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Arbeiten und Entwicklungen zur analytischen Photogrammetrie am
Institut fiir Geodésie und Photogrammetrie der ETH-Z

T. Schenk, Zirich

Zusammenfassung

Am Institut fir Geodésie und Photogrammetrie der ETH-Z ist
cine neue Programmkonzeption zur Anwendung der Block-
triangulation nach der Bindelmethode entstanden. Die vorlie-
gende Arbeit orientiert dariiber. Nach einigen einleitenden Be-
merkungen zur Entwicklung und zu den Methoden der Block-
triangulation wird etwas nidher auf die Biindelmethode eingegan-
gen. Nach einer kurzen thematischen Erorterung wird vor allem
das Problem der Normalgleichungsauflosung diskutiert. Danach
wird der ganze Arbeitsablauf einer Blocktringulation nach der
Biindelmethode, mit einigen Hinweisen auf die Rechenkosten,
beschrieben. Der letzte Abschnitt ist den Anwendungen gewid-
met.

Résumé

Une nouvelle conception de programme du calcul électronique
dans I’application de l'aérotriangulation par blocs vient d’étre
développée a I'Institut de géodésie et photogrammétrie de 'EPF-Z.
Apres quelques explications d’ordre général et de la méthode des
faisceaux en particulier, le probléeme de la résolution des équa-
tions normales est discuté. Puis tout le procéssus de 1’aérotrian-
gulation de blocs par la méthode des faiscaux de rayons est dé-
veloppée avec quelques remarques sur le colit du calcul électro-
nique et les possibilités d’application de la méthode.

I. Einleitung

Die rdumliche Photogrammetrie hat zum Ziel, aus Luftbil-
dern topographische Karten oder Landeskoordinaten dis-
kreter Punkte zu gewinnen. Dazu ist ein Ubergang von
einem Koordinatensystem in ein anderes notwendig: Die
Messungen im photographischen Bild werden in einem
Bildkoordinatensystem oder einem daraus abgeleiteten
Modellkoordinatensystem durchgefiihrt; die Karten oder
Punktkoordinaten hingegen wiinscht man meistens in einem
Landeskoordinatensystem.

Gemeinsames Element der beiden Koordinatensysteme sind
die PaBpunkte. Mit ihrer Hilfe lassen sich die beiden Sy-
steme ineinander iiberfiihren.

Bei der modellweisen Auswertung sind etwa 5 bis 6 Pal3-
punkte wiinschenswert, um die absolute Orientierung rasch
und bequem durchfiihren zu konnen. Die wirtschaftliche
Leistungsfahigkeit der Photogrammetrie wird ernstlich in
Frage gestellt, wenn alle erforderlichen PaBpunkte terre-
strisch zu bestimmen sind. Man trachtete deshalb schon
frith danach, die PaBpunkte photogrammetrisch zu bestim-
men. Damit setzte die Entwicklung verschiedener Verfahren
der Aerotriangulation ein. Die Aufgabe der Aerotriangula-
tion besteht somit in der Verdichtung eines terrestrisch be-
stimmten Punktfeldes.

Die analytische Durchfiihrung einer Aerotriangulation ist
mit einem sehr hohen Rechenaufwand verbunden. Das ein-
zig wirtschaftlich vertretbare Verfahren bestand bis vor
kurzem darin, die Aerotriangulation soweit wie moglich
instrumentell durchzufiihren. Dank diesem Umstand er-
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lebte die photogrammetrische Instrumentenindustrie einen
groBBen Aufschwung, und es wurden eigens fiir die analoge
oder instrumentelle Aerotriangulation spezielle Autogra-
phen, sogenannte Gerite 1. Ordnung, entwickelt, welche
nach einer Reihe von Zwischenschritten als Endprodukt
Streifenkoordinaten liefern.

Fiir die mehr oder weniger gleichmiBigen Abweichungen,
die die Streifenkoordinaten gegeniiber den geoditischen
PaBpunkten aufweisen, machte man systematische Geréte-
fehler verantwortlich. Demzufolge interpolierte man die
Streifenkoordinaten mit Korrekturflichen 2. Ordnung in
das vorhandene PaBpunktfeld. Sprunghafte Anderungen
der Streifenkoordinaten an einzelnen Stellen sowie die Tat-
sache, daf3 ein hin- und riicktriangulierter Streifen zu zwei
verschiedenen Ergebnissen fiihrte, deckte die Unzulédnglich-
keit dieser Methode auf.

Die entscheidende Wende zugunsten von strengeren und
allgemeineren Verfahren der Aerotriangulation brachte die
Entwicklung von elektronischen Rechenanlagen. Die Ein-
winde gegen die analytische Aerotriangulation wurden an-
gesichts dieser neuen aussichtsreichen Situation mehr und
mehr entkriftet, und es setzte etwa in der Zeit zwischen
1950 und 1960 eine intensive mathematische Erorterung der
Grundformeln ein. Dabei erwiesen sich die von Schmid ge-
machten Vorschldge [1] als die umfassendsten und fehler-
theoretisch strengsten aller vorgeschlagenen LOsungen.
Nach [1] werden alle Luftbilder eines Blockes zusammen
mit den zu bestimmenden Punkten einer Ausgleichung nach
der Methode der kleinsten Quadrate zugefiihrt.

Der Begriff der Aerotriangulation, unter welchem man bis
zu diesem Zeitpunkt (1960) ausschlieBlich Streifenausglei-
chung verstand, weitete sich zwangsldufig aus auf ganze
Blocke (mehrere nebeneinanderliegende und sich tiberlap-
pende Streifen). Aus diesem Grund bevorzugt man heute
den Begriff der Blocktriangulation.

Um eine gewisse Ubersicht in die bekanntesten und in die
Praxis eingefiihrten Methoden der Blocktriangulation zu
bringen, erscheint eine grobe Einteilung in 3 Gruppen
zweckmiBig. Tafel 1 zeigt, nach welchen Gesichtspunkten
die Einteilung vorgenommen wurde: Malgebend ist die
kleinste Einheit, die in die Ausgleichung eingeht. Bei den
Interpolationsverfahren sind dies ganze Streifen, bei der
Methode der unabhidngigen Modelle einzelne Modelle und
bei der Biindelmethode schlieBlich einzelne Luftbilder. Aus
Tafel 1 geht weiter hervor, welche Operationen analog (mit
einem A bezeichnet) und welche analytisch (mit einem O
symbolisiert) durchgefiihrt werden.

