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DK 528.14

Zur Bildung der Kofaktorenmatrix der Unbekannten einer durch Vereinigung
von Teilausgleichungen entstandenen Gesamtausgleichung

N.Wunderlin

Zusammenfassung

Firr den Zusammenschluf3 von Teilausgleichungen zu einer Ge-
samtausgleichung nach Helmert/Pranis-Praniewitsch werden die
Formeln zur Berechnung der Kofaktorenmatrix der Unbekann-
ten zusammengestellt. Ein Beispiel zeigt die Anwendung auf einen
Spezialfall.

Résumé

On rappelle les formules pour le calcul de la matrice des cofac-
teurs des inconnues d’une compensation qui résulte d’une com-
binaison d’aprés Helmert/Pranis-Praniewitsch de compensations
partielles. Un exemple montre 1’application au probléme d’un cas
spécial.

1. Einleitung

Wenn ein System von Normalgleichungen — zum Beispiel
bei einer Ausgleichung nach der Methode der kleinsten
Quadrate - nicht als Ganzes gelost werden kann, sei es, daf3
die dazu zur Verfiigung stehende Rechenanlage dies nicht
erlaubt, sei es, daB3 nicht alle Teile des Gesamtsystems zu
gleicher Zeit bereit stehen, so lassen sich nach bekannten
Verfahren die fiir sich gelosten Teilsysteme nachtriglich
«vereinigeny», das heil3t, es lassen sich die Resultate ableiten,
die bei einer Losung des Gesamtsystems gefunden worden
wiren. Zum Beispiel erfolgt ein solches Aufspalten in Teil-
systeme oder «Blocke» bei der Neuausgleichung der europé-
ischen Triangulationen (RETrig),indemdieeinzelnen Linder
ihre Landesnetze vorerst fiir sich ausgleichen und der Zu-
sammenschlul} stufenweise spiter erfolgen soll. Aber auch
die Ausgleichung eines Landesnetzes muf} oft gezwungener-
weise wegen zu geringer Kapazitdt der zur Verfiigung ste-
henden Rechenanlage stiickweise vorgenommen werden mit
nachtraglicher Vereinigung der Teilausgleichungen.
Wihrend das Vorgehen zur Berechnung der Unbekannten
bei solchen Zusammenschliissen von Normalgleichungs-
blocken zu einem Gesamtsystem gut bekannt ist ([2], [4],
[51, [7] und andere), scheint die Bestimmung der Inver-
sen des Gesamtsystems, das heil3t seiner Kofaktoren oder
reziproken Gewichtskoeffizienten, heute wenig Aufmerk-
samkeit zu finden. Dies mag hauptsidchlich zwei Griinde
haben: Erstens ist bei einer bestimmten GroBe des Gesamt-
systems der Aufwand an Computerkapazitit, Rechenzeit,
Papier usw. betridchtlich (man denke etwa an die Inverse der
Normalgleichungsmatrix des RETrig), oder aber es besteht
gar kein Interesse an diesen Koeffizienten (auch hier sei das
RETrig erwdhnt, wo wohl nur ausnahmsweise die rezipro-
ken Gewichtskoeffizienten von Punktkoordinaten etwa zwi-
schen dem schweizerischen und dem holldndischen Netz
bendtigt werden).

Aber gerade am Beispiel des RETrig 14Bt sich auch die
Wiinschbarkeit, teilweise sogar die Notwendigkeit der Auf-
stellung der Inversen des Gesamtsystems oder wenigstens

einzelner Teile davon zeigen. — Zur Wiinschbarkeit: Auch
die Kofaktoren der «inneren» Unbekannten der selbstindi-
gen Ausgleichungen der einzelnen Blocke erfahren natiir-
lich beim Ubergang zu der Gesamtausgleichung Anderun-
gen, wobei diese in den zentralen Gebieten der Blocke zwar
gering sein mogen, aber um so mehr anwachsen, je niher
man den Nahtlinien zu anstoBenden Ausgleichungsblocken
kommt. Und die Bestimmung des Einflusses der Verkniip-
fungen mit den Nachbarnetzen — nicht nur auf die Werte
der Punktkoordinaten selbst, sondern auch auf ihre mittle-
ren Fehler und Korrelationen — ist ja eines der Ziele des
RETrig. — Zur Notwendigkeit: Gerade die Schweiz, deren
Teil des Landesnetzes westlich der Linie Faux d’Enson-—
Ruinette dem Ausgleichungsblock Frankreich zugewiesen
wurde, hédtte ohne Aufstellung des interessierenden Teiles
der Gesamtinversen des RETrig nicht einmal alle reziproken
Gewichtskoeffizienten in ihrem eigenen Lande zur Verfii-
gung.

