
Zeitschrift: Mensuration, photogrammétrie, génie rural

Herausgeber: Schweizerischer Verein für Vermessung und Kulturtechnik (SVVK) =
Société suisse des mensurations et améliorations foncières (SSMAF))

Band: 70-F (1972)

Heft: 3

Artikel: Zur Bildung der Kofaktorenmatrix der Unbekannten einer durch
Vereinigung von Teilausgleichungen entstandenen
Gesamtausgleichung

Autor: Wunderlin, N.

DOI: https://doi.org/10.5169/seals-225002

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-225002
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


DK 528.14

Zur Bildung der Kofaktorenmatrix der Unbekannten einer durch Vereinigung
von Teilausgleichungen entstandenen Gesamtausgleichung

N. Wunderlin

Zusammenfassung

Für den Zusammenschluß von Teilausgleichungen zu einer
Gesamtausgleichung nach Helmert/Pranis-Praniewitsch werden die
Formeln zur Berechnung der Kofaktorenmatrix der Unbekannten

zusammengestellt. Ein Beispiel zeigt die Anwendung auf einen
Spezialfall.

Résumé

On rappelle les formules pour le calcul de la matrice des cofac-
teurs des inconnues d'une compensation qui résulte d'une
combinaison d'après Helmert/Pranis-Praniewitsch de compensations
partielles. Un exemple montre l'application au problème d'un cas
spécial.

1. Einleitung

Wenn ein System von Normalgleichungen - zum Beispiel
bei einer Ausgleichung nach der Methode der kleinsten
Quadrate - nicht als Ganzes gelöst werden kann, sei es, daß
die dazu zur Verfügung stehende Rechenanlage dies nicht
erlaubt, sei es, daß nicht alle Teile des Gesamtsystems zu
gleicher Zeit bereit stehen, so lassen sich nach bekannten
Verfahren die für sich gelösten Teilsysteme nachträglich
«vereinigen», das heißt, es lassen sich die Resultate ableiten,
die bei einer Lösung des Gesamtsystems gefunden worden
wären. Zum Beispiel erfolgt ein solches Aufspalten in
Teilsysteme oder «Blöcke» bei der Neuausgleichung der europäischen

Triangulationen (RETrig), indem dieeinzelnen Länder
ihre Landesnetze vorerst für sich ausgleichen und der
Zusammenschluß stufenweise später erfolgen soll. Aber auch
die Ausgleichung eines Landesnetzes muß oft gezwungenerweise

wegen zu geringer Kapazität der zur Verfügung
stehenden Rechenanlage stückweise vorgenommen werden mit
nachträglicher Vereinigung der Teilausgleichungen.
Während das Vorgehen zur Berechnung der Unbekannten

bei solchen Zusammenschlüssen von Normalgleichungsblöcken

zu einem Gesamtsystem gut bekannt ist ([2], [4],
[5], [7] und andere), scheint die Bestimmung der Inver-
sen des Gesamtsystems, das heißt seiner Kofaktoren oder
reziproken Gewichtskoeffizienten, heute wenig Aufmerksamkeit

zu finden. Dies mag hauptsächlich zwei Gründe
haben : Erstens ist bei einer bestimmten Größe des Gesamtsystems

der Aufwand an Computerkapazität, Rechenzeit,
Papier usw. beträchtlich (man denke etwa an die Inverse der
Normalgleichungsmatrix des RETrig), oder aber es besteht

gar kein Interesse an diesen Koeffizienten (auch hier sei das

RETrig erwähnt, wo wohl nur ausnahmsweise die reziproken

Gewichtskoeffizienten von Punktkoordinaten etwa
zwischen dem schweizerischen und dem holländischen Netz
benötigt werden).
Aber gerade am Beispiel des RETrig läßt sich auch die
Wünschbarkeit, teilweise sogar die Notwendigkeit der
Aufstellung der Inversen des Gesamtsystems oder wenigstens

einzelner Teile davon zeigen. - Zur Wünschbarkeit: Auch
die Kofaktoren der «inneren» Unbekannten der selbständigen