1. Interpolationsverfahren

Die Interpolationsverfahren reichen bis in die Anfidnge der
Streifenausgleichung zuriick. Wie oben erwéhnt, versuchte
man die Streifendeformationen, deren Ursache in systema-
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tischen Geritefehlern gesucht wurde, mit Polynomen zu
eliminieren.

Die Verfahren der Polynomausgleichung sind heute wohl
feiner ausgearbeitet, auf mehrere nebeneinanderliegende
Streifen erweitert und vor allem der elektronischen Berech-
nung zugefiihrt worden, im Grunde genommen stiitzen sie
sich aber immer noch auf die Fehlertheorie der dreiBiger
Jahre.

Wie viele Blockausgleichungen werden heute noch nach
einer Interpolationsmethode gerechnet? Auf diese Frage
gibt eine Untersuchung von Kubik und Kure [2] Auskunft.
Die vorldufige Auswertung der vom ITC, Delft, an 267 Or-
ganisationen versandten Fragebogen ist in Figur 1 graphisch
dargestellt:

Figur 1

keine Aerotriangulation

Interpolations-

verfahren Biindel (7 %)

unabhdngige Modelle

Es fillt auf, daB 29% aller photogrammetrischen Organisa-
tionen keine Aerotriangulation anwenden und dafB3 von den
iibrigen Stellen 57% ein Interpolationsverfahren bevor-
zugen. Als Griinde fiir die doch recht weite Verbreitung der
Interpolationsverfahren konnen genannt werden:

— Die Methode ist einfach zu verstehen und vor allem ein-
fach zu programmieren.

— Fertige Rechenprogramme stehen zur Verfiigung (zum
Beispiel vom National Research Council of Canada [4]).

— Die Programme stellen in bezug auf KernspeichergrofBe,
Geschwindigkeit und externe Speichermoglichkeiten keine
groBen Anspriiche an die Rechenanlagen. Sie konnen aus

diesem Grunde ohne groBe Schwierigkeiten auf kleinere
bis mittlere Anlagen {ibernommen werden.

— Ein mehr psychologischer Grund diirfte darin zu sehen
sein, daB die Interpolationsmethoden viel mehr als die
anderen Verfahren der Tradition der Aerotriangulation
entsprechen.

2. Methode der unabhdngigen Modelle

Zu dieser Gruppe zédhlen alle Verfahren, deren kleinste in
die Ausgleichung eingehende Einheit ein Modell oder eine
Gruppe von Modellen ist. Wie mehrere Modelle zu einer
Gruppe oder wie man, angelehnt an den englischen Sprach-
gebrauch, oft auch sagt, zu Sektionen zusammengefaft
werden, ist hier offengelassen. Damit gehoren auch die Ver-
fahren der verkniipften Polynome in diese Gruppe. Der
Ubergang zu den Interpolationsverfahren ist flieBend: FaBt
man alle Modelle eines Streifens zu einer Sektion zusammen,
haben wir den Fall der Interpolationsverfahren vor uns.
Die Entwicklung der Verfahren mit unabhdngigen Model-
len leitete van den Hout ein. Seine Methode — heute allge-
mein als Anblock bezeichnet — setzt horizontierte Modelle
voraus, es findet also nur ein Lageausgleich statt. Rdumliche
Versionen sind vor allem vom photogrammetrischen Insti-
tut der Universitidt Stuttgart [5] und - seit ldngerer Zeit
schon - von King [6] bekannt.

Die Verfahren der zweiten Gruppe sind, verglichen mit der
ersten, fehlertheoretisch wesentlich differenzierter. Sie sind
deshalb auch leistungsfihiger und ergeben strengere Resul-
tate.

Diesen Vorziigen stehen wesentlich hohere Anforderungen
an die Datenverarbeitung gegeniiber: Der erhohte nume-
rische Aufwand ist sinnvoll nur noch durch grof3e, mit lei-
stungsfihigen externen Speichern versehene Rechenanlagen
zu bewiltigen. Das hat zur Folge, daBl der Aufwand zur Er-
stellung eines effizienten Rechenprogrammes um ein Mehr-
faches ansteigt. Damit sind aber auch gleich die Griinde
aufgezihlt, weshalb die Methode der unabhingigen Modelle
in der Praxis noch nicht so weit eingefiihrt ist, wie man das
vielleicht erwarten konnte.

I1. Biindelmethode

Am Institut fiir Geodisie und Photogrammetrie der ETH-Z
sind seit einiger Zeit Computerprogramme zur Anwendung
der Biindelmethode fertiggestellt und ausgestestet worden.
Aus diesem Grund soll diese Methode hier etwas eingehen-
der erldutert werden.

Die Biindelmethode ist das bisher strengste Verfahren, da
die eigentlichen Messungen, ndmlich die Bildkoordinaten,
direkt in die Ausgleichung eingehen. In dieser Tatsache ist
der wichtigste Unterschied zu den iibrigen Verfahren zu
sehen, denn dort fiihrt man ja immer GroBen in die Aus-
gleichung ein, die durch mehrere Schritte aus den Grund-
elementen der Aerotriangulation — den Bildkoordinaten —
hergeleitet werden.

Vor allem die in Tafel 1 unter der Kolonne «Arbeitsvor-
ginge» bezeichnete Vorbereitungsphase erhellt den Sach-
verhalt besser: Die zwei Operationen « Festlegung des Bild-
hauptpunktes» und «Beriicksichtigung der Objektivverzeich-
nung und eventuell Erdkriimmungy lassen sich bei den iib-
rigen Verfahren nur analog durchfiihren (durch manuelles
Einpassen der Bilder in die Bildtrager und durch Kompen-
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sationsplatten). SchlieBlich ist die unter Umstinden wich-
tige Operation der Beriicksichtigung von Filmschrumpfun-
gen nur bei der Biindelmethode mdglich.