Obwohl die Theorie der Berechnung der Inversen der Nor-
malgleichungsmatrix eines aus Teilen zusammengesetzten
Gesamtsystems schon seit Helmert und Boltz im wesent-
lichen bekannt ist und in [1] auch eine elegante Darstellung
in Matrizenschreibweise vorliegt, sind dennoch Hinweise in
den Lehrbiichern nicht oder nur inexplizit und versteckt zu
finden, und auch Publikationen tiber durchgefiihrte prak-
tische Beispiele sind mir nicht bekannt. Es scheint daher
nicht unniitz, die Formeln nochmals zusammenzustellen
und soweit moglich an Beispielen ihre Anwendung zu zeigen.
Zur Vereinfachung wird dabei nur der Fall eines aus zwei
Teilsystemen zusammengesetzten Gesamtsystems darge-
stellt, weil bei mehr als zwei Teilen das Problem zwar nicht
gedanklich, aber doch darstellungsmédBig komplizierter
wird und ja auch bei einem mehrteiligen System praktisch
immer ein Vorgehen in aufeinanderfolgenden Schritten von
je zwei Zusammenschliissen sich aufdrangen wird.

2. Formeln

Die Normalgleichungen des Gesamtsystems in Matrizen-
darstellung seien:

Ty Ui X1 w1
T2 U2 x2 |+| w2 |=0 @
Uy Uy V y f

Diese Matrix sei entstanden aus der «Zusammensetzungy,
das heil3t der Addition der beiden Teilsysteme:
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wegen der Vereinfachungen
T1 Uy X1 w1
-1
| § ’ —0 () T: O : i1 0
........ ; . . (I 0 Tyt
Ul o v| | A
H H 1
i T O Uy B T 1 Uy
07 U, Tt U
= = -1
| T O U;
I, U2 x2 | +| w2 |=0 (2b) | vy Uy ' =yt + Uy T U
- 0 T U>
Uy V2 y f2
. zu dem folgenden Ausdruck fiir die Inverse des Gesamt-
Esistalso V' = V1 + Vaund f = fi + f>. systems:

Formel 4a und 4b siehe unten
In einem Computer miissen natiirlich die Matrizen der Teil-
systeme nicht unbedingt wie hier getrennt zusammenge- mit ()t =¥ U171 Uy — U Ty Uy (40)
stellt sein; eine Markierung der Koeffizienten, ob zu einer und E = Einheitsmatrix
Unbekannten x gehdrend, die nur in einem der Teilsysteme  Aych dieser Ausdruck 148t sich leicht verifizieren durch
vorkommt, oder zu einer in beiden Blocken auftretenden  Aysfijhrung der Multiplikation
«Verbindungsunbekannten» y, geniigt.
Um zu zeigen, wie sich — zunéchst rein formal — die Inverse T, 0 Uy
des Gesamtsystems (1) ausdriicken 1468t durch GroBlen der
Teilsysteme (2a) und (2b), muB auf eine in der Matrizen- 0 I Uz ) =E
rechnung allgemein giiltige Beziehung — zum Beispiel [5] - U’ U’ VvV
zuriickgegriffen werden:
Beim praktischen Vorgehen bestehen verschiedene Mog-
lichkeiten zur Bildung der einzelnen Elemente der Ma-
Diese Gleichung, die durch Multiplikation der Ausgangs- trix (4):
matrix mit ihrer Inversen leicht nachgepriift werden kann,
fihrt bei Anwendung auf unser Problem:

Formel 3 siehe unten

Fall I:
Die Ausgangs-Normalgleichungen (2a) und (2b) der bei-
den Teilsysteme sind gegeben, das heil3t, bei der Bearbeitung

