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Arbeiten und Entwicklungen zur analytischen Photogrammetrie am
Institut für Geodäsie und Photogrammetrie der ETH-Z

T. Schenk, Zürich

Zusammenfassung

Am Institut für Geodäsie und Photogrammetrie der ETH-Z ist
eine neue Programmkonzeption zur Anwendung der
Blocktriangulation nach der Bündelmethode entstanden. Die vorliegende

Arbeit orientiert darüber. Nach einigen einleitenden
Bemerkungen zur Entwicklung und zu den Methoden der
Blocktriangulation wird etwas näher auf die Bündelmethode eingegangen.

Nach einer kurzen thematischen Erörterung wird vor allem
das Problem der Normalgleichungsauflösung diskutiert. Danach
wird der ganze Arbeitsablauf einer Blocktringulation nach der
Bündelmethode, mit einigen Hinweisen auf die Rechenkosten,
beschrieben. Der letzte Abschnitt ist den Anwendungen gewidmet.

Résumé

Une nouvelle conception de programme du calcul électronique
dans l'application de l'aérotriangulation par blocs vient d'être
développée à l'Institut de géodésie et photogrammetrie de l'EPF-Z.
Après quelques explications d'ordre général et de la méthode des
faisceaux en particulier, le problème de la résolution des équations

normales est discuté. Puis tout le processus de l'aérotriangulation

de blocs par la méthode des faiscaux de rayons est
développée avec quelques remarques sur le coût du calcul électronique

et les possibilités d'application de la méthode.

I. Einleitung

Die räumliche Photogrammetrie hat zum Ziel, aus Luftbildern

topographische Karten oder Landeskoordinaten
diskreter Punkte zu gewinnen. Dazu ist ein Übergang von
einem Koordinatensystem in ein anderes notwendig: Die
Messungen im photographischen Bild werden in einem

Bildkoordinatensystem oder einem daraus abgeleiteten
Modellkoordinatensystem durchgeführt; die Karten oder
Punktkoordinaten hingegen wünscht man meistens in einem

Landeskoordinatensystem.
Gemeinsames Element der beiden Koordinatensysteme sind
die Paßpunkte. Mit ihrer Hilfe lassen sich die beiden
Systeme ineinander überführen.
Bei der modellweisen Auswertung sind etwa 5 bis 6

Paßpunkte wünschenswert, um die absolute Orientierung rasch

und bequem durchführen zu können. Die wirtschaftliche
Leistungsfähigkeit der Photogrammetrie wird ernstlich in

Frage gestellt, wenn alle erforderlichen Paßpunkte
terrestrisch zu bestimmen sind. Man trachtete deshalb schon

früh danach, die Paßpunkte photogrammetrisch zu bestimmen.

Damit setzte die Entwicklung verschiedener Verfahren
der Aerotriangulation ein. Die Aufgabe der Aerotriangulation

besteht somit in der Verdichtung eines terrestrisch
bestimmten Punktfeldes.
Die analytische Durchführung einer Aerotriangulation ist
mit einem sehr hohen Rechenaufwand verbunden. Das einzig

wirtschaftlich vertretbare Verfahren bestand bis vor
kurzem darin, die Aerotriangulation soweit wie möglich
instrumente!! durchzuführen. Dank diesem Umstand er¬

lebte die photogrammetrische Instrumentenindustrie einen

großen Aufschwung, und es wurden eigens für die analoge
oder instrumentelle Aerotriangulation spezielle Autographen,

sogenannte Geräte 1. Ordnung, entwickelt, welche
nach einer Reihe von Zwischenschritten als Endprodukt
Streifenkoordinaten liefern.
Für die mehr oder weniger gleichmäßigen Abweichungen,
die die Streifenkoordinaten gegenüber den geodätischen
Paßpunkten aufweisen, machte man systematische Gerätefehler

verantwortlich. Demzufolge interpolierte man die
Streifenkoordinaten mit Korrekturflächen 2. Ordnung in
das vorhandene Paßpunktfeld. Sprunghafte Änderungen
der Streifenkoordinaten an einzelnen Stellen sowie die
Tatsache, daß ein hin- und rücktriangulierter Streifen zu zwei
verschiedenen Ergebnissen führte, deckte die Unzulänglichkeit

dieser Methode auf.
Die entscheidende Wende zugunsten von strengeren und
allgemeineren Verfahren der Aerotriangulation brachte die

Entwicklung von elektronischen Rechenanlagen. Die
Einwände gegen die analytische Aerotriangulation wurden
angesichts dieser neuen aussichtsreichen Situation mehr und
mehr entkräftet, und es setzte etwa in der Zeit zwischen
1950 und 1960 eine intensive mathematische Erörterung der
Grundformeln ein. Dabei erwiesen sich die von Schmid
gemachten Vorschläge [1] als die umfassendsten und
fehlertheoretisch strengsten aller vorgeschlagenen Lösungen.
Nach [1] werden alle Luftbilder eines Blockes zusammen
mit den zu bestimmenden Punkten einer Ausgleichung nach
der Methode der kleinsten Quadrate zugeführt.
Der Begriff der Aerotriangulation, unter welchem man bis

zu diesem Zeitpunkt (1960) ausschließlich Streifenausgleichung

verstand, weitete sich zwangsläufig aus auf ganze
Blöcke (mehrere nebeneinanderliegende und sich überlappende

Streifen). Aus diesem Grund bevorzugt man heute
den Begriff der Blocktriangulation.
Um eine gewisse Übersicht in die bekanntesten und in die
Praxis eingeführten Methoden der Blocktriangulation zu
bringen, erscheint eine grobe Einteilung in 3 Gruppen
zweckmäßig. Tafel 1 zeigt, nach welchen Gesichtspunkten
die Einteilung vorgenommen wurde: Maßgebend ist die
kleinste Einheit, die in die Ausgleichung eingeht. Bei den

Interpolationsverfahren sind dies ganze Streifen, bei der
Methode der unabhängigen Modelle einzelne Modelle und
bei der Bündelmethode schließlich einzelne Luftbilder. Aus
Tafel 1 geht weiter hervor, welche Operationen analog (mit
einem A bezeichnet) und welche analytisch (mit einem O

symbolisiert) durchgeführt werden.

