants d'une contrée.
En géodésie, la situation est autre en ce sens que la
population est constituée par toutes les mesures qu'on
pourrait effectuer sur l'inconnue si l'on était à même de
les faire; mais pour des raisons d'ordre pratique et
économique, le nombre de mesures est toujours très
limité dans ce domaine. On voit que dans ce cas la

population totale, comportant une infinité d'individus,
est purement fictive; c'est une conception de l'esprit.
Si une série de n mesures nous fournit les valeurs xi, xj,
—, xn, celles-ci constituent un échantillon de taille n de la

population X. Mais dans tout échantillon les éléments

xj, X2, x„ doivent être indépendants et choisis ,,au
hasard" dans la population. Pour être précis, il faudrait
naturellement définir ce que l'on entend par l'expression
„au hasard". Cette définition est d'autant plus importante

qu'on utilise aujourd'hui en statistique
expérimentale des échantillons engendrés par un ordinateur, ce

qui nous dispense d'avoir recours à des mesures. Aussi un
certain nombre des exemples que nous donnerons ont-ils
été „fabriqués" par ordinateur.
Pour des raisons d'ordre pratique, la taille d'un échantillon

obtenu par un procédé de mesure sera toujours
très limitée et de ce fait l'échantillon ne donnera qu'une
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vue approchée de l'ensemble de la population. Mais il est
entendu que la quantité d'information augmente avec le

nombre des mesures, à condition que celles-ci soient
exemptes d'erreurs systématiques.
Les expressions „échantulon" et „échantillonnage" ont
leur origine dans les applications industrielles, où l'on
contrôle périodiquement la qualité du produit fabriqué
par des sondages, c'est-à-dire par des échantillonnages.
La notion d'échantillon intervient cependant aussi dans
des domaines tout autres, tels que la médecine, la

pharmacologie, la biologie, l'économie, l'électronique,
l'assurance-vie, etc.

Ayant obtenu n mesures x\, X2, x„ pour l'inconnue

X, nous pouvons construire un histogramme en

reportant en abscisse les valeurs x/ et en ordonnée les

fréquences ou les fréquences relatives des mesures
groupées par classes. Dans le dessin de l'histogramme, la

largeur choisie pour la classe joue un grand rôle, car si

elle est trop petite, l'histogramme prend une allure
irrégulière et si elle est trop grande, on perd une partie
de l'information.

Si tout se passe normalement, l'histogramme n'aura
qu'un seul maximum. S'il en comporte deux ou plus,
l'ensemble des mesures est hétérogène et nous devons
admettre qu'il provient de deux populations distinctes
ou plus; voir fig. 1.1.2.

Cette méthode est par exemple utilisée en biologie pour
la séparation de deux espèces.
En mensuration, les histogrammes ne doivent comporter
qu'un seul maximum, car sans cela les mesures n'auraient
pas de sens, ou accuseraient une variation de la grandeur
à déterminer au cours du processus de mesurage
(exemple: réfraction verticale ou horizontale, due à un
changement du milieu ambiant).
Ayant dessiné l'histogramme pour un ensemble de

mesures, on est naturellement tenté de le remplacer par
une fonction f g(x) en choisissant les valeurs mesurées

x pour abscisses et la fréquence pour ordonnée f.
Dans ce but, on prend pour g(x) une forme algébrique

appropriée, qui peut comporter un ou plusieurs
paramètres. En métrologie, la courbe de Gauss a une
importance particulière vu que la majorité des mesures
suivent à peu près cette loi. En fixant la forme
algébrique de g(x), nous choisissons un modèle
mathématique pour la présentation de la population. Si la

correspondance entre ce modèle et l'ensemble des

mesures est jugée suffisamment bonne, nous acceptons le

modèle, dans le cas contraire nous le remplaçons par un
autre, plus approprié. Cette procédure est bien connue
en physique, où l'on change de modèle presque tous les

jours pour tenir compte des dernières découvertes. Les

géodésiens, plus conservateurs, sont restés fidèles à la loi
de Gauss! Cette dernière est donnée par la fonction de

fréquence (relative)

y f(x)
i

2tt ct

K-W lu
dans laquelle f(x) désigne la densité de probabilité au

point x, tandis que m et a sont deux paramètres qui
s'appellent moyenne et écart-type.

Comme il aurait été trop compliqué de calculer des
tables numériques pour chaque valeur de m et de a, on a

recours à la substitution
x-m (variable réduite) 1.1.2

qui ramène toutes les distributions normales N (m;a à

un type unique N (0;1), dit distribution normale standard

ou réduite. C'est pour cette dernière qu'on a calculé
des tables donnant notamment les valeurs de
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1.1.3
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L'ajustement de la fonction de fréquence f(x) sur un
histogramme, respectivement un échantillon

x,,x2,..., xn échantillon 1.1.4

est un problème bien connu qu'on peut résoudre en
appliquant la méthode du maximum de vraisemblance,
qui nous fournit les estimateurs (ou estimations)

1.1.5

On est ainsi amené à un jeu de formules bien connu qui
ne nous offre rien de nouveau. Une application numérique

est donnée sur les Fig. 1.1.5 et 1.1.6
En introduisant ces estimateurs, nous remplaçons les n
mesures xj, X2, xn par les deux valeurs m et â, dont
la première représente la valeur compensée de
l'inconnue X, tandis que la seconde caractérise la précision

des mesures. En procédant ainsi, on perd
naturellement une partie de l'information fournie par les

mesures, ce qui est regrettable mais inévitable. Nous
disons dans ce cas qu'on a fait une estimation
ponctuelle.
Quoiqu'on se trouve dans un domaine bien connu en
choississant rh et à, c'est ici que les premières difficultés
commencent. En effet, nous avons calculé m et â à partir
d'un ensemble de mesures x\, X2, xn bien déterminé,
mais nous ne savons pas ce que l'on aurait obtenu si l'on
avait effectué une seconde série de mesures y i,..., yn. La
différence entre ces deux séries aurait-elle eu une
influence significative sur m et ô ou non? Autrement
dit, nous ne connaissons pas la confiance que nous
devons attribuer à m et â. On peut toutefois démontrer
que les estimateurs m et ô tendent vers m et o si n -*¦ °°,
ce qui nous montre que la confiance que nous pouvons
attribuer au résultat final augmente avec n.