Ausgleichungen der einzelnen Blöcke erfahren natürlich

beim Übergang zu der Gesamtausgleichung Änderungen,

wobei diese in den zentralen Gebieten der Blöcke zwar
gering sein mögen, aber um so mehr anwachsen, je näher
man den Nahtlinien zu anstoßenden Ausgleichungsblöcken
kommt. Und die Bestimmung des Einflusses der Verknüpfungen

mit den Nachbarnetzen - nicht nur auf die Werte
der Punktkoordinaten selbst, sondern auch auf ihre mittleren

Fehler und Korrelationen - ist ja eines der Ziele des

RETrig. - Zur Notwendigkeit: Gerade die Schweiz, deren
Teil des Landesnetzes westlich der Linie Faux d'Enson-
Ruinette dem Ausgleichungsblock Frankreich zugewiesen
wurde, hätte ohne Aufstellung des interessierenden Teiles
der Gesamtinversen des RETrig nicht einmal alle reziproken
Gewichtskoeffizienten in ihrem eigenen Lande zur Verfügung.

Obwohl die Theorie der Berechnung der Inversen der
Normalgleichungsmatrix eines aus Teilen zusammengesetzten
Gesamtsystems schon seit Helmert und Boltz im wesentlichen

bekannt ist und in [1] auch eine elegante Darstellung
in Matrizenschreibweise vorliegt, sind dennoch Hinweise in
den Lehrbüchern nicht oder nur inexplizit und versteckt zu

finden, und auch Publikationen über durchgeführte
praktische Beispiele sind mir nicht bekannt. Es scheint daher
nicht unnütz, die Formeln nochmals zusammenzustellen
und soweit möglich an Beispielen ihre Anwendung zu zeigen.

Zur Vereinfachung wird dabei nur der Fall eines aus zwei

Teilsystemen zusammengesetzten Gesamtsystems dargestellt,

weil bei mehr als zwei Teilen das Problem zwar nicht
gedanklich, aber doch darstellungsmäßig komplizierter
wird und ja auch bei einem mehrteiligen System praktisch
immer ein Vorgehen in aufeinanderfolgenden Schritten von
je zwei Zusammenschlüssen sich aufdrängen wird.

2. Formeln

Die Normalgleichungen des Gesamtsystems in
Matrizendarstellung seien :

Ts

T2

Ux

U,

Ui' Ui

Xl M'I

X2 y M"2

y /
0 (1)

Diese Matrix sei entstanden aus der «Zusammensetzung»,
das heißt der Addition der beiden Teilsysteme :
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T.

Di'

und

Di

F,

ATI

+

wi

y /i

0 (2a)

r2 D2

£/2' V2

X2 y H'2

/2

0 (2b)

Es ist also V Vi y Viundf fi+fi.

In einem Computer müssen natürlich die Matrizen der
Teilsysteme nicht unbedingt wie hier getrennt zusammengestellt

sein ; eine Markierung der Koeffizienten, ob zu einer
Unbekannten x gehörend, die nur in einem der Teilsysteme
vorkommt, oder zu einer in beiden Blöcken auftretenden
«Verbindungsunbekannten» y, genügt.
Um zu zeigen, wie sich - zunächst rein formal - die Inverse
des Gesamtsystems (1) ausdrücken läßt durch Größen der

Teilsysteme (2a) und (2b), muß auf eine in der Matrizenrechnung

allgemein gültige Beziehung - zum Beispiel [5] -
zurückgegriffen werden :

Formel 3 siehe unten

Diese Gleichung, die durch Multiplikation der Ausgangsmatrix

mit ihrer Inversen leicht nachgeprüft werden kann,
führt bei Anwendung auf unser Problem :

Tx

0

0

Ti

Ux

Ui

Ui Ui

wegen der Vereinfachungen

Ti 0

0 Ti

7i-i 0

o r2i

Ti 0

0 Ti

-1

Di

Ui

Tr1 Ui

Tr1 Ui

-l
Ti 0 Ui

Ui Ui
0 Ti Ui

Ui' Jr1 Di + Ui Tri U2

zu dem folgenden Ausdruck für die Inverse des Gesamtsystems

:

Formel 4a und 4b siehe unten

mit ()-i (F- Ui ryui
und E Einheitsmatrix

Ui Ti1 Ui)~l (4c)

Auch dieser Ausdruck läßt sich leicht verifizieren durch

Ausführung der Multiplikation

Tx 0 Ui

0 Ti Ui (4)

Di' Ui V

Beim praktischen Vorgehen bestehen verschiedene
Möglichkeiten zur Bildung der einzelnen Elemente der Matrix

(4):

Fall I:
Die Ausgangs-Normalgleichungen (2a) und (2b) der beiden

Teilsysteme sind gegeben, das heißt, bei der Bearbeitung
der Teilsysteme ist bekannt, daß nachträglich die Inverse
des Gesamtsystems zu bilden ist, und ebenfalls bekannt
sind die «innern» (im andern System nicht auftretenden)
Unbekannten und die «Verbindungsunbekannten» (in beiden

Systemen auftretend).

A B

W C

A-i + A-iß (C - B'A-iB)i B'A-i - A^ B(C - B'A^ B)1

- (C - B'A-lB)-i BA1 (C - BA* Byi
(3)

Ti 0 Ui
-1

0 Ti Ui

Ui Ui V

n-i + 2yi Di )-Wi ft-i
tv1 Ui ywi ry

- yWi Tri

ry 0 0 7V1 Di

0 Ti-! 0 + ry Ui (Y1

0 0 0 - E

7Ï"1 Ui )-i Ui Ti-i

Tix y Ti-i Ui )-i Ui Ti-i

- )"! Ui Ti-i

Ui Ti"1 Ui ry

Tr* Di )-i

7-2-1 Ui )-i

O"1

(4a)

(4b)
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a) Nach der Invertierung der Untermatrizen 7i und Ti aus
den Normalgleichungssystemen (2a) und (2b) - enthaltend

nur je die «innern» Unbekannten des betreffenden
Teilsystems - können alle in den Ausdrücken (4a) oder (4b)
und (4c) auftretenden Glieder durch Matrizenmultiplikation

gebildet werden.
b) Werden wie üblich nach Helmert oder Pranis-Pranie-
witsch (zum Beispiel [2], [5], [7]) in den Normalgleichungssystemen

Ti Ui

Ui | Vi
(2a) bzw.

Ti Ui

Ui Vi
(2b)

die «innern» Unbekannten schrittweise «von oben nach

unten» eliminiert - etwa durch eines der üblichen Reduk-
tions- oder Austauschverfahren [6] - so enthalten die
verbleibenden «teilreduzierten» Normalgleichungen die
Ausdrücke

7i-i - Ti"1 Di

ui Tr1 Vi - ui ry u%

(5)

und analog für

das System 2

also gerade die für die Bildung der Gesamtinversen (4)
benötigten Elemente.

Fallii:
Die beiden Teil-Normalgleichungssysteme (2a) und (2b)
sind unabhängig voneinander vollständig invertiert worden
(und nicht mehr erhalten), das heißt es wurden gebildet
(und sind noch vorhanden) die Matrizen

Ti Ui

Ui Vi
und

Ti Ui

Ui Vi

was rein formal nach der Beziehung (3) geschrieben werden
kann als

T'i Di

Di' Vi

7yi + n-i Ui{ }-i ui ri-i -ri-i Ui{ }-i

-{ }-lt/!'TVI {}_!

(6)
mit { }-l (Vi - Ui Ti"1 Di)"1

und analog für das zweite Teilsystem.

Um aus der vorhandenen Matrix rechts in der Gleichung (6)
die im Ausdruck (4) für die Gesamtinverse benötigte Matrix
— Ti"! Ui zu erhalten, das heißt um die zu weit getriebene,
auch die Verbindungsunbekannten erfassende Inversion des

Teilsystems rückgängig zu machen, muß der Matrixteil
{ }_1 wieder invertiert werden zu

{ } Fi - Di' Tri Di
worauf durch die Multiplikation

(-Tri f/i {}-!){ }

aus (6)
die gesuchte Matrix — Ti"! Di gefunden ist.