Es ist vor allem diese «Vorgeschichte» der Bildkoordina-
tion — wir fassen sie als Bildkoordinatenbereinigung zusam-
men —, die eine weitere Leistungssteigerung gegeniiber allen
anderen Verfahren bringt.

Wir konnen aus Tafel 1 weiter entnehmen, dal3 nur noch
eine Operation — die Messung der Bildkoordinaten — analog
durchgefiihrt wird. Diesem Umstand wird im englischen
Sprachgebrauch dadurch Rechnung getragen, da man die
Biindelmethode als «fully analytical method» bezeichnet.
Im Deutschen kennen wir diesen Begriff nicht wortlich, und
unter analytischer Aerotriangulation versteht man nicht
ausschlieBlich die Biindelmethode. Wie ein Blick auf Ab-
bildung 1 zeigt, wenden nur 7% aller Organisationen, die
Blocktriangulation benutzen, die Biindelmethode an. Das
ist weiter nicht erstaunlich, denn die Anforderungen an die
Rechenprogramme und Computer steigen nochmals an im
Vergleich zu den iibrigen Verfahren.

1. Mathematisches Modell 1

Bezogen auf die Biindelmethode lautet die Frage nach dem
funktionalen Modelll: wie erhdlt man aus den an einem
Komparator gemessenen Bildpunkten ausgeglichene Koor-
dinaten der Neupunkte in einem Landeskoordinaten-
system?

Die bei der optischen Abbildung wirksamen physikalischen
Vorgidnge werden in der Photogrammetrie seit jeher durch
die Gesetze der Zentralperspektive beschrieben. Alle erfal3-
baren Abweichungen davon, wie etwa Verzeichnung, Film-
schrumpfung, Refraktion und andere werden auf dieses
Modell reduziert, wobei man in diesem Zusammenhang von
der Korrektur systematischer Fehler spricht.

Durch die Elemente der inneren Orientierung wird das Pro-
jektionszentrum beziiglich dem Luftbild festgelegt. Die Ge-
raden durch das Projektionszentrum und durch die Bild-
punkte definieren ein Strahlenbiindel. Die Aufgabe der
Blockausgleichung besteht darin, die Biindel so zu orien-
tieren und zu verbessern, daB3 alle homologen Strahlen
durch einen Punkt gehen.

Die Kollinearitdtsbedingung (das Projektionszentrum O;,
der Bildpunkt P; und der Bodenpunkt P; liegen auf einer
Geraden, ndmlich auf dem Biindelstrahl ij, vgl. Abb. 2)
und die Gesetze der Zentralprojektion liefern die Beob-
achtungsgleichungen:

x (X — Xo)au + (Y — Yo) aia + (Z — Zo) a3

z (X — Xo)an + (Y — Yo) an + (Z — Zo) a3
y (X = Xo) axn + (Y — Yo) an + (Z — Zo) az

z (X — Xo)ast + (Y — Yo) a2 + (Z — Zo) as

M

Darin bedeuten:
X, ¥ Bildkoordinaten
z Projektionsdistanz

! Das mathematische Modell wird hier als Oberbegriff des funktio-
nalen und des stochastischen Modelles verwendet. Das funktionale
Modell ist die mathematische Beschreibung eines tatsdchlichen phy-
sikalischen Vorganges. Im stochastischen Modell werden jedem Ele-
ment des funktionalen Modelles stochastische Eigenschaften zuge-
schrieben.

84

X, Y, Z Koordinaten des Bodenpunktes P;
Xo, Yo, Zo Koordinaten des Projektionszentrums O;

L Oj (Xo,Yo,Zo)

P (xY,2)

Figur 2

Die a sind die Koeffizienten der orthogonalen Drehmatrix A4 :

aiy a2 a3
A = | ax ax ax 2

a3y asz ass
oder mit den in Abbildung 4 eingefiihrten Drehwinkeln

Gleichung (3) siehe Seite 85

Die Gleichungen (1) gelten fiir jeden Biindelstrahl /. Somit
liefert jeder Bildpunkt P;; ein Paar Gleichungen (1), die in
Verbesserungsgleichungen iibergehen, wenn Verbesserun-
gen vy und vy, an den Bildkoordinaten x, y eingefiihrt
werden:

x + vx = F(w, ¢, %, Xo, Yo, Zo, X, Y, Z)
y + vy = F(w, ¢, %, Xo, Yo, Zo, X, Y, Z)

(C))

Alle Terme auf der rechten Seite sind Unbekannte: Die
ersten sechs sind die Orientierungsparameter (drei Dreh-
winkel, drei Koordinaten fiir das Projektionszentrum) und
die letzten drei Parameter sind die unbekannten Koordina-
ten der Bodenpunkte.

Die Gleichungen (4) sind nicht linear. Um aus ihnen Fehler-
gleichungen zu erhalten, muf3 man sie linearisieren, was be-
kanntlich durch eine Taylor-Entwicklung unter Vernach-
ldassigung der Glieder zweiter und hoherer Ordnung erreicht
werden kann. Diese Vernachlidssigung hat zur Folge, dal3
man von den Unbekannten Ndherungen kennen muB, will
man vermeiden, daBl die Ausgleichung mehrfach durch-
gefiihrt werden soll. Im allgemeinen nimmt man fiir die
Aerotriangulation den Normalfall an (v = ¢ =% = 0).
Die Programmkonzeption, wie sie in den beiden nichsten
Abschnitten etwas nidher beschrieben wird, sieht vor, dal3
sowohl fiir die unbekannten Transformationsparameter wie
fir die Bodenpunkte Néherungen berechnet werden. Das
hat den Vorteil, daB die linearisierten Formeln auch fiir
Nicht-Senkrechtaufnahmen noch giiltig sind.