/. Interpolationsverfahren
Die Interpolationsverfahren reichen bis in die Anfänge der

Streifenausgleichung zurück. Wie oben erwähnt, versuchte

man die Streifendeformationen, deren Ursache in systema-
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tischen Gerätefehlern gesucht wurde, mit Polynomen zu
eliminieren.
Die Verfahren der Polynomausgleichung sind heute wohl
feiner ausgearbeitet, auf mehrere nebeneinanderliegende
Streifen erweitert und vor allem der elektronischen Berechnung

zugeführt worden, im Grunde genommen stützen sie

sich aber immer noch auf die Fehlertheorie der dreißiger
Jahre.
Wie viele Blockausgleichungen werden heute noch nach

einer Interpolationsmethode gerechnet? Auf diese Frage

gibt eine Untersuchung von Kubik und Kure [2] Auskunft.
Die vorläufige Auswertung der vom ITC, Delft, an 267

Organisationen versandten Fragebogen ist in Figur 1 graphisch
dargestellt :

diesem Grunde ohne große Schwierigkeiten auf kleinere
bis mittlere Anlagen übernommen werden.

- Ein mehr psychologischer Grund dürfte darin zu sehen

sein, daß die Interpolationsmethoden viel mehr als die

anderen Verfahren der Tradition der Aerotriangulation
entsprechen.

2. Methode der unabhängigen Modelle
Zu dieser Gruppe zählen alle Verfahren, deren kleinste in
die Ausgleichung eingehende Einheit ein Modell oder eine

Gruppe von Modellen ist. Wie mehrere Modelle zu einer

Gruppe oder wie man, angelehnt an den englischen
Sprachgebrauch, oft auch sagt, zu Sektionen zusammengefaßt
werden, ist hier offengelassen. Damit gehören auch die
Verfahren der verknüpften Polynome in diese Gruppe. Der
Übergang zu den Interpolationsverfahren ist fließend : Faßt

man alle Modelle eines Streifens zu einer Sektion zusammen,
haben wir den Fall der Interpolationsverfahren vor uns.
Die Entwicklung der Verfahren mit unabhängigen Modellen

leitete van den Hout ein. Seine Methode - heute allgemein

als Anblock bezeichnet - setzt horizontierte Modelle

voraus, es findet also nur ein Lageausgleich statt. Räumliche
Versionen sind vor allem vom photogrammetrischen Institut

der Universität Stuttgart [5] und - seit längerer Zeit
schon - von King [6] bekannt.
Die Verfahren der zweiten Gruppe sind, verglichen mit der

ersten, fehlertheoretisch wesentlich differenzierter. Sie sind
deshalb auch leistungsfähiger und ergeben strengere Resultate.

Diesen Vorzügen stehen wesentlich höhere Anforderungen
an die Datenverarbeitung gegenüber: Der erhöhte numerische

Aufwand ist sinnvoll nur noch durch große, mit
leistungsfähigen externen Speichern versehene Rechenanlagen

zu bewältigen. Das hat zur Folge, daß der Aufwand zur
Erstellung eines effizienten Rechenprogrammes um ein
Mehrfaches ansteigt. Damit sind aber auch gleich die Gründe

aufgezählt, weshalb die Methode der unabhängigen Modelle
in der Praxis noch nicht so weit eingeführt ist, wie man das

vielleicht erwarten könnte.

Figur 1

keine Aerotriangulation

Interpolations
verfahren

Bündel (7

unabhängige Modelle

Es fällt auf, daß 29% aller photogrammetrischen Organisationen

keine Aerotriangulation anwenden und daß von den

übrigen Stellen 57% ein Interpolationsverfahren
bevorzugen. Als Gründe für die doch recht weite Verbreitung der

Interpolationsverfahren können genannt werden :

- Die Methode ist einfach zu verstehen und vor allem
einfach zu programmieren.

- Fertige Rechenprogramme stehen zur Verfügung (zum
Beispiel vom National Research Council of Canada [4]).

- Die Programme stellen in bezug auf Kernspeichergröße,
Geschwindigkeit und externe Speichermöglichkeiten keine

großen Ansprüche an die Rechenanlagen. Sie können aus

II. Bündelmethode

Am Institut für Geodäsie und Photogrammetrie der ETH-Z
sind seit einiger Zeit Computerprogramme zur Anwendung
der Bündelmethode fertiggestellt und ausgestestet worden.

Aus diesem Grund soll diese Methode hier etwas eingehender

erläutert werden.
Die Bündelmethode ist das bisher strengste Verfahren, da

die eigentlichen Messungen, nämlich die Bildkoordinaten,
direkt in die Ausgleichung eingehen. In dieser Tatsache ist

der wichtigste Unterschied zu den übrigen Verfahren zu

sehen, denn dort führt man ja immer Größen in die

Ausgleichung ein, die durch mehrere Schritte aus den
Grundelementen der Aerotriangulation - den Bildkoordinaten -
hergeleitet werden.