Ajusfemenf de N(m;<rz) sur un échanfi/Ion
Calcul de /a moyenne et de /'écart-type

Mesures

Xj - X fyj fjWvaleurs
Xj

fréquences

fi
181

182
183

104

I8S
186
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130
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192

1

1

z
7

13

18

26
16

3
4
1

2

- 5,76

- 4,76

- 3,76

- 2,76

- 1,76

- 0,76
+ 0,Z4
+ 1,24
+ 2,Z4
+ 3,24
+ 4,24
+ 5,24

- 5,76
- 4,76

- 7,52
- 13,32

- 22,88
- 13, 68

+ 6,24
+ 13,84
+ Z0,I6
+ 12,36
+ 4,24
+ 10,48

33,1776
22, 6576

28,2752
S3, 3232

40, 2688

10, 3368

1, 4376

24, 6016

4S, IS84

41,3304
17, 3776

S4,3I52
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Fig. 1.1.5
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Pour chiffrer cette confiance, on a recours à une
estimation par intervalle de confiance. Si l'on connaît la

valeur de l'écart-type a, l'intervalle de confiance de m est

défini par l'équation

P (x - A ax < m < x + ¦ ox)= SE 1 - a

avec 0jf %/n
1.1.6

où a désigne le niveau de confiance et P la probabilité,
tandis que X est une fonction de a donnée par les tables
de la distribution normale standard.

L'écart-type de x est o^a/yn/ Le niveau de confiance a
peut être choisi arbitrairement; SE 1-a désigne la
sécurité. La relation 1.1.6) est obtenue très facilement à
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l'aide de la théorie des fonctions caractéristiques qui
nous montre que £L m) a pour distribution N (0;1), ce

qui fait qu'on a *

(^iyL<h) -yfbe-i\ °x \f2Tja

1.1.7

dy *(b)-tf(a)

La table (1.1.8) nous donne quelques valeurs pour
l'intervalle de confiance de m. 1.1.8

Intervalle de confiance de la moyenne m de la
distribution N (m;a

Intervalle Sécurité SE :

100-« %
Niveau de
confiance c. %

x± 1,645 7vn

x± 1,960 °/m

x + 2,576 Tvn

x± 3,291 7vn

x ± 3,891 7vn

90%

95%

99%

99,9 %

99,99 %

10%

5%

1%

0,1 %

0,01 %

Ce tableau nous montre que pour un niveau de confiance
a donné, l'intervalle de confiance diminue lorsque n
augmente, ce qui a pour conséquence une diminution de

l'insécurité de x, c'est-à-dire une augmentation de la

précision de x avec la racine carrée de n. Ceci n'est rien
d'autre qu'une conséquence de la loi de la propagation
des erreurs.
En ne connaissant rien de la statistique, on part
généralement de l'idée que la valeur de m doit être située
à l'intérieur de l'intervalle

(x- o>,x+o>)

mais il résulte de la théorie que nous venons d'esquisser
qu'il n'y a que le 68 % des résultats qui remplissent cette
condition; nous avons en effet

P(x- lo^ <m< x+ lojj)» 68% 1.1.9

P (x - 2ct^ < m < x + iy « 95%

P (x - 3ct^ < m < x + 3o>) ~ 99,7%

Comme il est souhaitable d'avoir au moins une sécurité
de 95 %, nous sommes obligés de compter avec des
écarts de ±2a^ de part et d'autre de la valeur
compensée x.
La situation devient encore plus défavorable si nous
prenons l'ellipse d'erreur moyenne, qui est d'un emploi
fréquent en triangulation et en trilatération. Dans ce cas,
la probabilité qu'un point tombe à l'intérieur de l'ellipse
n 'est que de 39 %. On peut en effet démontrer que

Si nous rapportons l'ellipse d'erreur moyenne à ses

axes p et q et que mx, my désignent les coordonnées
vraies du point à déterminer, la probabilité P(X2

qu'un point (x, y) tombe à l'intérieur de l'ellipse

(^)2+(^)2^2
est donnée par

1.1.10

P(XT2ï -e 2

Le tableau ci-après nous donne quelques valeurs de
P(X2).

X

P(X2)

0,76 1,18 1,67 2,15 2,45 3,04

25 % 50 % 75 % 90 % 95 % 99 %

1.1.11

Il en résulte que si nous voulons avoir une sécurité de
95 %, qui est pratiquement souhaitable, nous devons
agrandir l'ellipse d'erreur moyenne 2,45 fois, nécessité
dont on oublie souvent de tenir compte dans les

applications pratiques.
Faisons encore une remarque au sujet des fautes (Aus-
reisser) qu'on peut trouver dans une série d'observations.
La Probabilité qu'une mesure x s'écarte de plus de 3a de
la moyenne empirique est d'environ 3 %o\ vu que cette
probabilité est très faible, on a l'habitude de rejeter ces

mesures. Cette façon de faire est cependant assez

arbitraire, car si l'on étudie le problème de plus près en
ayant recours à la statistique d'ordre, qui est
relativement récente, on comprend plus facilement pour
quelle raison on a fréquemment des difficultés en
calculant l'ajustement d'une distribution.

1.2 Distribution t de Student

La formule (1.1.6), que nous venons de mentionner, a

cependant un défaut vu qu'elle fait intervenir l'écart-
type a de la population, qui sera généralement inconnu.
On peut remédier à cet inconvénient en ayant recours à

la distribution t de Student, dont la fonction de

fréquence est représentée sur la figure (1.2.1) pour
différents degrés de liberté f n -1.