Die Linearformen aus (4) ergeben sich durch Differenziation
der Gleichungen (1). Wir verzichten hier auf die detaillierte
Wiedergabe und verweisen auf [3].



cos¢ cosx (cosw sinx + sinw sin$ cosx) (sinw sinx — cosw sin ¢ cos x)
A — cos¢sinx  (cosm cosx — sinw sin ¢ sinx) (sinw cos» + cosw sin ¢ sin x) 3)
sin ¢ — sinw cos ¢ cos @ cos ¢

2. Losung der Normalgleichungen

Die Hauptschwierigkeit bei der Realisierung der Biindel-
methode liegt in der Losung des umfangreichen Normal-
gleichungssystem. Nach II.1. treten als Unbekannte auf:
6 Orientierungsparameter eines Luftbildes (3 Drehungen
, @, 2 und Xo, Yo und Zo des Projektionszentrums) sowie
drei Koordinaten (X, Y, Z) jedes unbekannten Boden-
punktes. Bei einer BlockgroBe von 200 Bildern und 1600
unbekannten Bodenpunkten ergeben sich somit 6000 Un-
bekannte, die es simultan aufzuldsen gilt.

Es ist nicht Zweck der vorliegenden Arbeit, alle in Frage
kommenden Losungsmoglichkeiten fiir solch groe Nor-
malgleichungssysteme zu diskutieren, man vergleiche dazu
[3] mit den dort enthaltenen Literaturhinweisen. Wir skiz-
zieren hier nur die im Biindelprogramm BUEND (vgl. 1V.)
verwirklichte Losung.

Um die folgenden Uberlegungen an einem Beispiel verfol-
gen zu konnen, ist in Abbildung 3 ein Block dargestellt, der
sich aus drei Streifen zu je 4 Bildern zusammensetzt.

flolfie

o
/ 4 5
o o o o o
7 & 9 9 V4 2

/3 /4 5 % 17 /2
A A A \ y
o o o o} o
/9 0 2/ 22 23 -?4
4 é 4 4 ™
O.OLO.O ,
2¢ 27 28
L k k k 29 30 y
90 o o o o °
3/ 32 73 34 35 36
7 2 #» y ° 7
7 ¢+
d \ \ \ Yy I?J
Figur 3

Die zu diesem Block gehorende Normalgleichungsstruktur
ist in Abbildung 4 angedeutet. Die direkte Losung des voll-
standigen Normalgleichungssystems kommt nicht in Frage:
der Rechenaufwand dazu wird selbst auf GroBcomputern
unverantwortlich groB. Es ist vielmehr angezeigt, das Nor-
malgleichungssystem zu reduzieren. Wie aus Abbildung 4
hervorgeht, dringt sich als Teilungspunkt der Ubergang
von den Orientierungselementen zu den Bodenpunkten auf.
Man muB sich somit nur noch entscheiden, welche der bei-
den Unbekanntengruppen (Orientierungselemente oder Bo-
denpunkte) zu eliminieren sei. Im allgemeinen iiberwiegen

die Bodenpunkte, es ist also zweckméiBig, diese zu elimi-
nieren.

Orientierungselemente Bodenpunkte

e

V23 S 8T B0 e

=

0 0 o o O
T
E B
- |II =
. HE |k
] | .
EEl Ill
B

m. g

ke

Figur 4

Mit den in Abbildung 4 eingefiihrten Bezeichnungen konnen
wir schreiben:

(5a)
(5b)

Nrrt+ Nrpx = ki
Nrpt + Nppx = k2
Um die Unbekanntengruppe x zu eliminieren, multiplizie-
ren wir Gleichung (5b) linksseitig mit Npg-1:

Npp1- NrgTt + Nppl: - Nppx = Nppl- k2 (6)
Da Npp als Normalgleichungsmatrix sicher reguldr ist, gilt

Nap-1 - Npg = E, wobei E die Einheitsmatrix bedeutet. Da-
mit folgt fiir obige Gleichung:

x = Nppt-ks — Npp' - NrgT - t (7
Ersetzen wir in Gleichung (5a) x durch den in (7) gefunde-
nen Ausdruck, so erhidlt man

Nrr-t + N7g* (N k2 — Nt NrgT-t) = ki (8)
oder nach einigen Umformungen:

(Nrr — N1 Nppt - N787)-t =kt — Nr1B* NBB™' " k2 (9)

Zur weiteren Vereinfachung von (9) setzen wir das Matrizen-
produkt Npp1: N7gT = B. Aus der Symmetrie von Npp
folgt:

(Nt - Nrg")T = Nrp* Npp! = BT (10)
Damit 148t sich fiir Formel (9) schreiben:
(Nrr — Nt B) -t = ki — BT - k> 1)
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In Formel (9) und (11) ist also der Vektor x (unbekannte
Verschiebungen der Bodenpunkte) eliminiert. Damit ist
aber noch nicht viel gewonnen, denn die zu bildende Inverse
ist im allgemeinen mit einem sehr hohen numerischen Re-
chenaufwand verbunden (n3-ProzeB3). Nun sei aber an die
spezielle Struktur der Matrix Npp erinnert (vgl. Abb. 4):
Sie besteht aus 3 x 3-Untermatrizen, die in der Diagonalen
angeordnet sind und somit keinerlei Verbindungen unter-
einander haben. Aus diesem Umstand folgt, daB3 auch die
Inverse Npg-! wieder dieselbe Struktur aufweist und daB3 da-
mit der numerische Aufwand zur Invertierung in angemes-
senen Grenzen bleibt.

Verfolgen wir weiter die Struktur der Matrix B = Npp!
N7gT . Da Npp-! eine Diagonalmatrix ist — mit 3 x 3 Unter-
matrizen als Diagonalelemente — tibertrégt sich die Struktur
der Matrix NrgT auf B.

Nach Formel (11) ist das Produkt N7p - B zu bilden, und
wir interessieren uns wieder fiir die Struktur der neu ent-
stehenden Matrix Nr. Sie setzt sich aus lauter 6 x 6-Unter-
matrizen zusammen, die tiberall dort entstehen, wo die ein-
zelnen Luftbilder durch gemeinsame Punkte miteinander
verkniipft sind.

Die Reduktion der Normalgleichungsmatrix N auf die un-
bekannten Orientierungselemente der Luftbilder bietet zwei
Vorteile:

— Die Zahl der Unbekannten wird betrdchtlich vermindert.
Bei dem schon erwidhnten Block mit 10 Streifen zu je 20
Bildern beispielsweise von 6000 auf 1200 (200 x 6) und
im Beispiel der Figuren 3 und 4 von 195 auf 72!

