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La classifieation des points
en mensuration cadastrale numérique

Prof. D™ W. K. Bachmann

Résumeé

Le premier rapport de la Commission suisse d’automation propose une
classification caractérisant la confiance qu’on peut avoir dans la déter-
mination des points d’une mensuration numérique. On reléve que la
classe 4 des points déterminés une seule fois et contrélés par une ou plu-
sieurs mesures indépendantes n’offre pas de garanties suffisantes du mo-
ment qu’on ne tient pas compte de l'efficacité des contrdles. La notion
d’ellipse d’erreur permet de définir la configuration géométrique des me-
sures de contrdole en un point et d’introduire une classe flottante, com-
prise entre 4.0 et 5.0. -~ W.K. Bachmann

L.a Commission suisse d’automation a publié en 1970, dans les numéros 7
et 8 de la «Revue suisse des mensurations», son premier rapport qui
donne une vue d’ensemble des différentes méthodes numériques utilisées
en Suisse pour la mensuration cadastrale. Sans aucun doute, ce docu-
ment sera d’une aide précieuse pour I’élaboration des nouvelles instruc-
tions fédérales sur la mensuration numérique.

Dans ce qui suit, nous ne considérerons qu’'une infime partie de ce rap-
port en examinant de plus pres la classification des points. Conformé-
ment 2 la pratique exercée dans certaines régions de la Suisse, la Com-
mission a introduit 6 classes de points, a savoir:

Classe 1. Points fixes servant de base a la mensuration parcellaire (trian-
gulations géodésique et cadastrale).

Classe 2. Points fixes complémentaires ayant fait 1’objet d’'une compen-
sation (triangulation de 3¢ ordre et polygonation).

Classe 3. Points nouveaux ayant fait 'objet de deux déterminations in-
dépendantes respectant les tolérances.
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Classe 4. Points nouveaux, déterminés une seule fois et contrdlés par une
ou plusieurs mesures indépendantes, respectant les tolérances (dis-
tances ou éventuellement directions de contrdle).

Classe 5. Points déterminés une seule fois, sans mesures de controle
(limites de nature).

Classe 6. Points hors tolérance.

Cette classification nous donne une idée de la confiance que nous pou-
vons avoir en un point; elle a été choisie en fonction des différents cycles
de calcul.

Dans [1], on a admis que la détermination des points-limites ne peut
s’effectuer qu’a partir des points de la classe 1, 2 ou 3 *. Etant donné que
les points des classes 1, 2 et 3 jouent exactement le méme réle au cours
des calculs, on aurait pu les réunir en une seule classe, mais on doit ad-
mettre qu’il peut éventuellement étre intéressant de savoir 4 quel genre
de points on a affaire, ce qui justifie dans une certaine mesure la classifi-
cation adoptée.

Les classes 5 et 6 ont fait leurs preuves dans la pratique, raison pour
laquelle il est indiqué de les maintenir telles quelles.

Quant aux points de classe 4, ils ont donné lieu & de nombreuses diffi-
cultés. Rappelons qu’un point de la classe 5 passe a la classe 4 §’il a fait
I'objet d’'une ou de plusieurs mesures de contréle qui doivent toutes res-
pecter les tolérances. L’ordinateur traite une mesure de contrdéle aprés
I’autre et dés qu’il y en a une qui dépasse les tolérances, le point passe
en classe 6 et il est impossible de le «repécher», méme si la détermination
initiale a été correcte. ,

Mais il y a encore une autre difficulté inhérente aux points de la classe
4: supposons que P, et P, soient deux points de classe 5 entre lesquels
on a mesuré a posteriori une distance de contréle s;2. Si cette derniére
est hors tolérance, les deux points passent en classe 6, car on ne sait pas
si I’écart constaté provient

a) d’une mauvaise détermination de P,, ou
b) d’une mauvaise détermination de P,, ou

¢) d’une erreur sur Si2

A notre avis, il serait intéressant de reprendre cette programmation et
d’établir un programme de calcul permettant d’éliminer certaines de ces
difficultés.