: -1
T 0 U der Teilsysteme ist bekannt, daB nachtriglich die Inverse
0 T U, des Gesamtsystems zu bilden ist, und ebenfalls bekannt
= sind die «innern» (im andern System nicht auftretenden)
U Uy y Unbekannten und die «Verbindungsunbekannten» (in bei-
L 2 den Systemen auftretend).
‘ 4 _
A B A1+ A1B(C — BA'By1BA!'! — A1B(C — BA'B)1
e i )
B | C —(C — B'AB)1B'A1 (C — BA1B)1
-1
71 0 Uy T+ Tt U ()0 Tot 1O ()10 Tt — Tt U ()
0T, U = T 1 U> ()10 Tit Tl 4+ Tl U ()t U Tt — 10U ()t (4a)
U’ )y v — Oy Tyt — ()t U Tt ()t
T 1 0 0 T11 Uy
=10 Tt 0|+ |0 | ()Y | U/ Ty! U’ T2t —E (4b)
0 0 0 — E
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a) Nach der Invertierung der Untermatrizen Ty und T> aus
den Normalgleichungssystemen (2a) und (2b) — enthaltend
nur je die «innern» Unbekannten des betreffenden Teil-
systems — konnen alle in den Ausdriicken (4a) oder (4b)
und (4¢) auftretenden Glieder durch Matrizenmultiplika-
tion gebildet werden.

b) Werden wie tiblich nach Helmert oder Pranis-Pranie-
witsch (zum Beispiel [2], [5], [7]) in den Normalgleichungs-
systemen

n U . U
Y  (2a) bzw.
Uy’ V1 Uy VvV

v @

die «innern» Unbekannten schrittweise «von oben nach
unten» eliminiert — etwa durch eines der iiblichen Reduk-
tions- oder Austauschverfahren [6] — so enthalten die ver-
bleibenden «teilreduzierten» Normalgleichungen die Aus-
driicke
Tyt — Tt U und analog fiir
. B 5)
U/ Ti! vi— U/’ Ti1Uy das System 2
also gerade die fiir die Bildung der Gesamtinversen (4)
benétigten Elemente.

Fall 11:

Die beiden Teil-Normalgleichungssysteme (2a) und (2b)
sind unabhéngig voneinander vollstiindig invertiert worden
(und nicht mehr erhalten), das heit es wurden gebildet
(und sind noch vorhanden) die Matrizen

o =1
T Ui . U
und
U’ " Uy "

was rein formal nach der Beziehung (3) geschrieben werden
kann als

-1
T Uy
Ui Vi

A+ N0 L0 Tt Tt Oy 3
- { }—1 U1/ T1~1 5 { }_1

(6)

mit { }1 =¥y — Uy Tyt Upt

und analog fiir das zweite Teilsystem.

Um aus der vorhandenen Matrix rechts in der Gleichung (6)
die im Ausdruck (4) fiir die Gesamtinverse bendtigte Matrix
— T171 Uy zu erhalten, das heit um die zu weit getriebene,
auch die Verbindungsunbekannten erfassende Inversion des
Teilsystems riickgdngig zu machen, muf3 der Matrixteil
{ } wieder invertiert werden zu

{}="—-U/' Tt
worauf durch die Multiplikation
(-t { yH{}

aus (6)
die gesuchte Matrix — T1~! U; gefunden ist.

Ferner steht in { } = V1 — Uy’ T1~1 Uy auch gerade der Bei-
trag des Teilsystems 1 zu den «teilreduzierten» Normalglei-
chungen der Verbindungsunbekannten im Gesamtsystem

Vi — U/ Ty UL+ Vo — U T U

zur Verfligung.

Dasselbe Vorgehen ist auch auf das Teilsystem 2 anzuwen-
den und liefert — T>~1 U> sowie den Beitrag V> — U2’ T> 1 Us
des Systems 2 zu den Verbindungsnormalgleichungen.