Ferner steht in { } Vi — Ui Ti-1 Ui auch gerade der
Beitrag des Teilsystems 1 zu den «teilreduzierten» Normalgleichungen

der Verbindungsunbekannten im Gesamtsystem

Vi - Di' Tri Ui y Vi - Ui Tri Ui

zur Verfügung.

Dasselbe Vorgehen ist auch auf das Teilsystem 2 anzuwenden

und liefert — Tz'1 Ui sowie den Beitrag Vi — Ui Tr1 Ui
des Systems 2 zu den Verbindungsnormalgleichungen.
Es wird, wenn eine leistungsfähige Rechenanlage zur
Verfügung steht, im allgemeinen natürlich einfacher sein, die

ursprünglichen, ohne Berücksichtigung von Verbindungsunbekannten

ausgeführten Ausgleichungen aufzugeben und
die Teilsysteme nach einem der Verfahren Ia oder lb neu

zu bearbeiten (wenn sie sich nicht ohnehin als Gesamtsystem
berechnen lassen). Immerhin sind Fälle denkbar, wo das

Verfahren II mit bedeutend geringerem Rechenaufwand

zum Ziele führt, nämlich dann, wenn die beiden
vorausgeglichenen Teilsysteme nur sehr wenige gemeinsame
(Verbindungs-) Unbekannte besitzen, wie etwa die RETrig-
Teilblöcke Skandinavien und Deutschland oder Großbritannien

und Frankreich, oder ein nachträglich einzuschaltender

Einzelpunkt in einem umfangreichen Triangulationsnetz.

Auch die Verknüpfung zweier im übrigen völlig
getrennter Höhenwinkelnetze durch einen beiden Netzen

gemeinsamen Refraktionskoeffizienten als einzige
Verbindungsunbekannte, oder der analoge Fall bei Lagenetzen
(Verknüpfung durch eine einzige verbindende Unbekannte
in Form eines gemeinsamen Maßstabfaktors der
Distanzmessungen beider Netze) sind denkbare Gebrauchsfälle für
dieses Vorgehen. Eine weitere mögliche Anwendung ist als

durchgerechnetes Beispiel unten gezeigt.

3. ALGOL-Programm

Am Institut für Geodäsie und Photogrammetrie der
Eidgenössischen Technischen Hochschule Zürich ist von A. Ca-
rosio ein Ausgleichungsprogramm für geodätische Netze

geschaffen worden, das auch die Behandlung korrelierter
Beobachtungen gestattet und die reziproken Gewichtskoeffizienten

Qm der Verbesserungen v bildet. Mit diesem

anspruchsvollen Programm war es anfänglich nicht möglich
(die Kapazität des Programms ist unterdessen wesentlich
gesteigert worden durch Ausnützung der Symmetrie der
Matrizen bei Speicherung in Bandform) das schweizerische
Netz 1. Ordnung auf der Rechenanlage des Rechenzentrums

der ETH-Z auszugleichen, da der zur Verfügung
stehende Speicherplatz nicht genügte. Hauptsächlich um diese

Ausgleichung zu ermöglichen, wurde das Programm
umgearbeitet, so daß in einem Computerdurchlauf zwei
Teilnetze nach dem Verfahren lb «teilreduziert» und anschließend

«vereinigt» werden können, wobei auch die Inverse
des Gesamtsystems nach den Formeln (4) gebildet und
ausgedruckt wird. Die oben erwähnten wertvollen Möglichkeiten

des ursprünglichen Programms (korrelierte
Beobachtungen und ß„c-Matrix) bleiben gewahrt.