Un autre point encore donne lieu 4 des inquiétudes: un point de la
classe 5 passe en classe 4 dés qu’il a fait 'objet d’une ou de plusieurs
mesures de contrdle respectant les tolérances. Nous avons de ce fait en
classe 4 des points de différentes valeurs suivant que les controles effec-
tués sont suffisants ou non. En effet, si un point de classe 5 n’a fait ’objet
que d’une seule mesure de contrdle, il se peut qu’il soit faux, sans que
cette faute ait été mise en évidence par la mesure de contrdle. Si, par

* Dans [1], 1a «classe» s’appelle la «valeur» du point.
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contre, le point a été contrélé par deux distances qui se coupent a peu
prés a angle droit, nous obtenons une double détermination du point
et le controle est excellent. :

Pour éviter I'inconvénient que nous venons de mentionner, on est
obligé de compléter le programme de calcul. Nous allons montrer qu’on
peut y parvenir en introduisant la notion d’ellipse d’erreur qui caractérise
la configuration géoméirique des mesures de contrdle sans faire intervenir
leurs valeurs numeériques.

Vu que les directions de controle ne sont pas d’une grande utilité pra-
tique, nous ne considérerons dans ce qui suit que des disfances de conlréle.
De plus, nous pouvons admettre qu’elles ont été mesurées avec un ruban
métrique, préalablement étalonné. Par hypothése, ces mesures ont toutes
le poids un; elles sont indépendantes, sans biais, et ont une distribution
normale. Rappelons, avant d’aborder le probléme proprement dit, la
définition de ’ellipse d’erreur moyenne.

§ 1. Définilion de Uellipse d’erreur moyenne

Soient ¢, &, ..., en des variables aléatoires normales indépendantes,
ayant pour distributions

i ~ N (0 ; 6:2) i=1,2,..,n (1.1)

Dans ces conditions, la probabilité ¢lémentaire dp; de & est donnée par
la formule

1 &
1 I
dpi = ————s T de; i=1,2,.,n (1.2)
|/2 T O;
Les variables ¢,, €,, ..., &x étant indépendantes, la probabilité élémentaire
dP du vecteur aléatoire (g, &,, ..., €n) €5t
1 &2 €n2
1 “‘2‘(;2 et 0.2) .
dP = e L "/ de, ... den (1.3)
Q2m"2 1 o;
i=1
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Par définition,

e s oy e i (1.4)

est I'ellipse d’erreur moyenne du vecteur aléatoire (g, ..., &:). En vertu
de (1.3), la densité de probabilité est constante sur la surface (1.4). Dans
un espace vectoriel 4 n dimensions, défini par la base orthonormée
(&5 ..-» €n), les axes oy, 0y, ..., 0n de cet ellipsoide sont portés par les axes
de coordonnées. Sil'on a n = 2, on obtient une ellipse d’erreur moyenne
et 'on sait que la probabilité d’obtenir un point & I'intérieur de cette
ellipse est de 39 %.

& 2. Ellipse d’erreur moyenne des distances de contréle

Soient P,, ..., Pn des points fixes a partir desquels nous mesurons les
distances s,’, ..., s»” au point P a contrdler; voir figure (2.1).

Figure (2.1)

Par hypothese, ces mesures sont indépendantes, sans biais, et distribuées
normalement; de plus, elles ont toutes le poids p; = 1, I’erreur moyenne
a craindre sur I'unité de poids étant ¢. Si ¢ désigne I’erreur vraie de sy,
nous avons

g~ N (0; 0% i=1,2,..,n (2.1)

et I'ellipsoide d’erreur (1.4) devient dans ce cas

&2 + oo + £n? = o2 (2.2)

La valeur numérique de o peut étre estimée & partir des mesures. Mais,
étant donné que nous nous proposons uniquement de comparer les diffé-
rentes ellipses entre elles, nous n’avons pas besoin de connaitre la valeur
de ¢ et nous prenons simplement 62 = 1. Dans ces conditions, nous ob-
tenons a la place de (2.2),

&2 + €2 + o + £n2 = (2.3)
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En vue du calcul du premier membre de cette équation, nous intro-

duisons les désignations suivantes:

P; (Y;, Xi;) = point fixe donné

P (Y, X) = point a contrdéler
@i = gisement du vecteur P; P
Si = longueur du vecteur P; P

En attribuant aux coordonnées Y et X du point vrai P les accroissements
dY et 4X, l'erreur vraie ¢ de la distance s; est donnée par

g = sing; - 0Y + cosg; - 60X

i = 1,2y a0

, I

voir figure (2.2).