Es wird, wenn eine leistungsfdahige Rechenanlage zur Ver-
fiigung steht, im allgemeinen natiirlich einfacher sein, die
urspriinglichen, ohne Beriicksichtigung von Verbindungs-
unbekannten ausgefiihrten Ausgleichungen aufzugeben und
die Teilsysteme nach einem der Verfahren Ia oder Ib neu
zu bearbeiten (wenn sie sich nicht ohnehin als Gesamtsystem
berechnen lassen). Immerhin sind Fille denkbar, wo das
Verfahren 1I mit bedeutend geringerem Rechenaufwand
zum Ziele fiihrt, ndmlich dann, wenn die beiden voraus-
geglichenen Teilsysteme nur sehr wenige gemeinsame (Ver-
bindungs-) Unbekannte besitzen, wie etwa die RETrig-
Teilblocke Skandinavien und Deutschland oder GroBbri-
tannien und Frankreich, oder ein nachtriglich einzuschal-
tender Einzelpunkt in einem umfangreichen Triangula-
tionsnetz. Auch die Verkniipfung zweier im tibrigen vollig
getrennter Hohenwinkelnetze durch einen beiden Netzen
gemeinsamen Refraktionskoeffizienten als einzige Verbin-
dungsunbekannte, oder der analoge Fall bei Lagenetzen
(Verkniipfung durch eine einzige verbindende Unbekannte
in Form eines gemeinsamen Mal@stabfaktors der Distanz-
messungen beider Netze) sind denkbare Gebrauchsfille fiir
dieses Vorgehen. Eine weitere mogliche Anwendung ist als
durchgerechnetes Beispiel unten gezeigt.

3. ALGOL-Programm

Am Institut fiir Geodésie und Photogrammetrie der Eidge-
nossischen Technischen Hochschule Ziirich ist von A. Ca-
rosio ein Ausgleichungsprogramm fiir geoditische Netze
geschaffen worden, das auch die Behandlung korrelierter
Beobachtungen gestattet und die reziproken Gewichtskoef-
fizienten Q,, der Verbesserungen v bildet. Mit diesem an-
spruchsvollen Programm war es anfianglich nicht moglich
(die Kapazitit des Programms ist unterdessen wesentlich
gesteigert worden durch Ausniitzung der Symmetrie der
Matrizen bei Speicherung in Bandform) das schweizerische
Netz 1. Ordnung auf der Rechenanlage des Rechenzen-
trums der ETH-Z auszugleichen, da der zur Verfiigung ste-
hende Speicherplatz nicht geniigte. Hauptsidchlich um diese
Ausgleichung zu ermoglichen, wurde das Programm um-
gearbeitet, so daB in einem Computerdurchlauf zwei Teil-
netze nach dem Verfahren Ib «teilreduziert» und anschlie-
Bend «vereinigt» werden konnen, wobei auch die Inverse
des Gesamtsystems nach den Formeln (4) gebildet und aus-
gedruckt wird. Die oben erwidhnten wertvollen Moglich-
keiten des urspriinglichen Programms (korrelierte Beob-
achtungen und Q,,-Matrix) bleiben gewahrt.

Da der Speicherplatzbedarf bei Aufspaltung einer Ausglei-

chung sinkt von rund % (n1 + m2 + n,)? auf rund 4 (ny +
n,)? bzw. % (m2 + m)?,
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n n2  n ny n, n n,
Ty Uy ‘ Tt Ux T2 U
. U Vi | bzw. V>
Vi+ V2
Gesamtsystem Teilsysteme

so ist also zur besten Ausniitzung des Speicherplatzgewinns
bei der Zerlegung darauf zu achten, daf} die beiden Teil-
systeme je etwa gleich viele innere Unbekannte enthalten,
und daB die Zahl der Verbindungsunbekannten klein ist. —
Auf diese Weise lassen sich mit dem abgeidnderten Programm
Systeme von rund 200 Unbekannten/400 Beobachtungen
ausgleichen. Bei Einfiihrung der Bandspeicherung der Ma-
trizen und Ausniitzung ihrer Symmetrien lieBe sich die Ka-
pazitit weiter steigern.