Distribution t de Studenf

Foncfions de fréquence g„(t) pour

f "¦-<-¦ 4-

30

i\SmM
0,4- /y\~-—— f= 30

0,3- // /-v ^\ (a norma/e

0,2- j/f=\^0,1-^r^r^f-' ^w^_
t0 -4-3-2-101234

Fig. 1.2.1

Voici comment on applique cette dernière distribution:

Règle mnémotechnique
Pour déterminer l'intervalle de confiance de la moyenne
m d'une population normale N(m;a2) à variance
inconnue, au niveau de confiance a et f n- 1 degrés de
liberté, on extrait de la population un échantillon xi,X2,

xn avec lequel on calcule d'abord la variance
empirique S2 de x, puis celle de x, soit S|, en appliquant
les formules

1

i=l
s^4s2
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Puis on choisit un niveau de confiance a et on cherche
dans une table de la fonction de distribution de t la
valeur de h-al en fonction de a et de f n - 1. Cela

étant, on a la formule

P(x-t7_a/ Sj<m< x + t/+<y S^) 1 -a 1.2.1

qui nous donne le domaine de confiance de m au niveau

a. Notons que (1.2.1) nous donne un domaine de

confiance symétrique par rapport à x, qu'on a obtenu en

coupant à chaque extrémité de la distribution t la queue
de probabilité a/2 ; voir fig. 1.2.2.

SmCt)' xi--*
sj3m(t)dt-/-cc

~Û1-Vz

«/2 k «/2

^WÊÈàm ¦L

-t o t/-V2

Fig. 1.2.2

Donnons quelques valeurs de cette table afin de pouvoir
les comparer avec les résultats (1.1.8) précédemment
obtenus.

1.2.2

Valeurs de t,_a/

Niveau de
a% -*¦ 10% 5% 1 %

confiance

Sécurité (1- tx)% -> 90% 95% 99%

f n-1 2 2,920 4,303 9,925
5 2,015 2,571 4,032

10 1,812 2,228 3,169
15 1,753 2,131 2,947
20 1,725 2,086 2,845

Un examen rapide de ce tableau nous montre que
a) quelle que soit la taille n, les valeurs de h-a/2 sont

toujours supérieures à celles du tableau (1.1.8) pour
un niveau de confiance a donné. Ceci est évident, car
on possède une plus petite quantité d'informations
que précédemment du moment que o est inconnue.

b) pour les conditions qui devraient être réalisées dans la

pratique, soit a 5 %, nous obtenons par exemple
3 f=n-l =2 t, ai 4,303 et

f=n-l
h-%

-% 2,571

1.3 Distribution \2

Si l'on a affaire à une population normale X ~N (m;a2),
dont on ne connaît ni la moyenne m ni la variance a2,
on en extrait un échantillon de taille n, soit xj, X2,..., xn.
Cela étant, on calcule la moyenne empirique

5 (x, + x2 +... + x„) 1.3.1

qui est, nous l'avons vu plus haut, un estimateur sans
biais de m. On calcule ensuite les grandeurs

i 1,2, n

1
/;

s2=-4-1 e-*,)2 =-H-

1.3.2

1.3.3

S2 étant par définition la variance empirique; c'est un
estimateur sans biais de a2. Pour connaître la précision
de S2, on a besoin de la distribution x2 dont la fonction
de fréquence est représentée par la figure (1.3.1) pour
différentes valeurs de f n— 1.

Distribution Zz Cchi carré

Fondions t/e fréquence

[1
0,25- X / -R2ML. f •

4.

10
20

0,20-

0,15- \Y^f=4
0,10 - \\\r^f='°
0,05 - \À \/—-\ /f=2°

l\\y \^^ \^^ x2

0
i i i i i i i i l
5 10 15 20 25 30 35 40

Fig. 1.3.1

L'utüisation pratique de cette distribution est facilitée
par l'emploi de tables numériques qui donnent les
valeurs critiques de x2 en fonction du niveau de
confiance a et du nombre de degrés de liberté f n- 1.

Pour calculer l'intervalle de confiance de a2, on coupe à

chaque extrémité de la distribution une queue de

probabilité "/2 ; voir fig. (1.3.2).

/nterna/le de confiance de cr2

f(X2) fonction de fréquence de Z2

11 pfz*)

SE oc
oCCA

Yi

zX
Yz '-%

+ z2

Fig. 1.3.2

Règle mnémotechnique
Pour trouver l'intervalle de confiance de a2 en fonction
de S2 et du niveau de confiance a, on extrait de la table
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de la distribution X2 les valeurs critiques x'/_a/ et ainsi que leur rapport, en plaçant au numérateur la plus

<l/2

la relation
Cela étant, l'intervalle de confiance est donné par

n-1

"'-%
S2<o2 1.3.4

Application
Pour a 5 %,
donnent

les tables de la distribution x nous

5%

% X'-%
yy2

2

3

4

5

6

7

8

9

10
11

12

13

14
15

0,051 7,38 0,52
0,216 9,35 0,57
0,484 11,1 0,60
0,831 12,8 0,63
1,24 14,4 0,65
1,69 16,0 0,66
2,18 17,5 0,68
2,70 19,0 0,69
3,25 20,5 0,70
3,82 21,9 0,71
4,40 23,3 0,72
5,01 24,7 0,73
5,63 26,1 0,73
6,26 27,5 0,74

6,26
3,73
2,87
2,45
2,20
2,04
1,92
1,83
1,75
1,70
1,65
1,61

1,58
1,55

d'où nous tirons par exemple

pourn 4:f=3 0,57 S < | a | < 3,73 S

pour n= 12 : f 11 0,71 S < | a \ < 1,70 S

Vu que la taille des échantillons utilisés en géodésie est

généralement très petite, nous devons compter pour
n 4 avec un domaine de confiance de

0,6 S < | a | < 3,7 S au niveau a 5 %.

grande des deux valeurs S2 et S|. En supposant que ce

soit S|, nous calculerons donc

k y 1.4.3

qui a une distribution F de Snedecor avec f j m - 1

degrés de liberté au numérateur et f2 n - 1 degrés de

liberté au dénominateur. Si les deux instruments ont la
même précision, on doit trouver K * 1. Si tel n'est pas le

cas, il s'agit de savoir si la différence constatée est

significative au niveau de confiance a ou non.