Figure (2.2)

(2.4)

Si nous introduisons ces valeurs dans I’équation (2.3), nous obtenons

I’ellipse d’erreur

[sin2g;] 0Y? + 2[singi cosgi] 8Y 0X + [cos?qi] 6X2 = 1

(2.5)

Avec les notations habituelles de la méthode des moindres carrés, cette

¢quation s’écrit sous la forme

g = @; 0Y + b; 6X

a; = sing;

[

bi = cosg;

i Ty Beg s

laa] 0Y? + 2 [ab] Y 8X + [bb] 6X? = 1

, n

(2.6)
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Pour le calcul des axes g, et g, de cette ellipse et de leurs gisements y,
et y,, nous pouvons utiliser les formules bien connues

bb] —
ctg 2y — | ;Tab_[]aa] 2.7)

1 1
" laa] + [ad] ctgy  [bB] + [ab] tgy

0* (2.8)

Remarque

L’ellipse d’erreur, définie par I’équation intrinséque (2.3), est indépen-
dante du systéme de coordonnées (Y, X). C’est donc un étre géométrique,
qui caractérise la configuration géométrique des mesures de contrdle au
point P.

§ 3. Cas de deux distances de contréle

Soient P, et P, deux points fixes a partir desquels on a mesuré les dis-
tances de contrdle s,” et s,” au point P; voir figure (3.1).

) X

<7

)
-p
Figure (3.1) % Vg
. / 2

L’ellipse d’erreur étant indépendante du choix du systéme de coordon-
nées, nous pouvons simplifier les calculs en prenant ’axe des X con-
fondu avec la bissectrice de I’angle (P, P, P, P), car nous obtenons dans
ce cas [ab] = 0. En ayant pour P; P le gisement +¢ et — ¢ pour P, P,
I’angle compris entre ces deux directions est

w = 2¢ (3.1)

et nous pouvons exprimer les deux axes de I'ellipse en fonction de w. En
appliquant les formules (2.6), nous obtenons

a, = sing b, = cosg ] [aa] = 2 sin%g
a, = — sing b, = cosg ] [0b] = 2 cos?ep
[ab] = 0
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d’ou
2sin%p - 0Y? 4 2 cos?p - 0X2% =1

ou bien

0Y? 0X?
( ]/é_sinqo ) ( Vi Cos@ )

et par conséquent les deux axes de cette ellipse sont:

1
dans la direction des dY: g = , -
]/2 sing
N (3.3)
dans la direction des 6.X: p=
]/2 CoS @
En attribuant a ¢ successivement les valeurs 10er, 20er, ..., 5087, nous
obtenons les ellipses figurant au tableau (3.4).
w q p
208* 4,52 0,72
408" 2,29 0,74 (3.4)
608" 1,56 0,79
808" 1,20 0,87
1008" 1,00 1,00

Ainsi, si nous prenons un angle d’ouverture o = 408r, l'ellipse a pour
axes 0,74 dans la direction des 60X et 2,29 dans celle des dY.

Si 'angle d’ouverture est de 10087, les deux axes ont la valeur 1;
I’ellipse dégénere donc en un cercle de rayon R = 1.

Remarque
Montrons que 1’équation (3.2) admet une interprétation géométrique
trés simple; voir figure (3.2). Soient P; et P deux points distants de s;.

Soit d’autre part o;, représenté par ITQ, le vecteur-erreur de la distance
mesurée s;. En premiere approximation, le lieu géométrique des points,
dont la distance a P; est s; + oi, est une droite perpendiculaire a P; P

163



passant par le point Q. Cette droite intercepte sur les axes de coordonnées
les segments oi/cosg; et oi/sing;. Ce sont les erreurs a craindre sur la dé-
termination de X et de Y. En prenant ensuite ¢; = 1 et en considérant
deux distances de controle de gisements + ¢ et —g¢, il suffit d’appliquer
la loi de la propagation des erreurs pour trouver les axes de I’ellipse (3.2).