Vor allem die in Tafel 1 unter der Kolonne «Arbeitsvorgänge»

bezeichnete Vorbereitungsphase erhellt den
Sachverhalt besser: Die zwei Operationen «Festlegung des

Bildhauptpunktes» und «Berücksichtigung der Objektivverzeichnung

und eventuell Erdkrümmung» lassen sich bei den

übrigen Verfahren nur analog durchführen (durch manuelles

Einpassen der Bilder in die Bildträger und durch Kompen-
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sationsplatten). Schließlich ist die unter Umständen wichtige

Operation der Berücksichtigung von Filmschrumpfungen

nur bei der Bündelmethode möglich.
Es ist vor allem diese «Vorgeschichte» der Bildkoordination

- wir fassen sie als Bildkoordinatenbereinigung zusammen

-, die eine weitere Leistungssteigerung gegenüber allen
anderen Verfahren bringt.
Wir können aus Tafel 1 weiter entnehmen, daß nur noch
eine Operation - die Messung der Bildkoordinaten - analog
durchgeführt wird. Diesem Umstand wird im englischen
Sprachgebrauch dadurch Rechnung getragen, daß man die
Bündelmethode als «fully analytical method» bezeichnet.
Im Deutschen kennen wir diesen Begriff nicht wörtlich, und
unter analytischer Aerotriangulation versteht man nicht
ausschließlich die Bündelmethode. Wie ein Blick auf
Abbildung 1 zeigt, wenden nur 7% aller Organisationen, die

Blocktriangulation benutzen, die Bündelmethode an. Das
ist weiter nicht erstaunlich, denn die Anforderungen an die

Rechenprogramme und Computer steigen nochmals an im

Vergleich zu den übrigen Verfahren.

/. Mathematisches Modell1
Bezogen auf die Bündelmethode lautet die Frage nach dem
funktionalen Modell1: wie erhält man aus den an einem

Komparator gemessenen Bildpunkten ausgeglichene
Koordinaten der Neupunkte in einem Landeskoordinatensystem?

Die bei der optischen Abbildung wirksamen physikalischen
Vorgänge werden in der Photogrammetrie seit jeher durch
die Gesetze der Zentralperspektive beschrieben. Alle erfaßbaren

Abweichungen davon, wie etwa Verzeichnung,
Filmschrumpfung, Refraktion und andere werden auf dieses

Modell reduziert, wobei man in diesem Zusammenhang von
der Korrektur systematischer Fehler spricht.
Durch die Elemente der inneren Orientierung wird das

Projektionszentrum bezüglich dem Luftbild festgelegt. Die
Geraden durch das Projektionszentrum und durch die
Bildpunkte definieren ein Strahlenbündel. Die Aufgabe der

Blockausgleichung besteht darin, die Bündel so zu orientieren

und zu verbessern, daß alle homologen Strahlen
durch einen Punkt gehen.
Die Kollinearitätsbedingung (das Projektionszentrum Oi,
der Bildpunkt P,j und der Bodenpunkt Pj liegen auf einer

Geraden, nämlich auf dem Bündelstrahl ij, vgl. Abb. 2)

und die Gesetze der Zentralprojektion liefern die

Beobachtungsgleichungen :

x (X - Xo) au +(Y - Yo) au + (Z - Zo) an

X, Y, Z Koordinaten des Bodenpunktes Pj
Xo, Yo, Zo Koordinaten des Projektionszentrums O,

z (X - Xo) an + (Y - Yo) an + (Z -

y (X - Xo) an y (Y - Yo) an y (Z-

- Zo) 033

- Zo) 023
(1)

z (X - Xo) cm y (Y - Yo) an y (Z-- Zo) 033

Darin bedeuten:

x, y Bildkoordinaten
z Projektionsdistanz

1 Das mathematische Modell wird hier als Oberbegriff des funktionalen

und des stochastischen Modelles verwendet. Das funktionale
Modell ist die mathematische Beschreibung eines tatsächlichen
physikalischen Vorganges. Im stochastischen Modell werden jedem
Element des funktionalen Modelles stochastische Eigenschaften
zugeschrieben.

&IJI,

Pj (X.Y.Z)

Figur 2

Die a sind die Koeffizienten der orthogonalen Drehmatrix A :

Oll Ol2 Ol3

021 022 023 (2)

031 an Ö33

oder mit den in Abbildung 4 eingeführten Drehwinkeln

Gleichung (3) siehe Seite 85

Die Gleichungen (1) gelten für jeden Bündelstrahl ij. Somit
liefert jeder Bildpunkt Py ein Paar Gleichungen (1), die in
Verbesserungsgleichungen übergehen, wenn Verbesserungen

vx und
werden :

an den Bildkoordinaten x, y eingeführt

x y vx F(œ, tf>, h, Xo, Yo, Zo, X, Y, Z)

y y Vy F (co, tf>, k, Xo, Yo, Zo, X, Y, Z)
(4)

Alle Terme auf der rechten Seite sind Unbekannte: Die
ersten sechs sind die Orientierungsparameter (drei
Drehwinkel, drei Koordinaten für das Projektionszentrum) und
die letzten drei Parameter sind die unbekannten Koordinaten

der Bodenpunkte.
Die Gleichungen (4) sind nicht linear. Um aus ihnen
Fehlergleichungen zu erhalten, muß man sie linearisieren, was
bekanntlich durch eine Taylor-Entwicklung unter
Vernachlässigung der Glieder zweiter und höherer Ordnung erreicht
werden kann. Diese Vernachlässigung hat zur Folge, daß

man von den Unbekannten Näherungen kennen muß, will
man vermeiden, daß die Ausgleichung mehrfach
durchgeführt werden soll. Im allgemeinen nimmt man für die

Aerotriangulation den Normalfall an (co <f> x 0).