— Die reduzierte Normalgleichungsmatrix Ng hat eine be-
sonders giinstige Struktur: Sie ist bandférmig, und der
Rechenaufwand zur Losung wird dadurch giinstig beein-
flufdt.

Die Bandbreite ist — das sei nur nebenbei bemerkt — ab-

hingig von der Numerierung der Bilder im Block. Im

allgemeinen ergibt eine Numerierung quer zur Flugrich-

tung die kleinste Bandbreite.

AbschlieBend sei noch erwihnt, daB man auch bei der Me-

thode der unabhidngigen Modelle nach einer dhnlichen Re-

duktion auf Matrizen mit Bandgestalt stot. Man war bis
heute allgemein der Ansicht, so den kleinsten Rechenauf-
wand gefunden zu haben. Wie in [3] gezeigt, ist dem nicht
so: Durch ein vollig anderes Numerierungsprinzip und vor
allem durch die Ausniitzung aller in der reduzierten Matrix

Nr enthaltenen Nullen kommt man ndmlich zu einem be-

deutend geringeren Rechenaufwand.

I11. Arbeitsablauf der Blockausgleichung nach der Biindel-
methode

Als Eingangsdaten in die Biindelausgleichung gehen die
Bildkoordinaten und die gendherten Koordinaten der Bo-
denpunkte ein. Die Bildkoordinaten sind im Bildkoordina-
tensystem definiert; gemessen werden sie aber im Kom-
paratorkoordinatensystem. Daraus geht hervor, daB} die ur-
spriinglich gemessenen Bildpunkte nicht direkt der Aus-
gleichung zugefiihrt werden konnen, sie miissen vielmehr
zuerst in das Bildkoordinatensystem transformiert und
gleichzeitig um den EinfluB der Objektivverzeichnung, des
Filmverzuges und der Refraktion korrigiert werden.

Es erweist sich nun aus organisatorischen Griinden als
zweckmiBig, dariiber hinaus noch weitere Zwischenschritte
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einzuschalten, die theoretisch das Endergebnis der Ausglei-
chung in keiner Art und Weise beeinflussen, die aber fiir die
praktische Durchfiihrung tiberaus niitzlich sind. Wenn ndm-
lich einige tausend Messungen vorliegen, so muf3 mit einer
gewissen Anzahl grober Fehler gerechnet werden (falsche
Punktidentifikation, Punktnumerierungsfehler usw.). Man
hat alles Interesse daran, moglichst viele grobe Fehler be-
reits vor der Ausgleichung zu eliminieren und die Ausglei-
chung gewissermaBen vom Kleinen ins GroB3e vorzubereiten.
Tafel 2 orientiert iiber die Zwischenschritte, wie sie sich am
Institut fiir Geoddsie und Photogrammetrie der ETH-Z zur
Durchfiihrung einer Biindelausgleichung als zweckmifBig
erwiesen haben.

ZWISCHEN- FUNKTION PROGRAMM-
SCHRITT NAME

ERGEBNIS
ZWECK

Komparatorkoordinaten
messen

l

Transformation Komparator-
Bildkoordinatensystem.

1 Beriicksichtigung von Film-
verzug, Verzeichnung

und Refraktion

l

Vergleich aller mehrfach
gemessenen Punkte

BKBER Bereinigte Bildkoordinaten

Elimination grober Mess-
fehler bei Mehrfachmessungen

l Elimination grober Fehler
3 relative Orientierung }_‘_‘ von Punkten, die auf zwei
und Streifenbildung oder drei Bildern abgebildet
sind (Identifikations- oder
Punktnumerierungsfehler)
Kontrolle der Uebertragungs-
punkte.
Naherungen fiir die Boden-
1 punkte
endgliltige Blockausglei-
chung n. Biindelmethode

Provisorische Streifen-
4 und Blockausgleichung mit
Polynomen

Tafel 2

1. Komparatormessungen

Auf die den Messungen vorausgehenden Arbeiten, wie
Punktauswahl, Punktidentifikation, Numerierung und
Punktiibertragung wird hier nicht eingegangen, es sei nur
erwihnt, daB weitere Untersuchungen iiber die als beson-
ders problematisch anzusehende Punktiibertragung geplant
sind.

Die Messungen der Bildpunkte werden am Institut fiir Geo-
disie und Photogrammetrie am Wild-Stereokomparator
STK-2704 durchgefiihrt. Der Komparator ist ausgeriistet
mit einem EK 6, einem Lochstreifenstanzer SL15 und einer
Schreibmaschine IBM.

Die Punkte werden im allgemeinen
zweimal unabhéngig registriert, die
2
{
3
4

Rahmenmarken jedoch zwei- bis
viermal. Sind die Rahmenmarken
als Kreuz abgebildet (vgl. Abb. 5),
so wird auf den vier Strichen, die
das Kreuz andeuten, je ein Punkt
willkiirlich ausgewéhlt und regi-
striert. Daraus wird der Schnitt-
punkt gerechnet; er hat die gleiche
Genauigkeit wie ein direkt gemes-
Abb. 5 sener Punkt.



Der Operateur ist vollkommen frei bei der Ausmessung der
Bilder, insbesondere spielt die Reihenfolge keine Rolle. Das
hat den Vorteil, daB3 vor den Messungen eine von Bild zu
Bild verschiedene Reihenfolge so festgelegt werden kann,
dal3 die Anfahrwege am Komparator moglichst klein wer-
den. Erwdhnt werden soll noch, daB3 bei groBBeren Operaten
die Lochstreifen nicht mehr in Karten umgestanzt werden,
das umfangreiche Datenmaterial wird vielmehr in ein so-
genanntes Update-File umgewandelt, das auf einem Magnet-
band aufbewahrt wird. Fiir den genauen Vorgang sowie die
Lochstreifenumwandlung wird auf [7] verwiesen.

2. Transformation Komparator|Bildkoordinatensystem

Wie schon mehrfach ausgefiihrt, werden die Bildpunkte im
Komparatorkoordinatensystem ausgemessen; die Achsen
dieses Systems sind definiert durch die x- und y-Tragschie-
nen des Komparators.
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Abb. 6

Die Transformation wird auf Grund der beiden Systemen
gemeinsamen Punkte — den Rahmenmarken — vollzogen
(vgl. Abb. 6). Man setzt meistens einen affinen Ansatz an
und hat damit den Vorteil, bis zu einem gewissen Grad sy-
stematische Filmschrumpfungen und systematische Kom-
paratorfehler, wie nicht Senkrechtstehen der Tragschienen
(Koordinatenachsen) und Ma@Bstabsfehler beriicksichtigen
zu konnen.