4. Beispiele

Das praktische Vorgehen bei Zusammenschliissen von Teil-
systemen mit Bildung der Normalgleichungsinversen nach
Gleichung (4) 148t sich an tatsdchlich durchgefiihrten Bei-
spielen schlecht zeigen : Die Berechnungen erfolgen auf einer
elektronischen Rechenanlage, wobei die Resultate, die um-
fangreichen Zahlentabellen der Kofaktoren, sich hier nicht
darstellen lassen und auch wenig interessieren, und die
eigentliche « Technik» des ZusammenschlieBens in der For-
mulierung des Computerprogrammes liegt, auf die hier
nicht eingetreten werden kann. Es wird deshalb nur kurz
auf die im Abschnitt 3 erwdhnte Ausgleichung des Triangu-
lationsnetzes 1. Ordnung der schweizerischen Landesver-
messung eingetreten, welche nach diesem Verfahren er-
folgte, und dann an einem «kiinstlichen» Beispiel versucht,
einen Einblick in das Vorgehen zu gewihren. Es handelt
sich dabei um ein Problem zu Fall II — nachtrdglicher
Zusammenschlu3 zweier bereits ausgeglichener Systeme —,
bei dem alle Operationen noch auf einer Tischrechen-
maschine durchgefiihrt werden konnen und das praktische
Vorgehen gezeigt werden kann.

a) Triangulationsnetz 1. Ordnung der schweizerischen Lan-
desvermessung

Mit dem erwdhnten ALGOL-Programm wurden die Rich-
tungsbeobachtungen (ohne Distanzmessungen) des schwei-
zerischen Landesnetzes ausgeglichen. Die Nahtlinie zwi-
schen den beiden Teilnetzen (Abb. Seite 77) wurde dabei
nicht durch die Triangulationspunkte gelegt, sondern zwi-
schen ihnen gefiihrt, um auf keiner Station die Richtungs-
sédtze auf die Teilnetze aufspalten zu miissen, das heiBt iiber-
all die Beobachtungen vollstindig dem einen oder dem an-
dern Netzteil zuweisen zu konnen. Damit wurde erreicht,
daB die aus den vorangegangenen Stationsausgleichungen
entstandenen Kofaktoren zwischen den Richtungen einer
Station ohne Schwierigkeit in die Netzausgleichung einge-
fiihrt werden konnten. Es traten so keine Orientierungs-
unbekannten mehr als Verbindungsunbekannte auf wie
beim Legen der Naht durch die Stationspunkte selbst, je-
doch wurde die Zahl der Koordinaten-Verbindungs-Unbe-
kannten ungefédhr verdoppelt, was zur Wahl einer moglichst
kurzen Nahtlinie zwang, da ja eine groB8ere Zahl von Ver-
bindungsunbekannten den Platzbedarf im Computer ent-
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sprechend erhoht. Auch fiir die Wahl der Lage der Naht
blieb nicht mehr viel Spielraum, weil die beiden Teilnetze,
ebenfalls um den Speicherplatz gut auszuniitzen, moglichst
gleich viele Unbekannte enthalten sollten. — Als Festpunkte
wurden, ziemlich willkiirlich, Dent-du-Midi und Hoher
Freschen gewihlt.

Es wurden zwei Ausgleichungen durchgefiihrt, einmal mit
den Gewichten p = 1 fiir alle Beobachtungen, einmal mit
Beriicksichtigung der aus den Stationsausgleichungen ent-
standenen Kofaktorenmatrizen, genauer mit denjenigen In-
versen P dieser Q-Matrizen, welche die kleinste Quadrat-
summe der Glieder auBerhalb der Diagonalen aufweisen
(Helmertsche Gewichtsmatrizen!). Im iibrigen besteht zwi-
schen den beiden Ausgleichungen kein Unterschied.

Der zum Thema dieses Artikels — Bildung der Gesamt-
inversen bei Ausgleichung in Teilen — gehorende Teil der
Resultate, die Kofaktorenmatrix der Unbekannten (Punkt-
koordinaten und Orientierungen der Richtungssitze), kann
hier natiirlich wegen ihres Umfanges nicht reproduziert
werden. Eine Darstellung der mittleren Fehlerellipsen der
Punktkoordinaten (bezogen auf die beiden willkiirlich ge-
wihlten Festpunkte Dent-du-Midi und Hoher Freschen)
ist in der Abbildung Seite 78 gegeben. Die Fehlerellipsen
der Ausgleichung mit p = 1 fiir simtliche Richtungen sind
im Durchschnitt etwa 10% kleiner.