Die Programmkonzeption, wie sie in den beiden nächsten

Abschnitten etwas näher beschrieben wird, sieht vor, daß

sowohl für die unbekannten Transformationsparameter wie
für die Bodenpunkte Näherungen berechnet werden. Das
hat den Vorteil, daß die linearisierten Formeln auch für
Nicht-Senkrechtaufnahmen noch gültig sind.
Die Linearformen aus (4) ergeben sich durch Differenziation
der Gleichungen (1). Wir verzichten hier auf die detaillierte
Wiedergabe und verweisen auf [3].
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cos <f> cos x (cos co sin x + sin co sin tf> cos x) (sin cu sin « — cos cu sin <f> cos x)

cos tf> sinx (cos co cos x — sin co sin <f> sin x) (sin co cos ?< + cos co sin tf> sin x) (3)

sin ^ — sin co cos tf> cos co cos tf>

2. Lösung der Normalgleichungen

Die Hauptschwierigkeit bei der Realisierung der
Bündelmethode liegt in der Lösung des umfangreichen
Normalgleichungssystem. Nach II.1. treten als Unbekannte auf:
6 Orientierungsparameter eines Luftbildes (3 Drehungen

co, cp, x und Ao, Yo und Zo des Projektionszentrums) sowie

drei Koordinaten (X, Y, Z) jedes unbekannten
Bodenpunktes. Bei einer Blockgröße von 200 Bildern und 1600

unbekannten Bodenpunkten ergeben sich somit 6000

Unbekannte, die es simultan aufzulösen gilt.
Es ist nicht Zweck der vorliegenden Arbeit, alle in Frage

kommenden Lösungsmöglichkeiten für solch große

Normalgleichungssysteme zu diskutieren, man vergleiche dazu

[3] mit den dort enthaltenen Literaturhinweisen. Wir
skizzieren hier nur die im Bündelprogramm BUEND (vgl. IV.)
verwirklichte Lösung.
Um die folgenden Überlegungen an einem Beispiel verfolgen

zu können, ist in Abbildung 3 ein Block dargestellt, der

sich aus drei Streifen zu je 4 Bildern zusammensetzt.

die Bodenpunkte, es ist also zweckmäßig, diese zu elimi-
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Figur 3

Die zu diesem Block gehörende Normalgleichungsstruktur
ist in Abbildung 4 angedeutet. Die direkte Lösung des

vollständigen Normalgleichungssystems kommt nicht in Frage :

der Rechenaufwand dazu wird selbst auf Großcomputern
unverantwortlich groß. Es ist vielmehr angezeigt, das

Normalgleichungssystem zu reduzieren. Wie aus Abbildung 4

hervorgeht, drängt sich als Teilungspunkt der Übergang

von den Orientierungselementen zu den Bodenpunkten auf.

Man muß sich somit nur noch entscheiden, welche der
beiden Unbekanntengruppen (Orientierungselemente oder

Bodenpunkte) zu eliminieren sei. Im allgemeinen überwiegen

Orientierungselemente
4 »

1 |l|3|t|ff|6|7|l|»fK>|ll|R

Bodenpunkte

ffi'ffî'ifflirmniTi^iiiiiiiiT

*m ntt «!¦¦-¦
¦¦¦:¦¦::

i

kt

11

LLLL
¦ " ¦ ¦
"'Vi: \ k-

Figur 4

Mit den in Abbildung 4 eingeführten Bezeichnungen können

wir schreiben :

Ntt i
Ntb t

Ntbx

Nbbx ki

(5a)

(5b)

Um die Unbekanntengruppe x zu eliminieren, multiplizieren

wir Gleichung (5b) linksseitig mit Nbb'1.

Nbb'1 ¦ Ntbt t + Nbb'1 • Nbb x Nbb'1 • k.2 (6)

Da Nbb als Normalgleichungsmatrix sicher regulär ist, gilt
Nbb'1 ¦ Nbb E, wobei £ die Einheitsmatrix bedeutet. Damit

folgt für obige Gleichung:

x Nbb'1 • k2 - Nbb'1 • Ntbt • t_ (7)

Ersetzen wir in Gleichung (5a) x durch den in (7) gefundenen

Ausdruck, so erhält man

Ntt ¦ i + Ntb ¦ (Nbb'1- kz - Nbb'1 • Ntbt • t) k% (8)

oder nach einigen Umformungen :

(Ntt - Ntb • Nbb'1 • Ntbt) • t_ kx Ntb ¦ Nbb'1 • ki (9)

Zur weiteren Vereinfachung von (9) setzen wir das Matrizenprodukt

Nbb'1 ¦ Ntbt B. Aus der Symmetrie von Nbb

folgt:

(Nbb'1 ¦ Ntbt)t Ntb • Nbb'1 BT (10)

Damit läßt sich für Formel (9) schreiben :

(Ntt - Ntb • B) ¦ t_ ki - BT ¦ k2 OD
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In Formel (9) und (11) ist also der Vektor x (unbekannte
Verschiebungen der Bodenpunkte) eliminiert. Damit ist
aber noch nicht viel gewonnen, denn die zu bildende Inverse
ist im allgemeinen mit einem sehr hohen numerischen
Rechenaufwand verbunden (rc3-Prozeß). Nun sei aber an die

spezielle Struktur der Matrix Nbb erinnert (vgl. Abb. 4):
Sie besteht aus 3 x 3-Untermatrizen, die in der Diagonalen
angeordnet sind und somit keinerlei Verbindungen
untereinander haben. Aus diesem Umstand folgt, daß auch die
Inverse Nbb'1 wieder dieselbe Struktur aufweist und daß
damit der numerische Aufwand zur Invertierung in angemessenen

Grenzen bleibt.
Verfolgen wir weiter die Struktur der Matrix B Nbb'1

Ntbt ¦ Da Nbb'1 eine Diagonalmatrix ist - mit 3x3
Untermatrizen als Diagonalelemente - überträgt sich die Struktur
der Matrix Ntbt auf B.
Nach Formel (11) ist das Produkt Ntb • R zu bilden, und
wir interessieren uns wieder für die Struktur der neu
entstehenden Matrix Nr. Sie setzt sich aus lauter 6 x 6-Unter-
matrizen zusammen, die überall dort entstehen, wo die
einzelnen Luftbilder durch gemeinsame Punkte miteinander

verknüpft sind.

Die Reduktion der Normalgleichungsmatrix N auf die
unbekannten Orientierungselemente der Luftbilder bietet zwei

Vorteile :

- Die Zahl der Unbekannten wird beträchtlich vermindert.
Bei dem schon erwähnten Block mit 10 Streifen zu je 20

Bildern beispielsweise von 6000 auf 1200 (200 x 6) und
im Beispiel der Figuren 3 und 4 von 195 auf 72!