Exemple
Soient ei et e2 deux côtés de polygone qu'on a mesurés

plusieurs fois avec une mire horizontale en invar. Le
tableau ci-après nous donne les angles parallactiques,
exprimés encc, ainsi que les estimateurs x et ô= S de

chacun d'eux.

Côté ei Côté e2

11558cc
11553
11552
11544
11542
11562
11550
11547

7495cc
7491
7493
7495
7492
7488

x 11551,OOcc

S, 6,78ec

n, 8

f, 7

X :- 7492,33cc
s2 2,66cc

n2 6

h 5

Il s'agit de savoir si la différence entre les deux
écarts-types empiriques Si et S2 est significative au
niveau a 5 %. Nous obtenons

S2

K -T 6,50
I', S, 6,78 S

S2 2,66

1

S2

45,97

7,08

1.4 Distribution F de Snedecor

Lorsqu'il s'agit de savoir si deux équipements de mesure
donnent la même précision ou non, on emploie la
distribution F de Snedecor, qui est également donnée

par des tables numériques. Soient

1.4.1

les valeurs obtenues en mesurant avec l'instrument 1 une
inconnue X m fois et avec l'instrument 2 une inconnue
Y n fois, les degrés de liberté f1 m -1 et f2 n -1 n'étant
pas nécessairement les mêmes. On calcule ensuite les

variances empiriques.
1.4.2

x, 9 X2 •> xm f. m- 1 Instrument 1

y, >y2>- •.y« f, n- 1 Instrument 2

52 _1 m-1 i=l

f, m - 1

m n

Ty*)2 S^ —I(yry)

La table de la distribution F nous donne pour
fi =7, f2 5,a=5%:
F 4,88

Comme on a K > F, la différence est largement significative

au niveau a 5 %.

Au tableau (1.4.4), nous avons indiqué quelques valeurs
de F et \J? pour les niveaux a 5 % et a 2,5 % en

supposant fx fi. Il nous donne par exemple pour
a. 5 %etn= 5:

f 1 f2 4 \/F 2,53 ce qui veut dire que si l'on a

Si
TT < 2,53

f2 n - 1

la différence entre Si et S2 n'est pas significative. On
doit donc admettre dans ce cas que les deux instruments
ont la même précision.
Il en résulte que si nous voulons comparer la précision de

deux instruments, nous devons avoir recours à des

échantillons de taille suffisamment grande, par exemple
n>20.
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1.4.4

a 5 % a 2,5%

f, =f2 F V^ F V^
2 19,0 4,36 39,0 6,25
3 9,28 3,05 15,4 3,92
4 6,39 2,53 9,60 3,10
5 5,05 2,25 7,15 2,67
6 4,28 2,07 5,82 2,41
7 3,79 1,95 4,99 2,23
8 3,44 1,85 4,43 2,11
9 3,18 1,78 4,03 2,01

10 2,98 1,73 3,72 1,93
11 2,82 1,68 3,47 1,86
12 2,69 1,64 3,28 1,81

13 2,58 1,61 3,12 1,77
14 2,48 1,58 2,98 1,73
15 2,40 1,55 2,86 1,69

Chapitre 2

Statistique d'ordre

2.1 Introduction

Les statistiques d'ordre sont des fonctions des
observations qui tiennent compte de Vordre ou de la valeur
des observations.
Ainsi, si nous avons mesuré une inconnue X à n reprises,
le résultat consiste en un échantillon

X] x2 xn

de taille n. En plaçant ses éléments Xi, x2, xn dans
l'ordre croissant des valeurs, nous obtenons un échantillon

ordonné, que nous désignons par

de l'échantillon, il y a nécessairement des éléments dans

l'échantillon qui accusent des anomalies; nous disons
dans ce cas qu'ils ont été contaminés.
Pour l'estimation des paramètres d'une population, on se

sert de fonctions linéaires de l'échantillon ordonné en

ayant recours au théorème de Gauss-Markov relatif à la

méthode des moindres carrés. La statistique d'ordre se

révèle particulièrement efficace lorsqu'une ou plusieurs
mesures doivent être rejetées, car dans une telle situation
les méthodes classiques sont laborieuses et conduisent
souvent à des conclusions douteuses.
Les test sur la longévité sont une illustration idéale de

l'application de la statistique d'ordre. En effet, vu que
ces observations sont toujours de très longue durée, on
est souvent obligé de les interrompre après un certain
laps de temps et de les reprendre ultérieurement. Dans
ces conditions, la statistique d'ordre permet facilement
de tenir compte après coup des observations complémentaires,

ce qui n'est pas le cas de la méthode classique.
Au cours de ces dernières années, la statistique d'ordre a

reçu de nouvelles impulsions dans différentes directions,
grâce aux ordinateurs, qui ont permis d'étudier les

observations sous différents angles, ce qui a conduit à

une véritable analyse des observations.
Nous voyons donc que la statistique d'ordre tient
compte, comme la statistique classique, de la valeur des

observations, et de ce fait le résultat final dépendra de la

distribution de la population. Mais il y a possibilité de

s'en rendre indépendant en ayant recours à une théorie
plus générale, qui est la statistique de rang.
En appliquant la statistique d'ordre, on perd naturellement,

comme avec toute statistique du reste, une
certaine quantité de l'information. Ce fait est dû à la
méthode de calcul même. Mais par rapport à la méthode
classique, la statistique d'ordre a l'avantage d'être très

rapide si l'on dispose de tables numériques appropriées;
en outre, elle dépend moins des conditions initiales
(suppositions) que la méthode classique.