Da der Speicherplatzbedarf bei Aufspaltung einer Ausgleichung

sinkt von rund \ (m + m + nv)2 auf rund \ (m +
ni)1 bzw. \ (m + n0)2,
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Ill «2 II,

1

Ti Ui

7-2 Ui

Vi y Vi

ll[

Tx Ux

Vi

«2 n,

Ti Ui

bzw. Vi

Gesamtsystem Teilsysteme

so ist also zur besten Ausnützung des Speicherplatzgewinns
bei der Zerlegung darauf zu achten, daß die beiden
Teilsysteme je etwa gleich viele innere Unbekannte enthalten,
und daß die Zahl der Verbindungsunbekannten klein ist. -
Aufdiese Weise lassen sich mit dem abgeänderten Programm
Systeme von rund 200 Unbekannten/400 Beobachtungen
ausgleichen. Bei Einführung der Bandspeicherung der
Matrizen und Ausnützung ihrer Symmetrien ließe sich die
Kapazität weiter steigern.

4. Beispiele

Das praktische Vorgehen bei Zusammenschlüssen von
Teilsystemen mit Bildung der Normalgleichungsinversen nach
Gleichung (4) läßt sich an tatsächlich durchgeführten
Beispielen schlecht zeigen : Die Berechnungen erfolgen auf einer
elektronischen Rechenanlage, wobei die Resultate, die
umfangreichen Zahlentabellen der Kofaktoren, sich hier nicht
darstellen lassen und auch wenig interessieren, und die

eigentliche «Technik» des Zusammenschließens in der
Formulierung des Computerprogrammes liegt, auf die hier
nicht eingetreten werden kann. Es wird deshalb nur kurz
auf die im Abschnitt 3 erwähnte Ausgleichung des

Triangulationsnetzes 1. Ordnung der schweizerischen Landesvermessung

eingetreten, welche nach diesem Verfahren
erfolgte, und dann an einem «künstlichen» Beispiel versucht,
einen Einblick in das Vorgehen zu gewähren. Es handelt
sich dabei um ein Problem zu Fall II - nachträglicher
Zusammenschluß zweier bereits ausgeglichener Systeme -,
bei dem alle Operationen noch auf einer Tischrechenmaschine

durchgeführt werden können und das praktische
Vorgehen gezeigt werden kann.

a) Triangulationsnetz I. Ordnung der schweizerischen

Landesvermessung

Mit dem erwähnten ALGOL-Programm wurden die
Richtungsbeobachtungen (ohne Distanzmessungen) des
schweizerischen Landesnetzes ausgeglichen. Die Nahtlinie
zwischen den beiden Teilnetzen (Abb. Seite 77) wurde dabei
nicht durch die Triangulationspunkte gelegt, sondern
zwischen ihnen geführt, um auf keiner Station die Richtungssätze

auf die Teilnetze aufspalten zu müssen, das heißt überall

die Beobachtungen vollständig dem einen oder dem
andern Netzteil zuweisen zu können. Damit wurde erreicht,
daß die aus den vorangegangenen Stationsausgleichungen
entstandenen Kofaktoren zwischen den Richtungen einer
Station ohne Schwierigkeit in die Netzausgleichung eingeführt

werden konnten. Es traten so keine Orientierungsunbekannten

mehr als Verbindungsunbekannte auf wie
beim Legen der Naht durch die Stationspunkte selbst,
jedoch wurde die Zahl der Koordinaten-Verbindungs-Unbekannten

ungefähr verdoppelt, was zur Wahl einer möglichst
kurzen Nahtlinie zwang, da ja eine größere Zahl von
Verbindungsunbekannten den Platzbedarf im Computer ent¬

sprechend erhöht. Auch für die Wahl der Lage der Naht
blieb nicht mehr viel Spielraum, weil die beiden Teilnetze,
ebenfalls um den Speicherplatz gut auszunützen, möglichst
gleich viele Unbekannte enthalten sollten. - Als Festpunkte
wurden, ziemlich willkürlich, Dent-du-Midi und Hoher
Freschen gewählt.
Es wurden zwei Ausgleichungen durchgeführt, einmal mit
den Gewichten p 1 für alle Beobachtungen, einmal mit
Berücksichtigung der aus den Stationsausgleichungen
entstandenen Kofaktorenmatrizen, genauer mit denjenigen
Inversen P dieser ß-Matrizen, welche die kleinste Quadratsumme

der Glieder außerhalb der Diagonalen aufweisen

(Helmertsche Gewichtsmatrizeni). Im übrigen besteht
zwischen den beiden Ausgleichungen kein Unterschied.