Figure (3.2)

- ¥

v

§ 4. Cas général

Lorsque nous avons affaire a un nombre quelconque de distances de
controle aboutissant au point P, nous calculons les axes de I’ellipse avec
les formules (2.7) et (2.8). Considérons un exemple:

Exemple n° 1

En prenant

@ = +208 @y = —208° @y = + 708

nous obtenons

a, = sing; = 40,3090 b, = cosp, = 40,9511
a, = singp, = —0,3090 b, = cosg, = +0,9511
a; = sing; = 40,8910 by = cosgy = 40,4540

[aa] = +0,9848  [ab] = +0,4045  [bb] — +2,0153

2[ab]  0,8090

e .. il Pt S - — “nNEe
Y= 0b] — [aa]  1,0305 — 7857056

164



2y = 428" 37¢ 10° ou 2y = 242er 37° 10cc
yp, = 218 18¢ 55¢¢ p, = 1218 18 55¢¢
tgy, = 0,345°635 tgy, = —2,803222
ctg y, = 2,893°222 ctg y, = —0,345°635
1 1
92 =_— . —————— —
[aa] + [ab] ctgy  [bb] + [ab] tgy
2 1 0,464'014 0,681
= = (0,46 = 0,
e = 5 155109 &
- 2 = 1,183'443 = 1,088
@ = 0,844'902 €2 = 5%
Nous avons donc
Y, ~ + 218 0, ~ 0,68
Yy ~ +121¢8F 0s ~ 1,09
W/
¥ < q
- € - ;
i
> N
e
e\
-, o
- W."
NN T
S 7 ‘\_\
— 7 g
/ 4, /.‘l;
Figure (4.1) / i —
6 »
/4 .




Ce résultat est indiqué a la figure (4.1), qui contient les courbes suivantes:

C = cercle de rayon r = 1,00
El, = ellipse d’erreur pour ¢, = - 208 et @, = —208¢"
El, = ellipse d’erreur pour ¢, = - 208", ¢, = —208" et @3 = + 708"

La figure (4.1) nous montre que les deux ellipses El, et El; sont tangentes
aux points R et S, le diametre RS étant perpendiculaire a la direction
P, P. 11 en résulte que El; est située a I'intérieur de El,. Cette propriété
n’est pas due au hasard; aussi allons-nous montrer qu’elle est d’ordre
tout a fait général.

En effet, soient d;, = 0 et d, = 0 les équations de deux droites et
C = 0 I’équation d’une conique. Désignons les intersections des droites
avec la conique par Q,, Q,, (s, Q4; voir figure (4.2).

L’équation

C — idydy =0 (4.1)

ou /A désigne un paramétre, représente le faisceau de coniques passant
par les points Q,, Q,, Qs et Q,.

Figure (4.2) [ j
4

a, \_/@‘ 2

Si les deux droites d; et d, sont confondues, I’équation (4.1) devient

C— =0 (4.2)

et nous obtenons un faisceau de coniques, tangentes a4 C aux points P,
et P,; voir figure (4.3).

Figure (4.3) L4 ol 27
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Cela étant, appliquons cette propriété aux ellipses d’erreur. Soit
[aa] 6Y2% 4 2[ab] Y 6X + [bb] 6X2 =1 (4.3)

I’ellipse d’erreur de (n — 1) distances de contrdle. En y ajoutant une ne
distance s, = P, P, ayant le gisement @., nous obtenons la nouvelle
ellipse

{laa] + sin®@n} 6Y2 + 2 {[ab] + sin gn cos @n} 0Y 6X + {[bb] + cos?pn} X2 =1

(4.4)
En introduisant les notations
C = [aa] 6Y? + 2 [ab] 6Y 60X + [bb] 6X2 — 1
(4.5)
d = singn + 0Y + cosgp - 60X
L’équation (4.4) s’écrit
C+d2=0 (4.6)

Nous avons ainsi obtenu une équation de la forme (4.2) et la propriété
énoncée est démontrée.

Lorsque nous avons affaire & un nombre quelconque de distances de
controle aboutissant au point P, nous calculons les axes de ’ellipse avec
les formules (2.7) et (2.8).