- Die reduzierte Normalgleichungsmatrix Nr hat eine
besonders günstige Struktur: Sie ist bandförmig, und der

Rechenaufwand zur Lösung wird dadurch günstig beeinflußt.

Die Bandbreite ist - das sei nur nebenbei bemerkt -
abhängig von der Numerierung der Bilder im Block. Im
allgemeinen ergibt eine Numerierung quer zur Flugrichtung

die kleinste Bandbreite.
Abschließend sei noch erwähnt, daß man auch bei der
Methode der unabhängigen Modelle nach einer ähnlichen
Reduktion auf Matrizen mit Bandgestalt stößt. Man war bis

heute allgemein der Ansicht, so den kleinsten Rechenaufwand

gefunden zu haben. Wie in [3] gezeigt, ist dem nicht
so : Durch ein völlig anderes Numerierungsprinzip und vor
allem durch die Ausnützung aller in der reduzierten Matrix
Nr enthaltenen Nullen kommt man nämlich zu einem
bedeutend geringeren Rechenaufwand.

III. Arbeitsablauf der Blockausgleichung nach der BUndel-
methode

Als Eingangsdaten in die Bündelausgleichung gehen die

Bildkoordinaten und die genäherten Koordinaten der

Bodenpunkte ein. Die Bildkoordinaten sind im Bildkoordinatensystem

definiert; gemessen werden sie aber im Kom-
paratorkoordinatensystem. Daraus geht hervor, daß die

ursprünglich gemessenen Bildpunkte nicht direkt der
Ausgleichung zugeführt werden können, sie müssen vielmehr
zuerst in das Bildkoordinatensystem transformiert und

gleichzeitig um den Einfluß der Objektivverzeichnung, des

Filmverzuges und der Refraktion korrigiert werden.

Es erweist sich nun aus organisatorischen Gründen als

zweckmäßig, darüber hinaus noch weitere Zwischenschritte

einzuschalten, die theoretisch das Endergebnis der Ausgleichung

in keiner Art und Weise beeinflussen, die aber für die

praktische Durchführung überaus nützlich sind. Wenn nämlich

einige tausend Messungen vorliegen, so muß mit einer

gewissen Anzahl grober Fehler gerechnet werden (falsche

Punktidentifikation, Punktnumerierungsfehler usw.). Man
hat alles Interesse daran, möglichst viele grobe Fehler
bereits vor der Ausgleichung zu eliminieren und die Ausgleichung

gewissermaßen vom Kleinen ins Große vorzubereiten.
Tafel 2 orientiert über die Zwischenschritte, wie sie sich am

Institut für Geodäsie und Photogrammetrie der ETH-Z zur
Durchführung einer Bündelausgleichung als zweckmäßig
erwiesen haben.

ZWISCHEN-
SCHRITT

PROGRAM-
NAME

ERGEBNIS
ZWECK

Komparatorkoordinaten
messen

Transformation Komparator-
Bildkoordinatensystem.
Berücksichtigung von
Filmverzug, Verzeichnung
und Refraktion

—(bkberJ—?[ Bereinigte Bildkoordinaten

Vergleich aller mehrfach
gemessenen Punkte

Elimination grober
Messfehler bei Mehrfachmessungen

relative Orientierung
und Streifenbildung

Elimination grober Fehler
von Punkten, die auf zwei
oder drei Bildern abgebildet
sind (Identifikations- oder
Punktnumerierungsfehler)

Provisorische Streifen-
und Blockausgleichung mit
Polynomen

Kontrolle der Uebertragungs-
punkte.
Näherungen fUr die Bodenpunkte

endgültige Blockausgleichung

n. Bündelmethode

Tafel 2

/. Komparatormessungen
Auf die den Messungen vorausgehenden Arbeiten, wie

Punktauswahl, Punktidentifikation, Numerierung und

Punktübertragung wird hier nicht eingegangen, es sei nur
erwähnt, daß weitere Untersuchungen über die als besonders

problematisch anzusehende Punktübertragung geplant
sind.
Die Messungen der Bildpunkte werden am Institut für
Geodäsie und Photogrammetrie am Wild-Stereokomparator
STK-2704 durchgeführt. Der Komparator ist ausgerüstet
mit einem EK6, einem Lochstreifenstanzer SL15 und einer

Schreibmaschine IBM.
Die Punkte werden im allgemeinen
zweimal unabhängig registriert, die
Rahmenmarken jedoch zwei- bis

viermal. Sind die Rahmenmarken
als Kreuz abgebildet (vgl. Abb. 5),

so wird auf den vier Strichen, die

das Kreuz andeuten, je ein Punkt
willkürlich ausgewählt und
registriert. Daraus wird der Schnittpunkt

gerechnet; er hat die gleiche

Genauigkeit wie ein direkt gemes-
Abb. 5 sener Punkt.
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Der Operateur ist vollkommen frei bei der Ausmessung der

Bilder, insbesondere spielt die Reihenfolge keine Rolle. Das

hat den Vorteil, daß vor den Messungen eine von Bild zu
Bild verschiedene Reihenfolge so festgelegt werden kann,
daß die Anfahrwege am Komparator möglichst klein werden.

Erwähnt werden soll noch, daß bei größeren Operaten
die Lochstreifen nicht mehr in Karten umgestanzt werden,
das umfangreiche Datenmaterial wird vielmehr in ein

sogenanntes Update-File umgewandelt, das auf einem Magnetband

aufbewahrt wird. Für den genauen Vorgang sowie die

Lochstreifenumwandlung wird auf [7] verwiesen.