Zu den tiibrigen Ergebnissen soll hier nur erwihnt werden,
daB3 die Unterschiede zwischen den ausgeglichenen Koor-
dinaten der beiden Ausgleichungen (unkorrelierte Beob-
achtungen mit p = 1 und korrelierte Beobachtungen mit
verschiedenen Gewichten) im Verhéltnis zu ihren mittleren
Fehlern (im Durchschnitt -+ 16 cm) klein sind:

|AY| mittel = 4,5 cm |AX ' mittel = 6,9 cm

|AY | max =16cm |AX | max =19 cm

obwohl die Gewichte bei den korrelierten Beobachtungen
entsprechend der sehr unterschiedlichen Zahl der Messun-
gen stark variieren: pmin = 0,2, pmax = 9. Dieses Ergebnis
war wegen der «Stidrke» des Netzes zu erwarten und ist iib-
rigens fiir den RETrig-Anteil der Schweiz schon frither ge-
zeigt worden [3].

b) Nachtrdiglicher Anschluf3 eines bereits ausgeglichenen
Polygonzuges an einen Festpunkt

Aus Griinden der Darstellungsmoglichkeit muBte ein sehr
kleines Beispiel mit wenigen Unbekannten gewihlt werden,
das praktisch natiirlich nicht auf diese Weise behandelt,
sondern einfach als Ganzes neu ausgeglichen wiirde, im
Prinzip aber auch in der Praxis in dhnlicher Form auftreten
konnte.

In einem bereits ausgeglichenen Polygonzug A-1-2-3-B
(ohne Anschlufirichtung in B) werde nachtriglich der
Punkt 2 von einem nahegelegenen Festpunkt C aus mit
Richtung und Distanz angeschlossen. Welche Anderungen
erfahrt dadurch die Matrix Q der reziproken Gewichts-
koeffizienten der Koordinaten der Polygonpunkte?

1 Vgl.etwa: W. Hopcke. Einige Ergiinzungen zur Theorie der Rich-
tungsmessungen. Zeitschrift fiir Vermessungswesen 1969, Heft 3.
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L 1000 - 1000 B A
- 750
2
- 500 I~ S00
275 - 275 ¢
L 250
2
A L‘ 750 500 G5 750 o0 A flﬂﬂ 5‘25 o
System I System Il Die Verbindungsunbekannten — die in beiden Systemen vor-
Beobachtungen: Beobachtungen: kommenden Unbekannten — sind die beiden Koordinaten
Richtungen 8 (4 Winkel) Richtungen 3 (2 Winkel) (Y, X)des Punktes 2, das heit die Unbekannten Nr. 7 und
Distanzen 4 Distanzen 1 Nr. 8 im Teilsystem I und die Unbekannten Nr.2 und
'1_2 4 Nr. 3 im System II. Die zugehorigen Zeilen und Kolonnen
sind in den Matrizen umrandet; trotzdem sie im System I
Unbekannte: Unbekannte: nicht am «richtigen» Ort stehen, entsprechen sie in der

Koordinaten 6 (3:2) Koordinaten 2 (1-2)
Orientierung 4 Orientierung 1

10 3

2 gemeinsame (Verbindungs-)Unbekannte:
Koordinaten von PP2

Fiir die Inversen der Normalgleichungsmatrizen der beiden
Systeme I und II erhielt man:

Gleichung (6) der Kolonne zuduBerst rechts und stellen die
Matrizen — T171 Ui { }1 bzw. — T>1 U>{ }-1 dar. Die dop-
pelt umrandeten Felder bilden die Matrizen { }-1 der Glei-
chung (6), das heiBt (Vi1 — Ui’ T11Up)t bzw. (V2 —
Uy Tr 1 Un) L.