Exemple n° 2

Afin de nous rendre compte de la variation d’une ellipse de par I’ad-
jonction d’une nouvelle distance de contréle, nous allons considérer le
cas w = 408" du tableau (3.4) en lui ajoutant une 3¢ distance de contrdle.
Nous prenons

P R gy = 208 gy = 1008

Pour des raisons de symétrie, on voit que les axes de ’ellipse doivent étre
confondus avec les axes de coordonnées. Nous obtenons

a, = sing; = +0,3090 b, = cosp, = 40,9511
a, = sing, = —0,3090 b, = cosp, = 40,9511
a; = singy = +1,0000 by = cosgp; = +0,0000
[aa] = 41,1910 [ab] = 0O [bb] = 1,8092
1,1910 6Y?2 + 1,8092 6X2 = 1
0Y? 0X?

10,8396 T 0,5527
g = J/0,8396 = 0,92 p = )/0,56527 = 0,74

167



Nous constatons que I’axe p n’a pas varié, ce qui était du reste a prévoir,
tandis que ’axe g a fortement diminué. Pour trouver les nouveaux axes
il aurait du reste suffi de décomposer ’ellipse d’erreur, donnée par (3.2),
en deux vecteurs-erreurs conjugués, en prenant 'un d’eux confondu avec
I’axe des Y, et de le combiner ensuite avec le vecteur-erreur relatif a
@g; voir figure (4.4).

- Y

Figure (4.4) ,
. 00

§ 6. Cas d’une seule dislance de coniréle

Lorsqu’on a affaire a une seule distance de contrdle, I’ellipse d’erreur
dégéneére en deux droites paralleles, perpendiculaires 4 la distance me-
surée. Démontrons-le a I’'aide de deux exemples.

Exemple n° 3

En prenant ¢ = 0, nous avons
sing = 0 cosp =1 laa]l = [ab] = 0O [bb] =1

et I'ellipse d’erreur a pour équation

axX? = 1

ce qui nous donne les deux droites X = +1 et X = —1; voir figure
(5.1).

t Ax

!

R
Figure (51) 7 degenéree

e 4
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Exemple n° 4

Si nous avons deux distances de controle avec ¢, = @, = 1008, nous
obtenons

a; = +1 by =0 a, = +1 b, =0
[aal = 2 [ab] = [bD] = O

et 'équation de ’ellipse d’erreur devient dans ce cas

20Y2 =1
ce qui nous donne les deux droites Y = + 1/]/5 et Y = — 1/]/5;
voir figure (5.2).
o
Fiw | Liw
© o o4
Figure (5.2) 22 £
;T_._._..J
efipse
degenerée

§ 6. Réduction d’une forme quadratique

Nous avons vu qu’on peut calculer les axes de l'ellipse d’erreur avec les
formules (2.7) et (2.8). Malheureusement, ces derniéres ne se prétent pas
trés bien au calcul électronique, étant donné que les divers cas particu-
liers doivent étre programmés spécialement. Pour cette raison, nous pré-
férons avoir recours a la théorie des valeurs propres, qui fournit un jeu de
formules bien adapté aux ordinateurs. Rappelons bri¢vement cette
théorie; voir par exemple [2] ou [3] vol. 2.

Soit A une matrice carrée syméirique de dimension (n, n) et X’ =
(z,, ..., xn) un vecteur-ligne, tandis que X désigne le lransposé, c’est-a-dire
le vecteur-colonne correspondant. Vu la symétrie de A, ona A" = A et
I’équation

X'AX =1 avee A=A (6.1)
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est une forme quadratique, définissant dans I’espace vectoriel &4 n dimen-
sions une surface; voir figure (6.1). On obtient ses axes en cherchant les
valeurs maxima de la norme |X | == ]/XTX du vecteur X. Il s’agit donc
de calculer les maxima de X’X tout en tenant compte de la condition
(6.1).

.X’/’/F:/

Figure (6.1) £

Pour trouver la solution de ce probléme, nous appliquons la méthode des
multiplicateurs de Lagrange en introduisant la forme auxiliaire

1
Q=X'X — - (X'4X — 1) (6.2)

ou A désigne un paramétre. En différentiant le scalaire Q par rapport a
X, nous obtenons

1
dQ = dX'- X + X' dX —  (@dX'- A X+ X'+ A-dX) (6.3)

Mais comme on a, vu que A’ = A,
X dX =dX'- X et X'-A-dX =dX"-A-X,

I’équation (6.3) devient

1
5 A2 =dX'- X — 71X - A+ X =dX' (X — I AX) | (64)