Es kann hier im Rahmen dieser Arbeit nicht ndher auf die
Probleme des Filmverzuges, der Schrumpfung der Emulsion
und auf die Frage Platten oder Film eingegangen werden, es
muB allerdings festgehalten werden — und Diskussionen in
jungster Zeit bestitigen es —, daB} eine weitere Genauigkeits-
steigerung der analytischen Aerotriangulation weniger von
der Methode selbst, als vielmehr von der weiteren Abkla-
rung gerade der oben angeschnittenen Fragen zu erwarten
ist. Unter anderem ist festzustellen, daf3 man mit nur vier
Rahmenmarken — von denen nicht einmal mit Sicherheit be-
kannt ist, wie gut sie ausgebildet, abgebildet und kalibriert
sind -, den Filmverzug und die Schrumpfung der Emulsion zu
wenig gut in den Griff bekommt. Daraus ergibt sich der
Wunsch an die Instrumentenfirmen, die Aufnahmekammern
mit acht Rahmenmarken von geniigender Prdzision zu ver-
sehen.

AnschlieBend an die Transformation Komparator/Bild-
koordinatensystem werden im selben Programm (BKBER:
Bildkoordinatenbereinigung) die Bildkoordinaten um die
Einfliisse der optischen Verzeichnung, der Refraktion und
eventuell um Fehler der inneren Orientierung der MeBkam-
mer korrigiert. In diesem Zusammenhang wird auf die de-
taillierte Programmbeschreibung [8] verwiesen.

3. Vergleich und Mittelung aller mehrfach gemessenen Punkte

Beim Stereokomparator wird im allgemeinen modellweise
gemessen. Wenn etwa die Bilder 72 bis 78 der Reihe nach
ausgemessen werden sollen, so erhalten wir folgende Reihen-
folge:

Linker Bildtrédger Rechter Bildtrager

72 73
74 73
74 75
76 75
76 77

Bei dieser MeBanordnung — dhnlich dem Prinzip Basis
auBlen/Basis innen — kommen alle Bilder eines Streifens zwei-
mal vor, mit Ausnahme des ersten und des letzten.

Die Aufgabe dieses Zwischenschrittes liegt darin, die glei-
chen Bildnummern zu vereinigen sowie alle mehrfach ge-
messenen Punkte zu vergleichen und zu mitteln.

4. Streifenbildung

In diesem Zwischenschritt werden die einzelnen Bilder eines
Streifens sukzessive zueinander orientiert. Dadurch erhélt
man von jedem Bodenpunkt Koordinaten im Streifen-
system, welches seinen Ursprung im Projektionszentrum
des ersten Luftbildes hat und dessen Achsen parallel zu
denjenigen des ersten Luftbildes liegen (vgl. Abb. 2).

Der ProzeB der Streifenbildung zerfillt bekanntlich in die
beiden Teilschritte relative Orientierung und Ma@Bstabs-
libertragung.

Die relative Orientierung erfolgt nach der Methode von
Schut; die detaillierte Programmbeschreibung ist in [9] ent-
halten. Erwéhnt sei hier nur noch, daB3 sich das Programm
zuerst finf giinstig verteilte Punkte aussucht und mit die-
sen Ndherungswerte fiir die relative Orientierung bestimmt.
Hierauf werden die y-Parallaxen aller iibrigen Punkte ge-
rechnet und mit einer frei wihlbaren Toleranz verglichen.
Punkte, deren y-Parallaxe die Toleranz iibersteigt, werden
mit einer entsprechenden Fehlermeldung ausgedruckt.
SchlieBlich wird die definitive Orientierung mit allen {ibri-
gen Punkten durchgefiihrt.

Bei der MaBstabsiibertragung werden alle den beiden Mo-
dellen gemeinsamen Punkte verwendet. Der MaBstab wird
als arithmetisches Mittel aus den Verhiltnissen, gebildet
zwischen den Strecken Projektionszentrum—Modellpunkt,
bestimmt.

5. Provisorische Streifen- und Blockausgleichung mit Poly-
nomen

Da die Fehlergleichungen aus einer Taylor-Entwicklung der
Beobachtungsgleichungen (1) entstanden sind, miissen N&-
herungen fiir alle Unbekannten bestimmt werden. Um nicht
unnotige Iterationen durchfithren zu miissen, ist man an
moglichst guten Ndherungswerten interessiert. Der vorlie-
gende Zwischenschritt wird dieser Forderung gerecht: man
erhédlt durch eine provisorische Ausgleichung mit Poly-
nomen sehr gute Nidherungen fiir die unbekannten Boden-
punkte.

Bei dem hier benutzten Programm handelt es sich um das
bekannte Polynomausgleichungsprogramm von Schut [4],
das vom National Research Council of Canada freundlicher-
weise zur Verfligung gestellt wurde.
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IV. Das Biindelausgleichungsprogramm BUEND

Wir wollen uns im Rahmen dieser Arbeit auf einige wenige
Aspekte des Programmes beschranken ; eine detaillierte Pro-
grammbeschreibung wird demnachst vom Institut fiir Geo-
dasie und Photogrammetrie veroffentlicht.

Das Biindelprogramm BUEND wurde auf der CDC 6400/
6500 Rechenanlage der ETH-Z entwickelt und ausgetestet.
Es ist in Fortran 1V geschrieben und verwendet, abgesehen
vom Datentransfer Kern-externe Speicher, keine System-
routinen. Eine Ubernahme auf eine andere Rechenanlage
diirfte somit mit keinen nennenswerten Schwierigkeiten ver-
bunden sein. Es mufl aber immerhin darauf hingewiesen
werden, daB3 mit einem solchen Programm nur auf Grof3-
computern, die mit sehr schnellem Datentransfer Kern-
externe Speicher ausgeriistet sind, verniinftig gerechnet wer-
den kann.