X(l) < X(2) < <xa)< < X (n) 2.1.1

et nous dirons que Xßj est la statistique d'ordre i.

Les éléments xi, x2, xn de l'échantillon sont
indépendants et ont la même distribution que la population

X. Les statistiques d'ordre Xpj, Xßj, Xini, par
contre, sont dépendantes vu que la probabilité de

chacune d'elles dépend de la réalisation des précédentes.

La statistique d'ordre a pour but l'étude des variables
ordonnées (2.1.1) et de leurs fonctions. Les grandeurs les

plus importantes sont les valeurs extrêmes Xin, Xinj et le

range w Xfnj - Xin, qu'on appelle aussi étendue de

l'échantillon.
Notons en passant que les valeurs extrêmes interviennent
entre autres dans i'étude de la sécheresse, de {'écoulement

des fluides, de la fatigue des matériaux, etc. Mais
elles peuvent également jouer un certain rôle en
topographie.

Le range w permet une estimation rapide de l'écart-type
o. On y a recours pour le contrôle du rendement ou de la

qualité de produits fabriqués en grande quantité.
Les valeurs extrêmes constituent la base pour l'étude des

„outliers" (Ausreisser) en ce sens que si X(n) s'écarte trop
de la moyenne empirique

* ô (x, + x2 + + x„)

2.2 Distribution de la valeur la plus grande X.¦ d'un
échantillon

La valeur la plus grande X/„i d'un échantillon de taille n
étant d'un emploi fréquent, nous allons chercher sa

distribution. Voici ce qu'il faut entendre par là: pour
chaque échantillon de taille n, nous pouvons former une
suite ordonnée Xn <••• < Xini avec les mesures. Il est

évident que la valeur la plus grande Xjn) varie d'un
échantillon à l'autre, et par conséquent X(n) est une
variable aléatoire ayant une certaine fonction de
distribution, que nous allons calculer à partir de la
distribution de la population X.

Soit v une valeur fixe quelconque de X; voir fig. (2.2.1).

Pour que l'événement X/nj < v se réalise, il faut que
toutes les valeurs Xi, x2, x„ de l'échantillon soient

mmPCX,n^v)-Hn(v) i?iiy XiyjCf JL£ jCg isX„ Xj yi
X=v

Fig. 2.2.1
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inférieures à v. La probabilité P de cet événement est
donnée par

P(X(.„;<v) P(x,etx2et -etx/|<v) 2.2.1

Cette formule nous montre que la probabilité de
l'événement X/nj < v est une fonction de v. Pour la

calculer, il suffit de remarquer qu'on a

P (x,-< v) F (v) i 1,2,..., n 2.2.2

où F(v) désigne la fonction de distribution de la

population X. Mais comme les observations xi, x2,
xn sont indépendantes, nous avons

P (X(n) < v) P (x,< v) • P (x2< v) • ¦ P (xn < v) 2.2.3

ce qui nous donne avec (2.2.2)

P(Xr„;<v) H/7(v)={F(v)|" 2.2.4

Nous constatons donc que

2.2.5
La probabilité de l'événement Xinj < v est
complètement déterminée par la fonction de distribution
F (x) de la population.

et qu'elle peut facilement être calculée à l'aide de la

formule (2.2.4).
La figure (2.2.2) nous montre la représentation
graphique de H„(v) pour la population normale standard

N(0;1).

Distribution de ia va/eur la plus grande

pour une population normale standard
AtCoy)

Fonctions de distribution Hn(v)

S Hn(v)
1,0

0,8

n /00,6-
n 20

0,4 n 50

0,2-

-2
-T—- V

Fig. 2.2.2

Vu qu'on a pour n'importe quelle distribution
0< F(v) < l, il résulte de (2.2.4) que pour une valeur
fixe quelconque de v la probabilité de l'événement
X-(n) < v diminue lorsque la taille n de l'échantillon
augmente, ce qui est du reste évident.

Pour obtenir la densité de probabilité hw(v) de Xinj, il
suffit de dériver (2.2.4) par rapport à v, ce qui nous
donne

h„(v) n- F(v) n-i f(v) 2.2.6

La figure (2.2.3) nous montre la représentation
graphique de h„ (v) pour la population normale standard

X~N(0;1).

Distribution de /a valeur la plus grande

pour une population normale standard
t/Coy)

Fonctions de fréquence h„ Cv)

11 hnCv)
i.o -\

0,8

0,6-

0,4-

0,2-

n so

n 20

n 10

n 5

v

Fig. 2.2.4

Ce résultat étant acquis, nous voulons calculer l'intervalle

de confiance de Xfnj. En vertu de (2.2.4) et (2.2.6),
nous avons

P(v<Xw<v + dv) h„(v)dv 2.2.7

ou bien, en vertu de (2.2.6),

P(v<Xw<v + dv)=n- JF(v)|"_/ f(v)dv 2.2.8

où F(v) désigne la fonction de distribution de la

population, tandis que f(v) est sa fonction de fréquence.

Afin d'intégrer l'équation (2.2.8), nous introduisons la

substitution

t F (v) 0<t < 2.2.9

F(v) étant une fonction monotone croissante, la substitution

(2.2.9) est bi-univoque; elle fait correspondre à

chaque valeur de v une et une seule valeur de t et vice

versa pour 0 < t < 1 ; voir figure (2.2.4).

i +di

FOCM)

t

t
^^ t'F(v)

y- "-(ni
v X(n) v + dv

Fig. 2.2.3
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En vertu de (2.2.8), la masse aléatoire dm, portée par le

segment (v, v + dv), est 2 2 10

dm P (v < X,„,< v + dv) n • j F (v) j n~' f (v) dv

ce qui nous donne avec (2.2.9)

n-i.dm P (v < X(„)< v + dv) n • t" 'dt 2.2.11

Mais vu que la transformation (2.2.9) est bi-univoque,
nous avons nécessairement

P (t < F (X(n)) < t + dt) =P(v<X(-„/)<v + dv) 2.2.12

d'où il résulte avec (2.2.11)
P (t < F (X,„i) < t + dt) n • t"_/dt 2.2.13

En intégrant cette équation par rapport à t entre les

limites 0 et ß, nous obtenons

PJF(XW) </*)=/»» 2.2.14

ou bien, en prenant la probabilité complémentaire,

P\F(XM)>ß} l-ß, 0<ß<] 2.2.15

où F désigne comme précédemment la fonction de
distribution de la population X. Cette formule est tout à

fait remarquable vu qu'elle est valable pour toute
distribution F(X).
On obtient une interprétation stochastique de (2.2.15)
en remarquant que

2.2.16
F (Xfnj) donne la fraction d'individus de la
population X, dont la valeur est inférieure ou égale à

l'élément le plus grand X(nj de l'échantillon.