Der zum Thema dieses Artikels - Bildung der Gesamt-
inversen bei Ausgleichung in Teilen - gehörende Teil der
Resultate, die Kofaktorenmatrix der Unbekannten
(Punktkoordinaten und Orientierungen der Richtungssätze), kann
hier natürlich wegen ihres Umfanges nicht reproduziert
werden. Eine Darstellung der mittleren Fehlerellipsen der
Punktkoordinaten (bezogen auf die beiden willkürlich
gewählten Festpunkte Dent-du-Midi und Hoher Freschen)
ist in der Abbildung Seite 78 gegeben. Die Fehlerellipsen
der Ausgleichung mit p 1 für sämtliche Richtungen sind
im Durchschnitt etwa 10% kleiner.
Zu den übrigen Ergebnissen soll hier nur erwähnt werden,
daß die Unterschiede zwischen den ausgeglichenen
Koordinaten der beiden Ausgleichungen (unkorrelierte
Beobachtungen mit p 1 und korrelierte Beobachtungen mit
verschiedenen Gewichten) im Verhältnis zu ihren mittleren
Fehlern (im Durchschnitt ±16 cm) klein sind:

A Y I mittel 4,5 cm

AY I

max 16 cm

AX I mittel 6,9 cm

AX I

max 19 cm

obwohl die Gewichte bei den korrelierten Beobachtungen
entsprechend der sehr unterschiedlichen Zahl der Messungen

stark variieren: pm\n 0,2, pmax 9. Dieses Ergebnis
war wegen der «Stärke» des Netzes zu erwarten und ist
übrigens für den RETrig-Anteil der Schweiz schon früher
gezeigt worden [3].

b) Nachträglicher Anschluß eines bereits ausgeglichenen

Polygonzuges an einen Festpunkt
Aus Gründen der Darstellungsmöglichkeit mußte ein sehr
kleines Beispiel mit wenigen Unbekannten gewählt werden,
das praktisch natürlich nicht auf diese Weise behandelt,
sondern einfach als Ganzes neu ausgeglichen würde, im
Prinzip aber auch in der Praxis in ähnlicher Form auftreten
könnte.
In einem bereits ausgeglichenen Polygonzug A-1-2-3-B
(ohne Anschlußrichtung in B) werde nachträglich der

Punkt 2 von einem nahegelegenen Festpunkt C aus mit
Richtung und Distanz angeschlossen. Welche Änderungen
erfährt dadurch die Matrix Q der reziproken
Gewichtskoeffizienten der Koordinaten der Polygonpunkte?

1 Vgl.etwa: W. Höpcke. Einige Ergänzungen zur Theorie der
Richtungsmessungen. Zeitschrift für Vermessungswesen 1969, Heft 3.
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System I
Beobachtungen :

Richtungen 8 (4 Winkel)
Distanzen 4

12

System II
Beobachtungen :

Richtungen 3 (2 Winkel)
Distanzen 1

4

Unbekannte :

Koordinaten
Orientierung

6 (3

4

10

2)

Unbekannte :

Koordinaten 2 (1

Orientierung 1

3

2 gemeinsame (Verbindungs-)Unbekannte :

Koordinaten von PP2

2)

Die Verbindungsunbekannten - die in beiden Systemen
vorkommenden Unbekannten - sind die beiden Koordinaten

Y, X) des Punktes 2, das heißt die Unbekannten Nr. 7 und
Nr. 8 im Teilsystem I und die Unbekannten Nr. 2 und
Nr. 3 im System II. Die zugehörigen Zeilen und Kolonnen
sind in den Matrizen umrandet; trotzdem sie im System I
nicht am «richtigen» Ort stehen, entsprechen sie in der

Gleichung (6) der Kolonne zuäußerst rechts und stellen die

Matrizen - Tr1 Ui { }'1 bzw. - Tt1 Ui { Y1 dar. Die doppelt

umrandeten Felder bilden die Matrizen { }_1 der
Gleichung (6), das heißt (Vi - Ui 7V1 Ui)-1 bzw. (Vi-
Ui Ti1 Ui)-1.