Pour obtenir les maxima, on doit avoir df2 = 0, quel que soil dX, ce qui
donne la condition

X —211AX =0

c’est-a-dire

AX = iX (6.5)

170



En introduisant la matrice unitaire I, on peut écrire (6.5) sous la forme

(A — ADX =0 (6.6)

Pour que ce systeme d’équations linéaires homogénes admette une solu-
tion difiérente de x;, = x, = ... = x, = 0, il faut que son déterminant
| A — AI || soit nul, c’est-a-dire que

|A — AI|| =0 (6.7)

ce qui nous donne le polynéme caractéristique de A. 11 admet les n racines
Ays «oes An, qui sont les valeurs propres de la matrice A, et 1’on sait qu’elles
sont toujours réelles lorsque A est symétrique. Il en est du reste de méme
des vecteurs propres X;, associés aux A; par les équations (6.5). En prémul-
tipliant (6.5) par X’ et en tenant compte de (6.1), nous obtenons

X'AX = X1X =1X'X =1

d’o0 nous tirons

1
XX = (6.8)

En désignant la norme du vecteur propre X; par r;, nous avons

ST i=1,2,..,n (6.9)

L.es formules établies nous permettent de calculer les axes de la surface
(6.1), ce qui nous donne la forme quadratique réduite.

Exemple numérique (voir [2], page 22)

En considérant la forme quadratique

a2 —4day +5y2 =1

nous avons
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ce qui nous donne I’équation caractéristique

8— 1 -2
=0
—2 5 -1
c’est-a-dire
B8 —-—NDGB—-—4H—-—4=0
ou bien

A2 —131436=0
A—-—9UA—-4)=0

Nous obtenons ainsi les valeurs propres

A]_:g 12:4

D’apres (6.9), les axes de la conique sont

11 11
i Vi

ry

La formule (6.5) nous permet maintenant de calculer les vecteurs propres
X, et X,; elle nous donne

8x — 2y x
AX = AX — =2 & d’oul
—2x 45y y
8x — 2y = Az
—2x 4+5y = Ay
Nous obtenons donc pour
. L] 1
11:9 : -—.’E—Zy:: —> ‘;]:-—,27;[; . et
e =4 —2x+y=0 — y=2z
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Ces équations nous donnent les gisements des vecteurs propres, dont la
norme peut étre choisie arbitrairement. Elles nous montrent du reste que
X, et X, sont orthogonaux, ce qui est une propriété bien connue.

§ 7. Réduction de Uellipse d’erreur

En écrivant I’équation (2.6) de l’ellipse d’erreur sous la forme

laa]® + 2[abl n§ + [bD] & = 1 (7.1)

I’équation matricielle (6.1) devient

[aa] [ab] "
— X =
[ad] |bb] £ (7.2)
AR == A=A
et le polynome caractéristique de A est d’apreés (6.7)
[aal — A [ab]
[| A — AI |[ = =0 (7.3)
[ad] [bb] — A
ou bien
{laa] — A} {[bd] — A} — [ab] [ab] = O
ce qui nous donne
A2 — {[aa] + [bb]} A + {[aa] [bb] — [ab][ab]} = O (7.4)

Les racines 1, et A, de cette équation sont

Mz = {laa] + (60] = }/(aal + [6b)F — 4 ([aal (66] — a0] ()}

ou bien

ha =, {aal + (0] + /(laal = (00D + @ labl) ) | (75)
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Pour que les normes r; des vecteurs propres X;, données par (6.9), soient
réelles, il faut qu’on ait 4, > 0 et 4, > 0. Il résulte de (7.5) que tel ne
peut étre le cas que si I'on a

[aa] + [bb] = + }/({aa] — [bb])® + (2 [ab])® (7.6)

ou bien, en élevant les deux membres de cette inéquation au carré,

[aa]? + [bb]? + 2 [aa] [bb] = [aa]® + [bb]2 — 2 [aa] [bb] + 4 [ab]?
4 [aa] [bb] > 4 [ab] [ab]

[aa] [bb] = [ab] [ab] (7.7)

Mais nous savons que cette inéquation est toujours vérifiée, car (7.7)
n’est rien d’autre que 1’inégalité de Schwartz; voir [3], volume 2, page 33.
Il en résulte qu’'on a effectivement 4, > 0 et 4, > 0. Les axes r; et r,,
donnés par (6.9), sont donc toujours réels, c’est-a-dire que nous avons
affaire a une ellipse.