Wie in Abschnitt I1I. bereits erwéhnt, verlangt das Biindel-
programm als Eingangsdaten gendherte Werte fiir die un-
bekannten Bodenpunkte sowie die bereinigten Bildkoordi-
naten von jedem Luftbild. Bei einem Block mit 200 Bildern
und 20 Punkten pro Bild ergeben sich etwa 1600 Boden-
punkte und 3200 Bildkoordinaten. Es liegt auf der Hand,
die Ausgangsdaten solcher oder groBerer Blocke nicht in
Kartenform, sondern auf einem Magnetband bereitzuhal-
ten. Gegen dieses Konzept sprach frither der Umstand, daB3
es sehr schwierig war, einzelne Punkte zu korrigieren oder
zu eliminieren; mit der heutigen modernen Software ist das
aber ohne weiteres moglich (Updating).

Neben den Eingangsdaten fallen im Verlaufe der Berech-
nung weitere grol3e Datenmengen an (zum Beispiel die Nor-
malgleichungen). Eines der Hauptprobleme von BUEND
war deshalb die zweckmaBige Abspeicherung und Verwal-
tung der Daten (es werden einige 100000 Speicherplitze
benotigt). Das Problem wurde so gelost, daB3 alle groBeren
«arrays» in Blocken von 256 Zeilen unterteilt und auf Disk
abgespeichert werden. Diese Technik hat den groBen Vor-
teil, daB3 im Kernspeicher wenig Platz gebraucht wird, denn
dort wird gleichzeitig immer nur ein Block bendétigt. Aus
diesem Grund ist es moglich, praktisch unbegrenzt grof3e
Blocktriangulationen bei einem Kernspeicherbedarf von nur
65000 oktal durchfiihren zu konnen. Dabei konnte man
durch eine Segmentierung des Programmes noch weitere
Speicherplitze einsparen.

Im Programmablauf von BUEND - das iibrigens etwa
2500 Fortran-Statements umfaBt — konnen 5 Phasen unter-
schieden werden, die wir der Reihe nach kurz besprechen
wollen.

Die erste Phase dient vor allem der Organisation, umfassend
die Dateneingabe, die formale Datenkontrolle und die Fest-
stellung der Verkniipfungen. Die Datenkontrolle besteht aus
verschiedenen Tests, die die Eingabedaten vor allem auf
Vollstiandigkeit und Plausibilitidt priifen. Wird ein Fehler
festgestellt, so fithrt das — mit einer entsprechenden Fehler-
meldung — nach dem vollstindigen Einlesen zum Abbruch
der Berechnungen.

Die Struktur der reduzierten Normalgleichungen ergibt sich,
wie in Abschnitt 2 festgestellt, auf Grund der Verkniipfun-
gen der Luftbilder. Jedes Bild ist durch gemeinsame Punkte
mit einer gewissen Anzahl benachbarter Bilder verbunden,
und dies festzustellen ist ebenfalls Aufgabe der Organisa-
tionsphase.
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Die in diesem Programmteil auftretenden umfangreichen
Such- und Sortierprozesse erfolgen exponentiell bezie-
hungsweise logarithmisch.

Die zweite Phase umfal3t die Bildung der vollstindigen
Normalgleichungen. Bemerkenswert ist hier, da3 die Fehler-
gleichungsmatrix nicht explizit in Erscheinung tritt: aus den
Fehlergleichungen eines Bildpunktes wird sofort der Anteil
an die Normalgleichungen gerechnet. Dabei kann der ra-
diale Abstand in Form eines Gewichtes beriicksichtigt wer-
den. Man hat so die Moglichkeit, die Punkte am Bildrand
oder in den Bildecken mit einem kleineren Gewicht zu ver-
sehen.

In der nidchsten Phase wird die vollstindige Normalglei-
chungsmatrix nach den Formeln (6) bis (11) reduziert und
hernach in der 4. Phase aufgelost. Der Auflosungsalgorith-
mus wird etwas kompliziert, da N stiickweise auf Disk ab-
gespeichert ist und sicher nie vollstindig im Kernspeicher
Platz finden wird. Die vom Institut fiir Baustatik und Mas-
sivbau freundlicherweise zur Verfiigung gestellte Subrou-
tine Bandmat (Anderheggen) bildet aus Ng die obere Drei-
ecksmatrix (Gaullsche Zerlegung), wobei als Pivotelemente
der Reihe nach die Diagonalelemente genommen werden.
Zwei weitere Schritte (Vorwérts- und Riickwértselimination)
ergeben schlieBlich die gesuchte Losung, also die Transfor-
mationsparameter (Orientierungselemente) der Luftbilder.
Da man jedoch in erster Linie an den ausgeglichenen (und
in Phase 3 eliminierten) Bodenpunkten interessiert ist, miis-
sen diese in einem nachfolgenden Schritt berechnet werden.
In der letzten Phase schlieBlich wird auf Grund der absolut
groBten Verbesserung an einem der Drehwinkel o, ¢ oder %
festgestellt, ob die Ausgleichung zu wiederholen ist. Ist dies
der Fall, so sind die Programmschritte 2 bis 4 zu wieder-
holen, andernfalls werden die Verbesserungen an den Bild-
koordinaten gerechnet und daraus der mittlere Fehler der
Gewichtseinheit. Dazu folgt eine Resultatliste, die nebst den
Orientierungselementen vor allem die ausgeglichenen Koor-
dinaten der Bodenpunkte enthilt. Diese Liste kann auf ir-
gendein Ausgabemedium (Papier, Diskfile, Karten, Film)
ausgegeben werden.

Wir wollen diesen Abschnitt mit einem kurzen Hinweis auf
die Rechenzeiten, beziehungsweise auf die Rechenkosten,
abschlieBen. Die in Figur 7 angegebenen Kosten beziehen
sich auf

— die Preisverhiltnisse, wie sie am 1. Januar 1972 am Re-
chenzentrum der ETH-Z giiltig waren (1 CP-Sekunde
kostet ungefihr Fr.1.- und eine PP-Sekunde etwa
Fr. 0.10),

— 9 Punkte pro Bild und einen Durchgang mit einer Itera-
tion,
— regelmiBig geflogene Blocke.