Nous en concluons que

2.2.17
F (Xtnj > ß signifie que la fraction des individus
de la population X ayant une valeur x inférieure
ou égale à l'élément le plus grand Xinj de

l'échantillon est au moins égale à j3.

Par conséquent F (Xfnj) > ß désigne un événement, dont
la probabuité est donnée par (2.2.15). L'ensemble des

valeurs (-°°<x<X/w) est parfois appelé ,,intervalle de
tolérance statistique unilatéral".
Pour mieux faire ressortir l'importance pratique de la
formule (2.2.15), nous allons considérer un

Exemple numérique
Lors de la vérification d'un plan topographique, on a

contrôlé n 46 points en notant les écarts
planimétriques (erreurs) f i, f2, ît\e, et soit Xfnj l'écart
maximum qu'on a ainsi mis en évidence. Il s'agit alors de
savoir dans quelle mesure cette valeur X(nj nous renseigne
sur la précision de l'ensemble du lever. Dans ce but, nous
introduisons l'hypothèse

2.2.18
H: au moins le 95 % des erreurs de tout le lever a

une valeur x inférieure ou égale à X(nj.

La probabilité que cette hypothèse soit vraie peut être
calculée à l'aide de la formule (2.2.15) et nous obtenons,
en prenant par exemple ß 0.95,

P (H vraie) 1 - ß" 0,9056 * 91% 2.2.19

ce qui nous permet de conclure que

2.2.20
Si l'on effectue 46 mesures de contrôle, il y a 91 %

de chances qu'au moins le 95 % de toutes les

erreurs du lever aient une valeur x inférieure ou
égale à l'écart maximum Xfnj, mis en évidence par
les mesures de contrôle.

Cette méthode d'estimation permet au vérificateur de se

rendre facilement compte, au cours de la campagne de

terrain, si le nombre de mesures qu'il a effectuées est

suffisant ou non. En utilisant de plus un monogramme
approprié (voir figure 2.2.5), il est possible de tirer des

conclusions sans effectuer aucun calcul.

Tomogramme pour PÇA)=/-/3n

#s S S5 § § § « «y 9 1?

0 0

0,333- n i.
/-i iiz0.395

HT0,93

ïiPCA)

;r,itym i-;0.35

%
;0.90

ii èS0.75

PFxemple ¦•

/3 0,90 n =50 P(A) 0,335

Fig. 2.2.5

La méthode que nous venons d'esquisser trouve des

applications dans les domaines les plus divers et notamment

aussi dans l'essai des matériaux.

2.3 Estimation de l'écart-type o. Distribution du range
réduit.

Si l'on a un échantillon ordonné X(jj, ^-(2), ¦¦-, ^-(nl,
provenant d'une population X ayant pour variance a2,

on appelle w Xfnj - Xjij range et

w Tw 1 'y y I

2.3.1

range réduit de l'échantillon. Si f(X) est la fonction de

fréquence d'une variable aléatoire réduite X, l'intégrale
de probabilité de W, pour un échantulon de taille n,
s'écrit
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P(W) n/:,x,[/;
x+ w
f(u)du

n-i
dX 2.3.2

L'application pratique de cette formule ne devient
cependant possible que si l'on connaît l'écart-type a
d'une mesure. Si tel n'est pas le cas, on prendra pour a
une valeur approchée résultant d'une estimation.
Lorsqu'on a affaire à une population normale, l'application

de la formule (2.3.2) devient très simple étant
donné qu'on dispose de tables numériques qui nous
donnent la valeur de P(W) en fonction de W et de n ; voir
par exemple „Biometrika Tables for Statisticians" de

Pearson <£ Hartley, vol. I, table n° 23.
Afin de mieux faire ressortir l'utilité pratique de cette
procédure, nous allons considérer un

Exemple numérique
Un angle parallactique a été mesuré 9 fois avec un
théodolite ayant un écart-type a 3CC. Les valeurs
extrêmes de l'échantillon sont

X(1)=(ßrMc04cc

Xw=0gr84c16cc

xr«;_xro 12" (range)

1 12cc
W -^ w —££¦ 4 (range réduit)

n 9 P (W) 0,8929 (tables)

Dans ces conditions, la probabilité d'obtenir pour un
échantillon de taille n 9 un range w < 12ccest de 89 %.

Si l'on ne connaît ni la moyenne m ni la variance a2

d'une population X, on en prélève un échantillon X!,
xn, qui nous donne l'estimation ponctuelle

il*,i=l
S2 ^il(x,-x)2

i=l
2.3.3

Mais on peut aussi obtenir un estimateur de a, soit â en
n'utilisant que les valeurs extrêmes Xi-y et X(nj de

l'échantillon. On démontre en effet que

Si l'on a affaire à une distribution normale (N (m ;a2

dont on possède un échantillon ordonné

X0) < X(2) < <x (n)

2.3.4de taille n, la grandeur

5 -r- w -j- (X(„r X0>)
an u«

est un estimateur sans biais de l'cart-type, les valeurs
du coefficient d„ étant données par la table (2.3.5).