Pour calculer les vecteurs propres X, et X,, nous pouvons utiliser la
formule (6.5), qui nous donne

[aa] [ad]
[ab]  [bb]

d’ot nous tirons

{lag] — A}y + [ab]é =0

(7.8)
lably  + {[bb] — A}E =0

En vertu de (7.3), ces deux équations sont compatibles; si nous désignons
les gisements des axes de 'ellipse par ¢, et y,, nous avons

tgyi = z_
o B [ab]r - Ai — [bb] B
yi = Arctg — = Arc tg T ~1,2| (7.9
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voir figure (7.1)

47
LY Z
N ;
Fi 7.1 /ng
igure (7.1) (k// » F
>/ \2
e \
Sil'on a
laa]l = [bb] et [ab] =0 (7.10)
la formule (7.5) donne
2’1 == 2.2 d,Ol‘l T']_ == 1‘2 (7-11)

L’ellipse dégénere alors en un cercle et les gisements y; deviennent indé-
terminés vu qu’on a

tgy: = 5"

Un autre cas particulier est celui ot1 I'un des axes de l’ellipse est infini.
Il en est ainsi lorsqu’on a

[aa] [bb] — |ab] [ab] = O (7.12)

En effet, dans ces conditions (7.5) devient

ha = o {laa] +160] & Viaal + (00]* — 2[ac] [80] + 1[0}
1 T ————
Az = ?{[aa] + [bb] = J/((aa] +[bb])? — 4 [aa] [bb] + 4 [ab] [ab] |

— 0 (voir (7.12)
ha = ) {laal + 1001 & (laa + [80)))

Gy s 1) Ay = [aa] + [bD] (7.13)
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ce qui résulte du reste aussi de (7.4) pour 4, = 0. Mais 'équation (7.12)
n’est vérifiée que si I'un des vecteurs

a = (A, g, ey @) b = (by, by, ..., bn) (7.14)

est nul ou s’ils sont paralleles. Comme nous avons d’aprés (2.6) pour les
distances de controle

a; = sinrpi by = COSQ; (715)

les deux vecteurs «a» et «b» ne sont paralleles que si

a =k-bi — tggi=1=Lk i=1,..,n (7.16)

c’est-a-dire que toutes les distances de contréle s,, ..., s, doivent avoir
le méme support. Pour n > 1 ce cas ne présente aucun intérét pratique.
Par contre, (7.16) est toujours vérifiée pour n = 1; I'un des axes devient
alors infini, c’est-a-dire que 'ellipse dégénére en deux droites paralléles,
ce qui est du reste évident au point de vue géométrique. En ayant a = 0
ou b = 0, nous sommes encore amenés aux mémes conclusions.

Pour le calcul des gisements y; d’apres (7.9), nous considérons les
valeurs absolues du dénominateur, soit

| 4,— [ad] | | 2, — [adq] | | [ad] | (7.17)

et nous choisissons la formule correspondant a la valeur la plus grande.
Cette regle n’est en défaut que lorsqu’on a 4, = A, puisque Vellipse dé-
génere alors en un cercle.

§ 8. Calcul électronique des ellipses d’erreur

Pour le calcul électronique des ellipses d’erreur, nous avons établi un
sous-programme, appelé LIPSEM, qui donne les axes et leurs gisements.
L’organigramme qui le précéde montre la configuration générale de ces
calculs. ‘

Finalement, ce programme a été appliqué au cas de trois distances de
contréle formant les angles w; et w, entre elles. Les résultats, figurant au
tableau (8.1), nous montrent dans chaque cas 'efficacité du contréle, et
il devient des lors facile de fixer un critére pour qu’un point soit accepté
en classe 4.
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Organigramme

du sous-programme LIPSEM
pour le caleul de Pellipse d’erreur des distances de controle

a; = sing; b; = cosg; I ==Yl
[aa] = %] aia; [bb] = 3 bib: [ab] = 2 a; b
i=1 i=1 i=1
v