3. Vergleich und Mittelung aller mehrfach gemessenen Punkte

Beim Stereokomparator wird im allgemeinen modellweise

gemessen. Wenn etwa die Bilder 72 bis 78 der Reihe nach

ausgemessen werden sollen, so erhalten wir folgende Reihenfolge

:

Linker Bildträger Rechter Bildträger
72 73

74 73

74 75

76 75

76 77

2. Transformation Komparator/Bildkoordinatensystem

Wie schon mehrfach ausgeführt, werden die Bildpunkte im
Komparatorkoordinatensystem ausgemessen; die Achsen
dieses Systems sind definiert durch die x- und y-Tragschie-
nen des Komparators.
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Abb. 6

Die Transformation wird auf Grund der beiden Systemen

gemeinsamen Punkte - den Rahmenmarken - vollzogen
(vgl. Abb. 6). Man setzt meistens einen affinen Ansatz an
und hat damit den Vorteil, bis zu einem gewissen Grad
systematische Filmschrumpfungen und systematische Kom-
paratorfehler, wie nicht Senkrechtstehen der Tragschienen
(Koordinatenachsen) und Maßstabsfehler berücksichtigen
zu können.
Es kann hier im Rahmen dieser Arbeit nicht näher auf die

Probleme des Filmverzuges, der Schrumpfung der Emulsion
und auf die Frage Platten oder Film eingegangen werden, es

muß allerdings festgehalten werden - und Diskussionen in

jüngster Zeit bestätigen es -, daß eine weitere Genauigkeitssteigerung

der analytischen Aerotriangulation weniger von
der Methode selbst, als vielmehr von der weiteren Abklärung

gerade der oben angeschnittenen Fragen zu erwarten
ist. Unter anderem ist festzustellen, daß man mit nur vier
Rahmenmarken - von denen nicht einmal mit Sicherheit
bekannt ist, wie gut sie ausgebildet, abgebildet und kalibriert
sind -, den Filmverzug und die Schrumpfung der Emulsion zu

wenig gut in den Griff bekommt. Daraus ergibt sich der

Wunsch an die Instrumentenfirmen, die Aufnahmekammern
mit acht Rahmenmarken von genügender Präzision zu
versehen.

Anschließend an die Transformation Komparator/Bild-
koordinatensystem werden im selben Programm (BKBER :

iJildtoordinatenoereinigung) die Bildkoordinaten um die

Einflüsse der optischen Verzeichnung, der Refraktion und
eventuell um Fehler der inneren Orientierung der Meßkammer

korrigiert. In diesem Zusammenhang wird auf die
detaillierte Programmbeschreibung [8] verwiesen.

Bei dieser Meßanordnung - ähnlich dem Prinzip Basis

außen/Basis innen - kommen alle Bilder eines Streifens zweimal

vor, mit Ausnahme des ersten und des letzten.
Die Aufgabe dieses Zwischenschrittes liegt darin, die
gleichen Bildnummern zu vereinigen sowie alle mehrfach
gemessenen Punkte zu vergleichen und zu mittein.

4. Streifenbildung

In diesem Zwischenschritt werden die einzelnen Bilder eines

Streifens sukzessive zueinander orientiert. Dadurch erhält

man von jedem Bodenpunkt Koordinaten im Streifensystem,

welches seinen Ursprung im Projektionszentrum
des ersten Luftbildes hat und dessen Achsen parallel zu
denjenigen des ersten Luftbildes liegen (vgl. Abb. 2).

Der Prozeß der Streifenbildung zerfällt bekanntlich in die

beiden Teilschritte relative Orientierung und
Maßstabsübertragung.

Die relative Orientierung erfolgt nach der Methode von
Schut; die detaillierte Programmbeschreibung ist in [9]
enthalten. Erwähnt sei hier nur noch, daß sich das Programm
zuerst fünf günstig verteilte Punkte aussucht und mit diesen

Näherungswerte für die relative Orientierung bestimmt.
Hierauf werden die y-Parallaxen aller übrigen Punkte
gerechnet und mit einer frei wählbaren Toleranz verglichen.
Punkte, deren y-Parallaxe die Toleranz übersteigt, werden

mit einer entsprechenden Fehlermeldung ausgedruckt.
Schließlich wird die definitive Orientierung mit allen übrigen

Punkten durchgeführt.
Bei der Maßstabsübertragung werden alle den beiden
Modellen gemeinsamen Punkte verwendet. Der Maßstab wird
als arithmetisches Mittel aus den Verhältnissen, gebildet
zwischen den Strecken Projektionszentrum-Modellpunkt,
bestimmt.

5. Provisorische Streifen- und Rlockausgleichung mit
Polynomen

Da die Fehlergleichungen aus einer Taylor-Entwicklung der

Beobachtungsgleichungen (1) entstanden sind, müssen
Näherungen für alle Unbekannten bestimmt werden. Um nicht
unnötige Iterationen durchführen zu müssen, ist man an

möglichst guten Näherungswerten interessiert. Der vorliegende

Zwischenschritt wird dieser Forderung gerecht : man
erhält durch eine provisorische Ausgleichung mit
Polynomen sehr gute Näherungen für die unbekannten
Bodenpunkte.

Bei dem hier benutzten Programm handelt es sich um das

bekannte Polynomausgleichungsprogramm von Schut [4],
das vom National Research Council of Canada freundlicherweise

zur Verfügung gestellt wurde.
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IV. Das Bündelausgleichungsprogramm BUEND

Wir wollen uns im Rahmen dieser Arbeit auf einige wenige
Aspekte des Programmes beschränken ; eine detaillierte
Programmbeschreibung wird demnächst vom Institut für
Geodäsie und Photogrammetrie veröffentlicht.
Das Bündelprogramm BUEND wurde auf der CDC 6400/
6500 Rechenanlage der ETH-Z entwickelt und ausgetestet.
Es ist in Fortran IV geschrieben und verwendet, abgesehen

vom Datentransfer Kern-externe Speicher, keine
Systemroutinen. Eine Übernahme auf eine andere Rechenanlage
dürfte somit mit keinen nennenswerten Schwierigkeiten
verbunden sein. Es muß aber immerhin darauf hingewiesen
werden, daß mit einem solchen Programm nur auf
Großcomputern, die mit sehr schnellem Datentransfer
Kernexterne Speicher ausgerüstet sind, vernünftig gerechnet werden

kann.
Wie in Abschnitt III. bereits erwähnt, verlangt das

Bündelprogramm als Eingangsdaten genäherte Werte für die
unbekannten Bodenpunkte sowie die bereinigten Bildkoordinaten

von jedem Luftbild. Bei einem Block mit 200 Bildern
und 20 Punkten pro Bild ergeben sich etwa 1600 Bodenpunkte

und 3200 Bildkoordinaten. Es liegt auf der Hand,
die Ausgangsdaten solcher oder größerer Blöcke nicht in
Kartenform, sondern auf einem Magnetband bereitzuhalten.