7 0,3698 17 0,2787
8 0,3512 18 0,2747
9 0,3367 19 0,2711

10 0,3240 20 0,2677

Pour des échantillons de plus grande taille, voir
„Biometrika Tables for Statisticians" vol. I, de Pearson &
Hartley, éd. 3, tables 27.

Exemple

yd„w 20 0,3512 a 7,02

Nous voyons donc que l'estimation de l'écart-type à

l'aide du range est excessivement simple. Elle a surtout
été développée pour l'industrie, où le contrôle doit être
fait par du personnel non spécialisé.

Estimateur cr —£- (X(n) -X(1))

1,0 - /
dn

0,8-

0,6-

0,4

0,2-

m n
12 14 16 18 20

Fig. 2.3.1.

La figure (2.3.1) nous donne la représentation graphique
de /d_ en fonction de la taille n de l'échantillon. On voit
par exemple qu'on a

pour n 4 o- ^ 0,5 w

pour n 10 ô *& 0,3 w

Exemple
On a mesuré un côté de polygone n 8 fois avec une
mire horizontale de 2 mètres. Les valeurs de l'angle
parallactique X, exprimées en00, sont

x, 11558 x2= 11553 x3 11552 x4 11544

x5 11542 x6 11562 x7 11550 xs 11547

L'estimation ponctuelle classique de la moyenne m et de

l'écart-type o nous donne

x ilx,=
1=1

1551,00e

X~N(m;o2)

0,8862
0,5908
0,4857
0,4299
0,3946

2.3.5

1

(x("«rxa>)

n
12
13
14
15
16

0,3152
0,3069
0,2998
0,2935
0,2880
0,2831

a
/z

-y (x;-x)2
i=l

6,78e

En utilisant la statistique de range, nous obtenons
1

pour n 8

X(n)= 11562

X(l)= 11542

0,3512

X(r>rX(/)' 20

a j- (X(n)- X(l)) 0,3512 x 20 7,02cc
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Afin de comparer l'estimation classique â de a avec celle
ô fournie par la statistique d'ordre, nous avons traité
40 échantillons par les deux méthodes. Il s'agit de
40 côtés de polygone, dont chacun a été mesuré entre 6

et 10 fois avec la mire horizontale en invar, a désigne
dans ce cas l'écart-type de l'angle parallactique. Comme
il dépend de la longueur du côté, les échantillons
proviennent de populations distinctes. Les résultats
obtenus sont indiqués au tableau (2.3.6), où nous avons

N° numéro de l'échantillon.
n taille de l'échantillon.
cr estimation classique de a, exprimée

encc.
B estimation fournie par la statistique

d'ordre, en cc.

100 écart en % entre les deux estimations15-51

2.3.6

No n
13-31

8
•100 No n

l3"SI -100
6

1

2

3

4
5

6

7

8

9

10
11

12

13

14

15

16
17

18

19
20

3,76
3,54

16,61
19,25
14,08

7,76
17,84
16,03
11,43
27,99

4,44
6,96
6,33
0,00
8,00
7,03
4,09
1,93
3,95

12,06

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

6
8

9

7

8

8

8

8

8

8

7

8

8

8

9

9

10
8

8

12,38
13,30
16,54
6,20
6,15
2,93

13,30
16,19
3,95

19,21
4,94
2,12

10,31
4,69
7,47

14,88
13,90
0,00
1,74
6,36

i^ • lool 9,24
moyenne

L'écart moyen entre les deux estimations n'étant que de
9 %, nous constatons que l'estimation effectuée avec la

statistique d'ordre est suffisamment précise pour pouvoir
être appliquée dans la pratique. Pour l'échantillon n° 10,
nous avons cependant un écart de 28 %, ce qui est
inadmissible. Nous verrons par la suite que cette
anomalie provient sans doute d'une ou de deux mesures qui
s'écartent trop des autres, raison pour laquelle il y a lieu
de les rejeter. Le rejet ne doit cependant pas s'effectuer
arbitrairement; il est préférable d'avoir recours à une
théorie appropriée que nous indiquerons au chapitre 3.

Vu que l'estimateur ô, fourni par la statistique d'ordre,
ne dépend que des valeurs extrêmes X^ et X(jj, il est
évident qu'une différence entre & et â provient
essentiellement de ces dernières valeurs. Il doit donc être
possible d'établir une théorie de rejet d'observation
basée sur la différence d-b respectivement sur le

rapport a/ô.

Chapitre 3

Rejection d'observations

3.1 Généralités

L'étude de la rejection d'observations est assez
compliquée; aussi a-t-elle donné lieu à de nombreuses
recherches. Elle a pour buts essentiels

a) l'élimination des „outliers" (Ausreisser).
b) l'analyse des mesures „contaminées", c'est-à-dire

l'analyse des observations qui ne proviennent pas
toutes de la même population; observations hétérogènes.

c) l'étude des observations s'écartant nettement d'une
distribution moyenne, obliquité, etc.

Les résultats connus dans ce domaine ont surtout été
obtenus grâce à la statistique d'ordre.
En mesurant une inconnue plusieurs fois, il arrive
fréquemment qu'une ou deux mesures s'écartent plus ou
moins des autres éléments de l'échantillon. On est alors
obligé de les rejeter en admettant qu'elles proviennent
d'une autre population. Souvent, l'analyse des mesures
fait ressortir des éléments douteux dont on ne sait pas
s'il y a lieu de les maintenir ou s'il est préférable de les

rejeter. Mais en rejetant une mesure conforme (correcte),
ou en conservant une mesure non-conforme
(contaminée), on risque d'introduire un biais dans l'échantillon.