Für die Inversen der Normalgleichungsmatrizen der beiden

Systeme I und II erhielt man :

Die Inversion der beiden doppelt umrandeten Matrizen
ergibt die Matrizen { } für die beiden Systeme:

1 2 3

Orientierungen

Punkt A Punkt 1 Punkt 2

0.7333

Punkt 3 Punkt 1

0.2667 - 0.0667 - 0.2667 0.1833 -0.1833
0.9833 0.0667 -0.4833 0.2094 - 0.2094

0.7333 - 0.0667 -0.0524 0.0524

0.9833 - 0.2094
0.5189

0.2094
0.2311

0.5189

System I

Koordinaten

System II

1

Orientierung
Punkt C

0.5000

2 3

Koordinaten
Punkt 2

0.0982 0.0982

0.5578 - 0.4422
0.5578

10

Punkt 2 Punkt 3

0.1309 -0.2094 - 0.2094 -0.1309
0.3796 - 0.3796 0.2618 -0.2618
0.0524 - 0.0524 0.1309 0.1309

- 0.3796 0.3796 -0.2618 0.2618

0.4145 0.0855 0.2278 0.0222

0.0855 0.4145 0.0222 0.2278

0.7981 0.2019 0.4556 0.0444

0.7981 0.0444 0.4556

0.5806 0.1694

0.5806
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{1} Vi - Ui Tc1 Ui {II} Vi- Ui Ti1 Ui

1.3385 0.3385

1.3385

4.8230 3.8230

4.8230

2 Die Multiplikation der einfach umrandeten Matrizen
mit den Matrizen { } in beiden Teilsystemen ergibt

- Ti1 l/i bzw. - Tr1 Ur.

System I

n-'i/ilHo
Tr1 Ui

0.3512 - 0.3512
0.6366 - 0.6366
0.0878 - 0.0878
0.6366 0.6366
0.5259 - 0.0259
0.0259 0.5259

0.5948 - 0.0948

0.0948 0.5948

System II

Ti-WiiY {}

- Ti1 Ui

0.8448 0.8448

Die Multiplikationen — T1 U • D in beiden Systemen

ergibt nun die additiven Korrektionen an den einfach
umrandeten Feldern der Ausgangskofaktorenmatrizen,
welche diese in die definitiven Werte des Gesamtsystems
überführen :

- Ti ' Ui ¦ Di - Tr1 Ui Di

0.0782 0.0782 - 0.0102 0.0102

0.1418 0.1418

0.0196 0.0196

0.1418 - 0.1418
0.2855 - 0.1626
0.1626 - 0.2855

0.3009 - 0.1473

0.1473 - 0.3009

7 Endlich ergibt die weitere Multiplikation der soeben ge¬

bildeten Größen - T1 UD mit U' T1 die additiven
Korrektionen an den ursprünglichen Kofaktoren der
«innern» Unbekannten der beiden Teilsysteme (Zahlen
außerhalb der Umrandungen in den Ausgangsmatrizen) :

Tabelle 7 siehe Seite 81

3 Die Addition der beiden Matrizen {1} und {11} ergibt
die «Verbindungsnormalgleichungen» das heißt die

Normalgleichungen der Verbindungsunbekannten im
Gesamtsystem :

()=Vi-Ui Tr1 U1 + V2- Ui Tr1 Ui

6.1615 3.4845

6.1615

Auch die Kofaktoren zwischen den innern Unbekannten

des einen Systems und den innern Unbekannten des

andern (die in den Ausgangs-Kofaktorenmatrizen der
Teilausgleichungen natürlich nicht auftreten) lassen sich
nach (4) berechnen durch die Multiplikationen