Gegen dieses Konzept sprach früher der Umstand, daß

es sehr schwierig war, einzelne Punkte zu korrigieren oder

zu eliminieren; mit der heutigen modernen Software ist das

aber ohne weiteres möglich (Updating).
Neben den Eingangsdaten fallen im Verlaufe der Berechnung

weitere große Datenmengen an (zum Beispiel die

Normalgleichungen). Eines der Hauptprobleme von BUEND
war deshalb die zweckmäßige Abspeicherung und Verwaltung

der Daten (es werden einige 100000 Speicherplätze
benötigt). Das Problem wurde so gelöst, daß alle größeren

«arrays» in Blöcken von 256 Zeilen unterteilt und auf Disk
abgespeichert werden. Diese Technik hat den großen Vorteil,

daß im Kernspeicher wenig Platz gebraucht wird, denn
dort wird gleichzeitig immer nur ein Block benötigt. Aus
diesem Grund ist es möglich, praktisch unbegrenzt große
Blocktriangulationen bei einem Kernspeicherbedarf von nur
65000 oktal durchführen zu können. Dabei könnte man
durch eine Segmentierung des Programmes noch weitere
Speicherplätze einsparen.
Im Programmablauf von BUEND - das übrigens etwa
2500 Fortran-Statements umfaßt - können 5 Phasen
unterschieden werden, die wir der Reihe nach kurz besprechen
wollen.
Die erste Phase dient vor allem der Organisation, umfassend
die Dateneingabe, die formale Datenkontrolle und die
Feststellung der Verknüpfungen. Die Datenkontrolle besteht aus
verschiedenen Tests, die die Eingabedaten vor allem auf
Vollständigkeit und Plausibilität prüfen. Wird ein Fehler
festgestellt, so führt das - mit einer entsprechenden
Fehlermeldung - nach dem vollständigen Einlesen zum Abbruch
der Berechnungen.
Die Struktur der reduzierten Normalgleichungen ergibt sich,
wie in Abschnitt 2 festgestellt, auf Grund der Verknüpfungen

der Luftbilder. Jedes Bild ist durch gemeinsame Punkte
mit einer gewissen Anzahl benachbarter Bilder verbunden,
und dies festzustellen ist ebenfalls Aufgabe der
Organisationsphase.

Die in diesem Programmteil auftretenden umfangreichen
Such- und Sortierprozesse erfolgen exponentiell
beziehungsweise logarithmisch.
Die zweite Phase umfaßt die Bildung der vollständigen
Normalgleichungen. Bemerkenswert ist hier, daß die
Fehlergleichungsmatrix nicht explizit in Erscheinung tritt : aus den

Fehlergleichungen eines Bildpunktes wird sofort der Anteil
an die Normalgleichungen gerechnet. Dabei kann der
radiale Abstand in Form eines Gewichtes berücksichtigt werden.

Man hat so die Möglichkeit, die Punkte am Bildrand
oder in den Bildecken mit einem kleineren Gewicht zu
versehen.

In der nächsten Phase wird die vollständige
Normalgleichungsmatrix nach den Formeln (6) bis (11) reduziert und
hernach in der 4. Phase aufgelöst. Der Auflösungsalgorith-
mus wird etwas kompliziert, da Nr stückweise auf Disk
abgespeichert ist und sicher nie vollständig im Kernspeicher
Platz finden wird. Die vom Institut für Baustatik und
Massivbau freundlicherweise zur Verfügung gestellte Subroutine

Bandmat (Anderheggen) bildet aus Nr die obere
Dreiecksmatrix (Gaußsche Zerlegung), wobei als Pivotelemente
der Reihe nach die Diagonalelemente genommen werden.
Zwei weitere Schritte (Vorwärts- und Rückwärtselimination)
ergeben schließlich die gesuchte Lösung, also die
Transformationsparameter (Orientierungselemente) der Luftbilder.
Da man jedoch in erster Linie an den ausgeglichenen (und
in Phase 3 eliminierten) Bodenpunkten interessiert ist, müssen

diese in einem nachfolgenden Schritt berechnet werden.

In der letzten Phase schließlich wird auf Grund der absolut
größten Verbesserung an einem der Drehwinkel co, cp oder x
festgestellt, ob die Ausgleichung zu wiederholen ist. Ist dies

der Fall, so sind die Programmschritte 2 bis 4 zu wiederholen,

andernfalls werden die Verbesserungen an den
Bildkoordinaten gerechnet und daraus der mittlere Fehler der
Gewichtseinheit. Dazu folgt eine Resultatliste, die nebst den

Orientierungselementen vor allem die ausgeglichenen
Koordinaten der Bodenpunkte enthält. Diese Liste kann auf
irgendein Ausgabemedium (Papier, Diskfile, Karten, Film)
ausgegeben werden.

Wir wollen diesen Abschnitt mit einem kurzen Hinweis auf
die Rechenzeiten, beziehungsweise auf die Rechenkosten,
abschließen. Die in Figur 7 angegebenen Kosten beziehen

sich auf

- die Preisverhältnisse, wie sie am 1. Januar 1972 am
Rechenzentrum der ETH-Z gültig waren (1 CP-Sekunde
kostet ungefähr Fr. 1.- und eine PP-Sekunde etwa
Fr. 0.10),

- 9 Punkte pro Bild und einen Durchgang mit einer Iteration,

- regelmäßig geflogene Blöcke.