1 Die Inversion der beiden doppelt umrandeten Matrizen
ergibt die Matrizen { } fiir die beiden Systeme:

1 2 3 4 5 6 7 8 9 10
Orientierungen Koordinaten
Punkt A Punkt1 Punkt 2 Punkt 3 Punkt 1 Punkt 2 Punkt 3
0.7333  0.2667 —0.0667 —0.2667 0.1833  —0.1833 0.2094  —0.2094 0.1309 —0.1309
0.9833 0.0667  —0.4833 0.2094  —0.2094 0.3796  —0.3796 0.2618 —0.2618
0.7333  —0.0667 —0.0524 0.0524 0.0524 —0.0524 0.1309 —0.1309
0.9833  —0.2094 0.2094 —0.3796 0.3796 —0.2618 0.2618
0.5189 0.2311 0.4145 0.0855 0.2278 0.0222
0.5189 0.0855 0.4145 0.0222 0.2278
System I 0.7981 0.2019 0.4556 0.0444
0.7981 0.0444 0.4556
0.5806 0.1694
0.5806
1 2 3
Orientierung Koordinaten
Punkt C Punkt 2
0.5000 0.0982 0.0982
System 11 0.5578 —0.4422
0.5578
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{I} =V1 — U/ T1'1 Uy {II} =V, — U T2 U

2

1.3385  — 0.3385 4.8230  3.8230
1.3385 4.8230

Die Multiplikation der einfach umrandeten Matrizen
mit den Matrizen {} in beiden Teilsystemen ergibt
— Ty 1 Uyp bzw. — Tt Us:

System I System 11

80

|

Sru( | |- e |

= — Tyt Uy = — Tl

0.3512 - 0.3512 0.8448  0.8448
0.6366 — 0.6366
0.0878 — 0.0878
— 0.6366 0.6366
0.5259 — 0.0259
— 0.0259 0.5259

0.5948 — 0.0948
— 0.0948 0.5948

Die Addition der beiden Matrizen {1} und {I1} ergibt
die «Verbindungsnormalgleichungen» (), das hei3t die
Normalgleichungen der Verbindungsunbekannten im
Gesamtsystem:

O=VN-U'Tirt U + V2 — U’ T2 Ua

6.1615  3.4845
6.1615

Die Inversion der Verbindungsnormalgleichungen ()
ergibt die definitiven, das heif3t zum Gesamtsystem ge-
horenden Kofaktoren der Verbindungsunbekannten
(Koordinaten des Punktes 2), im Ausdruck (4) fiir die
Inverse des Gesamtsystems also das mit ( )-1 bezeich-
nete Feld.

Ol'=W1 —U/' T UL+ V2 — U Ty o)t

0.2386  — 0.1349
0.2386

Um auch die iibrigen Teile der Kofaktorenmatrix (4)
des vereinigten Systems zu erhalten, berechnet man am
einfachsten, weil so die nicht bekannten Matrizen Ty 1
und 7> im Ausdruck (4) nicht berechnet werden miis-
sen, die additiven Korrektionen zu den Ausgangswer-
ten, den Kofaktoren der Teilsysteme.

Dies geschieht durch Bildung der Differenzmatrizen
D = ()1 — { } fiir beide Teilsysteme:

D = ()t — {1}t Dy = ()t — {1}t
— 0.5595 — 0.3368 —0.3192 0.3072
— 0.5595 — 0.3192

6 Die Multiplikationen — T-1 U - D in beiden Systemen
ergibt nun die additiven Korrektionen an den einfach
umrandeten Feldern der Ausgangskofaktorenmatrizen,
welche diese in die definitiven Werte des Gesamtsystems
tiberfiihren:

— T11 U - Dy — T 11U D>

— 0.0782 0.0782 — 0.0102 — 0.0102
— 0.1418 0.1418
— 0.0196 0.0196
0.1418  — 0.1418
— 0.2855 — 0.1626
— 0.1626  — 0.2855

— 0.3009 — 0.1473
— 0.1473 - 0.3009

7 Endlich ergibt die weitere Multiplikation der soeben ge-
bildeten GroBlen — T-1 UD mit U’ T-1 die additiven Kor-
rektionen an den urspriinglichen Kofaktoren der «in-
nern» Unbekannten der beiden Teilsysteme (Zahlen
auBlerhalb der Umrandungen in den Ausgangsmatrizen):