(- 7i-i[7i) ()-l(- Ti^Ui)'
oder

(- TyUi) ()-i (- Ji-il/i)'

Die Inversion der Verbindungsnormalgleichungen
ergibt die definitiven, das heißt zum Gesamtsystem
gehörenden Kofaktoren der Verbindungsunbekannten
(Koordinaten des Punktes 2), im Ausdruck (4) für die
Inverse des Gesamtsystems also das mit )_1 bezeichnete

Feld.

()-- (Vi - Ui T1-1 U1+V2- Ui T11 Ui)-1

0.2386 0.1349
0.2386

Um auch die übrigen Teile der Kofaktorenmatrix (4)
des vereinigten Systems zu erhalten, berechnet man am
einfachsten, weil so die nicht bekannten Matrizen Tr1
und T2-1 im Ausdruck (4) nicht berechnet werden müssen,

die additiven Korrektionen zu den Ausgangswerten,

den Kofaktoren der Teilsysteme.

5 Dies geschieht durch Bildung der Differenzmatrizen
D — Y1 — { }_1 für beide Teilsysteme :

Di =()-i
0.5595

- W"1

0.3368
0.5595

r>2 ()-1

0.3192

{II}-

0.3072
0.3192

System II

System I

12 3 4 5 10

.000 .000 .000 .000 .044 .044 .044 .044

Gegenüber den Resultaten einer zur Kontrolle
durchgeführten Ausgleichung des Gesamtsystems in einem

Schritt zeigen die aus den oben gegebenen Korrektionen
folgenden Werte der definitiven Kofaktoren an einigen
wenigen Stellen Abweichungen von 0.0001, welche von
der Rechenunschärfe - alle Inversionen und
Matrizenmultiplikationen sind nur mit 5 Kommastellen gerechnet
worden - stammen.

Das Beispiel zeigt den selbst bei sehr wenig Unbekannten
und nur zwei Verbindungsunbekannten beträchtlichen
Rechenaufwand, wobei allerdings auf einen Vorteil dieses

Verfahrens noch hingewiesen sei: es bietet sich hier die
Möglichkeit, nur diejenigen Kofaktoren zu berechnen, für welche

ein Interesse besteht, während bei der Lösung der

Normalgleichungen des vereinigten Systems normalerweise die

ganze Inverse gebildet werden muß.
Das Vorgehen kommt wohl praktisch nur in Frage, wenn -
immer bei einer kleinen Zahl von Verbindungsunbekann-
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- Ti-1 Ui Di Ui Te1

1 2

- 0.0996

3

-0.0137

4

0.0996

5

- 0.0432

6

0.0550 0.0432

-0.1806 - 0.0249 0.1806 - 0.0782 0.0782

- 0.0034 0.0249 -0.0108 0.0108

-0.1806 0.0782

-0.1459
- 0.0782

- 0.0781

System I 0.1459

10

- 0.0540 0.0540

0.0978 0.0978

-0.0135 0.0135

unter 6 berechnet 0.0978 - 0.0978

-0.1544 - 0.0697

- 0.0697 -0.1544

unter 5 berechnet unter 6 berechnet

-0.1650 -0.0591
-0.1650

System II

- Tz-1 U2 D2 • Ui T21

1 2 3

-0.0173 unter 6 berechnet

unter 5 berechnet

Tabelle 7

ten! - von den Teil-Normalgleichungssystemen nur noch
die Inversen vorhanden sind, oder wenn das Gesamtsystem

wegen seiner Größe gar nicht direkt lösbar wäre. Und auch
dann schließlich nur, wenn ein Interesse an den korrekten

reziproken Gewichtskoeffizienten des Gesamtsystems wirklich

besteht oder wenn eventuell die Unterschiede zwischen
den aus den Teilsystemen abgeleiteten Werten und denen

der Gesamtausgleichung interessieren.
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