Die obere Kurve in Abbildung 7 zeigt die totalen Rechenkosten

in Abhängigkeit der Blockgröße. Die untere Kurve
stellt den Anteil, verursacht durch die Auflösung der
Normalgleichungen, dar. Werden mehr als 9 Punkte auf einem
Bild gemessen, so können die entstehenden Mehrkosten mit
guter Annäherung so abgeschätzt werden, daß die Differenz
zwischen den beiden Kurven in der Abbildung 7 proportional

vergrößert wird.
Im Zusammenhang mit den mitgeteilten Rechenkosten muß

auf das Preis-Leistungs-Verhältnis von Rechenanlagen
verschiedener Größe aufmerksam gemacht werden : Ein Com-
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puter mit doppelten Anschaffungskosten wird eine viermal
größere Leistungsfähigkeit aufweisen; das heißt, daß
dasselbe Problem nur noch rund die Hälfte kosten wird. Diese
Tatsache ist einer der Gründe, Blocktriangulationen auf den

größten zur Verfügung stehenden Computern zu rechnen.
So sind auch die Preisangaben der Abbildung 7 zu betrachten:

auf einer nächst höheren Anlage (zum Beispiel CDC
6600) wären die Preise nur noch halb so groß.
Abschließend darf festgestellt werden, daß sich die Rechenkosten

im Vergleich zu den übrigen Kosten, wie Bildflug,
Ausmessung der Bilder usw. recht bescheiden ausnehmen.

V. Schlußbemerkungen

Die vorliegende Arbeit soll mit einem Hinweis auf die zu
erwartenden Genauigkeiten und auf zwei Anwendungsmöglichkeiten

der vorgestellten Programmkonzeption
abgeschlossen werden.

Angesichts der großen Anzahl von Unbekannten in der

Normalgleichungsmatrix kann vorläufig an ihre Inversion
nicht gedacht werden. Damit schließt man die Möglichkeit
aus, mittlere Fehler oder gar Fehlerellipsen von Unbekannten

zu berechnen. Als einziges Kriterium, die erreichte
Genauigkeit einer Blocktriangulation zu beurteilen, steht der
mittlere Fehler der Gewichtseinheit zur Verfügung, also der

mittlere Fehler an den Bildpunktkoordinaten. Multipliziert
man ihn mit dem Bildmaßstab, so läßt sich dadurch der

mittlere Punktlagefehler der Bodenkoordinaten abschätzen.

Der mittlere Fehler der Gewichtseinheit lag für alle bis jetzt
am Institut durchgeführten Blocktriangulationen zwischen

±5 [Am und ±8 [i.m. Dieses Ergebnis stimmt gut mit den

Erfahrungen anderer Stellen, welche die Bündelmethode
anwenden, überein.
Die Hauptanwendungsmöglichkeit besteht in der klassischen

Aufgabe der Aerotriangulation, also in der Bestimmung

von Paßpunkten für die absolute Orientierung der

Modelle am Autographen. Die Orientierungselemente der

Bilder, die ja durch die Ausgleichung ebenfalls bestimmt

werden, können am Auswertegerät eingestellt werden. Damit

beschränkt sich die relative und absolute Orientierung
eines Modelles auf ein Minimum. Dies ist, zusammen mit
der Tatsache, daß die Messungen am Komparator schneller

und von weniger geübtem Personal durchgeführt werden

können, der Hauptvorteil der Bündelmethode. Dazu sei

nochmals erwähnt, daß die Methode allen anderen Verfahren

in fehlertheoretischer Hinsicht überlegen ist.
Eine zweite Anwendungsmöglichkeit besteht darin, nicht
nur die Punkte zu bestimmen, die zur absoluten Orientierung

am Auswertegerät gebraucht werden, sondern alle
gewünschten Bodenpunkte des betreffenden Operates. Der
Verfasser denkt dabei insbesondere an die Grundbuchvermessung:

Es ist ohne weiteres möglich, alle Punkte, von
denen Koordinaten gewünscht werden (also insbesondere
alle Grenzpunkte), am Komparator auszumessen und durch
die Bündelausgleichung zu bestimmen. Man kann sich dabei
das überlegene Meßmittel (Komparator gegenüber
Autograph) und das fehlertheoretisch strengste Ausgleichungsverfahren

zunutze machen.
Welches sind die dabei zu erwartenden Genauigkeiten?
Nach den Ausführungen zu Beginn dieses Abschnittes kann
die Punktgenauigkeit so abgeschätzt werden, daß der mittlere

Gewichtseinheitsfehler mit dem Bildmaßstab multipliziert

wird. Nimmt man einen Bildmaßstab von 1:5000 und
einen Gewichtseinheitsfehler von ± 6 \xm an - also beides

realistische Werte -, so wird die Genauigkeit eines Punktes
ungefähr ±3 cm. Voraussetzung dazu ist allerdings eine

genügende Paßpunktdichte. Versuche haben gezeigt, daß die

Triangulationspunkte, eventuell ergänzt mit Einschaltpunkten,

für eine Bündelausgleichung ausreichen.

Der bewährte geodätische Grundsatz, daß eine Messung
keine Messung ist, läßt sich ohne weiteres auch hier
realisieren, indem der ganze Block zweimal geflogen und
ausgewertet wird. Dadurch werden nicht nur die groben Fehler

eliminiert, sondern auch die Blockstabilität erhöht, vorausgesetzt,

daß der zweite Flug genau über die seitliche
Überlappung des ersten erfolgt.
Wir können hier im Rahmen dieser Arbeit nicht näher auf
weitere Details eingehen. Ziel war es, über die neue

Programmkonzeption und insbesondere über das

Bündelausgleichungsprogramm BUEND zu informieren. Der Verfasser

hofft, damit den Diskussionen um den Einsatz der
(analytischen) Photogrammetrie einige neue Impulse zu geben.
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