Die obere Kurve in Abbildung 7 zeigt die totalen Rechen-
kosten in Abhidngigkeit der Blockgrofle. Die untere Kurve
stellt den Anteil, verursacht durch die Auflosung der Nor-
malgleichungen, dar. Werden mehr als 9 Punkte auf einem
Bild gemessen, so konnen die entstehenden Mehrkosten mit
guter Anndherung so abgeschitzt werden, daB3 die Differenz
zwischen den beiden Kurven in der Abbildung 7 propor-
tional vergroBert wird.

Im Zusammenhang mit den mitgeteilten Rechenkosten muf}
auf das Preis-Leistungs-Verhéltnis von Rechenanlagen ver-
schiedener GrofBe aufmerksam gemacht werden: Ein Com-
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Abb. 7

puter mit doppelten Anschaffungskosten wird eine viermal
groBere Leistungsfdhigkeit aufweisen; das heiBt, dal3 das-
selbe Problem nur noch rund die Hilfte kosten wird. Diese
Tatsache ist einer der Griinde, Blocktriangulationen auf den
groBten zur Verfiigung stehenden Computern zu rechnen.
So sind auch die Preisangaben der Abbildung 7 zu betrach-
ten: auf einer nidchst hoheren Anlage (zum Beispiel CDC
6600) wiren die Preise nur noch halb so grof3.

AbschlieBend darf festgestellt werden, daB3 sich die Rechen-
kosten im Vergleich zu den iibrigen Kosten, wie Bildflug,
Ausmessung der Bilder usw. recht bescheiden ausnehmen.

V. Schlufbemerkungen

Die vorliegende Arbeit soll mit einem Hinweis auf die zu
erwartenden Genauigkeiten und auf zwei Anwendungsmog-
lichkeiten der vorgestellten Programmkonzeption abge-
schlossen werden.

Angesichts der groBen Anzahl von Unbekannten in der
Normalgleichungsmatrix kann vorldufig an ihre Inversion
nicht gedacht werden. Damit schlieBt man die Moglichkeit
aus, mittlere Fehler oder gar Fehlerellipsen von Unbekann-
ten zu berechnen. Als einziges Kriterium, die erreichte Ge-
nauigkeit einer Blocktriangulation zu beurteilen, steht der
mittlere Fehler der Gewichtseinheit zur Verfiigung, also der
mittlere Fehler an den Bildpunktkoordinaten. Multipliziert
man ihn mit dem BildmaBstab, so 146t sich dadurch der
mittlere Punktlagefehler der Bodenkoordinaten abschétzen.
Der mittlere Fehler der Gewichtseinheit lag fiir alle bis jetzt
am Institut durchgefiihrten Blocktriangulationen zwischen
45 wm und + 8 um. Dieses Ergebnis stimmt gut mit den
Erfahrungen anderer Stellen, welche die Biindelmethode an-
wenden, liberein.

Die Hauptanwendungsmoglichkeit besteht in der klassi-
schen Aufgabe der Aerotriangulation, also in der Bestim-
mung von PaBpunkten fiir die absolute Orientierung der
Modelle am Autographen. Die Orientierungselemente der
Bilder, die ja durch die Ausgleichung ebenfalls bestimmt
werden, konnen am Auswertegerit eingestellt werden. Da-
mit beschrénkt sich die relative und absolute Orientierung
eines Modelles auf ein Minimum. Dies ist, zusammen mit
der Tatsache, daB die Messungen am Komparator schneller
und von weniger geiibtem Personal durchgefiihrt werden

konnen, der Hauptvorteil der Biindelmethode. Dazu sei
nochmals erwihnt, daf3 die Methode allen anderen Verfah-
ren in fehlertheoretischer Hinsicht iiberlegen ist.

Eine zweite Anwendungsmoglichkeit besteht darin, nicht
nur die Punkte zu bestimmen, die zur absoluten Orientie-
rung am Auswertegerdt gebraucht werden, sondern alle
gewiinschten Bodenpunkte des betreffenden Operates. Der
Verfasser denkt dabei insbesondere an die Grundbuchver-
messung: Es ist ohne weiteres moglich, alle Punkte, von
denen Koordinaten gewiinscht werden (also insbesondere
alle Grenzpunkte), am Komparator auszumessen und durch
die Biindelausgleichung zu bestimmen. Man kann sich dabei
das iiberlegene MeBmittel (Komparator gegeniiber Auto-
graph) und das fehlertheoretisch strengste Ausgleichungs-
verfahren zunutze machen.

Welches sind die dabei zu erwartenden Genauigkeiten?
Nach den Ausfiihrungen zu Beginn dieses Abschnittes kann
die Punktgenauigkeit so abgeschiitzt werden, daB3 der mitt-
lere Gewichtseinheitsfehler mit dem BildmaBstab multipli-
ziert wird. Nimmt man einen BildmaBstab von 1:5000 und
einen Gewichtseinheitsfehler von 46 pm an — also beides
realistische Werte —, so wird die Genauigkeit eines Punktes
ungefdhr +3 cm. Voraussetzung dazu ist allerdings eine
geniigende PaBBpunktdichte. Versuche haben gezeigt, daf3 die
Triangulationspunkte, eventuell ergdnzt mit Einschaltpunk-
ten, fiir eine Biindelausgleichung ausreichen.

Der bewédhrte geoditische Grundsatz, dal3 eine Messung
keine Messung ist, 14Bt sich ohne weiteres auch hier reali-
sieren, indem der ganze Block zweimal geflogen und aus-
gewertet wird. Dadurch werden nicht nur die groben Fehler
eliminiert, sondern auch die Blockstabilitit erhoht, voraus-
gesetzt, daB der zweite Flug genau iiber die seitliche Uber-
lappung des ersten erfolgt.

Wir konnen hier im Rahmen dieser Arbeit nicht niher auf
weitere Details eingehen. Ziel war es, liber die neue Pro-
grammkonzeption und insbesondere tiber das Biindelaus-
gleichungsprogramm BUEND zu informieren. Der Verfas-
ser hofft, damit den Diskussionen um den Einsatz der (ana-
lytischen) Photogrammetrie einige neue Impulse zu geben.
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