Tabelle 7 siehe Seite 81

8 Auch die Kofaktoren zwischen den innern Unbekann-
ten des einen Systems und den innern Unbekannten des
andern (die in den Ausgangs-Kofaktorenmatrizen der
Teilausgleichungen natiirlich nicht auftreten) lassen sich
nach (4) berechnen durch die Multiplikationen

(=Tt U) OV (- Tty
oder
(= T2 U) O (- Tt Uy

System I
1 2 3 4 S5 6 9 10

System II 1 .000 .000 .000 .000 .044 .044 .044 .044

Gegeniiber den Resultaten einer zur Kontrolle durch-
gefiihrten Ausgleichung des Gesamtsystems in einem
Schritt zeigen die aus den oben gegebenen Korrektionen
folgenden Werte der definitiven Kofaktoren an einigen
wenigen Stellen Abweichungen von 0.0001, welche von
der Rechenunschirfe — alle Inversionen und Matrizen-
multiplikationen sind nur mit 5 Kommastellen gerechnet
worden — stammen.

Das Beispiel zeigt den selbst bei sehr wenig Unbekannten
und nur zwei Verbindungsunbekannten betrichtlichen Re-
chenaufwand, wobei allerdings auf einen Vorteil dieses Ver-
fahrens noch hingewiesen sei: es bietet sich hier die Mog-
lichkeit, nur diejenigen Kofaktoren zu berechnen, fiir wel-
che ein Interesse besteht, wihrend bei der Losung der Nor-
malgleichungen des vereinigten Systems normalerweise die
ganze Inverse gebildet werden muB.

Das Vorgehen kommt wohl praktisch nur in Frage, wenn —
immer bei einer kleinen Zahl von Verbindungsunbekann-



— T1 Uy D1 - U T1!

1 2 3 4 5 6 7 8 9 10
—0.0550 —0.0996 —0.0137  0.0996 —0.0432  0.0432 —0.0540  0.0540
—0.1806  —0.0249 0.1806 —0.0782 0.0782 —0.0978 0.0978
—0.0034 0.0249  —0.0108 0.0108 —0.0135  0.0135
—0.1806 0.0782 —0.0782 unter 6 berechnet 0.0978 —0.0978
01459 —0.0781 —0.1544 —0.0697
System [ —0.1459 —0.0697 —0.1544
unter 5 berechnet unter 6 berechnet
—0.1650 —0.0591
—0.1650
— Ty YUy Dy Uy Trt
1 2 3
—0.0173 unter 6 berechnet
System II
unter 5 berechnet
Tabelle 7

ten! — von den Teil-Normalgleichungssystemen nur noch
die Inversen vorhanden sind, oder wenn das Gesamtsystem
wegen seiner GroBe gar nicht direkt 16sbar wire. Und auch
dann schlieBlich nur, wenn ein Interesse an den korrekten

Literatur

[1] Gotthard, E., Der Matrizenalgorithmus. Deutsche Geoda-
tische Kommission, Reihe A, Heft 10", Miinchen 1955.

[2] Jordan|Eggert|/Kneissl, Handbuch der Vermessungskunde,
Band I, Stuttgart 1961.

[3] Keller, W., Geometrische Netzausgleichung des schweizeri-
schen Anteils am europdischen Triangulationsnetz. Bericht
an die schweizerische geodétische Kommission 1969.

[4] Linkwitz, K., Uber die Systematik verschiedener Formen der
Ausgleichsrechnung. Zeitschrift fir Vermessungswesen 1960,
Hefte 5, 6, 7, Stuttgart 1960.

[5] Marchant, R., La compensation des mesures surabondantes.
Bruxelles 1956.

[6] Stiefel, E., Einfiihrung in die numerische Mathematik. Stutt-
gart 1961.

[7] Wolf, H., Ausgleichungsrechnung nach der Methode der
kleinsten Quadrate. Bonn 1968.

reziproken Gewichtskoeffizienten des Gesamtsystems wirk-
lich besteht oder wenn eventuell die Unterschiede zwischen
den aus den Teilsystemen abgeleiteten Werten und denen
der Gesamtausgleichung interessieren.
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