Nous nous trouvons du reste dans la même
situation lors du contrôle statistique de la qualité d'un
produit fabriqué en grande quantité. Dans ce cas, on
parle d'erreurs du type I ou du type II, notions bien
connues en statistique classique.
Rappelons toutefois que le but de cette étude n'est pas
la recherche d'erreurs grossières (fautes); il s'agit
uniquement de savoir si les éléments d'un échantillon
constituent un ensemble homogène ou si l'on doit
admettre que certaines de ces mesures proviennent d'une
autre population.
L'introduction d'un critère pour la rejection d'observations

nous oblige à considérer au préalable les points
suivants:

1) Du moment que chaque mesure nous fournit une
information sur la population, il est souhaitable de

conserver toutes les mesures. On n'éliminera donc que
le strict nécessaire, et ceci uniquement lorsqu'on est

quasi certain qu'on a affaire à une contamination.
2) Si l'on veut obtenir une population sans

contamination, on doit ou bien rejeter les mesures
contaminées si elles ont été reconnues comme telles, ou
bien avoir recours à des méthodes d'estimation
réduisant l'influence de la contamination au
minimum.

Quoiqu'on fasse, il faut veiller à ce que la procédure
d'épuration ne risque pas d'entraîner la rejection de
mesures conformes.

3.2 Suppositions; conditions initiales

En effectuant un essai, nous sommes obligés d'introduire
au préalable un certain nombre de suppositions ou
conditions initiales. Cela faisant, on admettra généralement

que

1) la taille n de l'échantillon a été fixée.
2) une proportion (I-7) des observations provient

d'une distribution normale N (m;a2).
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3) une proportion y des mesures a une autre origine, soit
qu'elle provienne
a) de la population N (m + \a;a2 ou
b) de la population N (m;X2a2

Une telle analyse nous permet de considérer une
demi-douzaine de possibilités, qu'il serait cependant trop
long d'examiner ici. Dans ce qui suit, nous nous
bornerons à l'étude d'un seul cas, qui est celui où le

range w et la variance empirique S sont tirés d'un même
échantillon. C'est du reste le cas qui est à la base du
tableau (2.3.6).

3.3 Distribution de W/S si w et S proviennent du même
échantillon

Soit X une population normale N (m;a2), de laquelle on
possède un échantillon ordonné de taille n

X(l), Xß/> —, X(n)

Nous pouvons alors calculer le range w X/„i - Xm et

l'écart-type empirique

i "-irl(x,n - 1 y, ' ¦xY
i=l

La distribution du rapport w/s a été calculée en 1964

par Pearson & Stephens, qui ont publié une table
donnant le point de pourcentage de w/s en fonction de

w et n; voir „Biometrika Tables for Statisticians" vol. I,
table 29 c. Nous donnons ci-après un court extrait de

cette table.

3.3.1

Point de pourcentage supérieur du rapport w/S

n 10,0 % 5,0% 2,5% 1,0% 0,5% 0,0%

3 1,997 1,999 2,000 2,000 2,000 2,000
4 2,409 2,429 2,439 2,445 2,447 2,449
5 2,712 2,753 2,782 2,803 2,813 2,828
6 2,949 3,012 3,056 3,095 3,115 3,162
7 3,143 3,222 3,282 3,338 3,369 3,464
S 3,308 3,399 3,471 3,543 3,585 3,742
9 3,449 3,552 3,634 3,720 3,772 4,000

10 3,57 3,685 3,777 3,875 3,935 4,243

L'application de cette méthode à l'exemple considéré
sous (2.3) a donné les résultats indiqués au tableau ci-

après pour a 5 %. Dans celui-ci, (w/s)Q=5% désigne le

point de pourcentage supérieur, tiré de la table (3.3.1).

Si l'on a W/S<(w/S)a, l'échantillon est conforme. Si
nous optenons par contre W/S>(w/S)<*, l'échantillon
est à examiner de plus près et l'une ou l'autre
(éventuellement les deux) des valeurs extrêmes doit être
rejetée. Lorsqu'on ne voit pas à priori laquelle des deux
valeurs extrêmes doit être éliminée, on a la possibilité
d'appliquer un autre test faisant intervenir la moyenne
empirique x.

No w S W/S n (W/S) a 5%

1 7 2,66 2,63 6 3,012
2 20 6,78 2,95 8 3,399
3 8 2,71 2,95 6 3,012
4 18 5,30 3,40 8 3,399
5 9 2,77 3,25 8 3,399
6 12 4,38 2,74 9 3,552
7 8 3,42 2,34 8 3,399
8 9 2,87 3,14 7 3,222
9 10 3,15 3,18 8 3,399

10 14 3,68 3,80 9 3,552
11 14 4,51 3,10 9 3,552
12 7 2,30 3,04 8 3,399
13 8 3,00 2,67 8 3,399
14 9 3,16 2,85 8 3,399
15 10 3,25 3,08 8 3,399
16 13 4,27 3,04 8 3,399
17 6 2,20 2,73 8 3,399
18 6 2,07 2,90 8 3,399
19 9 3,04 2,96 8 3,399
20 9 2,82 3,19 8 3,399
21 3 1,05 2,86 6 3,012
22 5 2,03 2,46 8 3,399
23 18 5,20 3,46 9 3,552
24 9 3,55 2,54 7 3,222
25 10 3,74 2,67 8 3,399
26 8 2,73 2,93 8 3,399
27 5 2,03 2,46 8 3,399
28 5 2,10 2,38 8 3,399
29 9 3,04 2,96 8 3,399
30 6 1,77 3,39 8 3,399
31 13 5,06 2,57 7 3,222
32 11 3,78 2,91 8 3,399
33 7 2,23 3,14 8 3,399
34 11 4,05 2,72 8 3,399
35 14 5,09 2,75 9 3,552
36 14 4,10 3,42 9 3,552
37 22 6,26 3,51 10 3,685
38 9 3,23 2,79 8 3,399
39 15 5,18 2,90 8 3,399
40 10 3,30 3,03 8 3,399

Dans l'exemple ci-dessus, les échantillons n° 4, 10 et 30
doivent être revus. En faisant une représentation
graphique des mesures, on trouve sans autre la cause des

forts écarts mis en évidence par le tableau (2.3.6).
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