& =|/(laa] — [bb])% + (2 [ab])®

non < S — [aa] ol [bb] > oui
11=%([aa]+[bb]—6) Ay =10,
A = - ({aa) + [00] + 9) o = [aa] + [bb]
v v 4
r, = 1_ f1= o0 ry=1ry= .1 =
VA V [aa] + [b8]
1 1 2
ry = ry =
I/Z VAT +
Y=y =0
£<[Z—[aa]| |l——[aa]|>—l
b [ab]
y, = arctg — L []aa] Y, = arc tgm]—
y y
‘Ps='P1+—2" "l)1=1l’2—'_-2'
) 4




Listage
FORTRAN IV du sous~-programme LIPSEM
pour le ealcul de ’ellipse d’erreur des distances de eontrole

SUBROUTINE LIPSEM (N, PHI, P, Q, PSIP, PSIQ)
DIMENSION PHI (5)
RO = 63.66197724
AA = 0.

BB == 0.

AB = 0.
DO11=1,N

A = SIN(PHI(I)/RO)
B = COS(PHI(I)/RO)
AA = AA + A**2
BB = BB + B**2

1 AB = AB + A*B |
DELTA = SQRT((AA — BB)**2 | 4 *AB**2)
IF(DELTA.LT.0.001) GOTO2
IF(AA + BB — DELTA — 2.0E — 8)4,4,3

3 AMDAP = (AA + BB + DELTA)/2.
AMDAQ = (AA + BB — DELTA)/2.
P = 1./SQRT(AMDAP)
Q = 1./SQRT(AMDAQ)
GOTO5

4 AMDAQ = 0.
AMDAP = AA + BB
Q = 99999.99
P = 1./SQRT(AMDAP)

5 IF(ABS(AMDAQ — AA) — ABS(AMDAP — AA))7,6,6

6 PSIQ = ATAN(AB/(AMDAQ — AA))*RO + 0.00001
IF(PSIQ.LT.0.)PSIQ = PSIQ + 400.
PSIP = PSIQ -+ 100.
IF(PSIP.GE.400.)PSIP = PSIP — 400.
RETURN

7 PSIP = ATAN(AB/(AMDAP — AA)*RO -+ 0.00001
IF(PSIP.LT.0.)PSIP = PSIP + 400.
PSIQ = PSIP — 100.
IF(PSIQ.LT.0)PSIQ = PSIQ + 400.

RETURN
2 P = 1./SQRT((AA + BB)/2.)
Q=P

PSIP = 0.000001
PSIQ = 0.000001
RETURN

END
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Nom

Désignation des variables

A
AA

AB
AMDAQ
AMDAP
B

BB
DELTA
N

P
PHI(I)
PSIQ
PSIP

Q
RO

a; = sing;
[aa]

[ab]

i: } racines du polynéme caractéristique
b; = cosg;

[6b]
0

n = nombre de distances de contrdle

ry = petit axe de l’ellipse

@; = gisements des distances de contréle
Y, = gisement du grand axe

y, = gisement du petit axe

r, = grand axe de l’ellipse

1 radian en grades

Tableaw (8.1): Ellipses d’erreur pour 3 distances de contréle

Wy
0 20 40 60 80 100 grades
Wy
gisement
grades 300.00 | 303.41 | 307.56 | 313.69 | 325.41 | 350.00 du grand
axe
0 oo 3.92 1.99 1.37 1.09 1.00 grand axe
0.58 0.58 0.60 0.64 0.68 0.71 petit axe
306.57 | 310.00 | 314.59 | 322.44 | 340.00 | 370.00
20 3.92 2.29 1.53 117 1.00 1.00 id.
0.58 0.60 0.62 0.66 0.71 0.71
312.44 | 315.41 | 320.00 | 330.00 | 360.00 | 390.00
40 1.99 1.53 1.20 1.00 0.92 1.00 id.
0.60 0.62 0.66 0.71 0.74 0.71
316.31 | 317.56 | 320.00 | 330.00 0.00| 10.00
60 1.37 1.17 1.00 0.87 0.87 1.00 id.
0.64 0.66 0.71 0.77 0.77 0.71
314.59 | 310.00 | 300.00 | 270.00 | 40.00 | 30.00
80 1.09 1.00 0.92 0.87 0.92 1.00 id.
0.68 0.71 0.74 0.77 0.74 0.71
300.00 | 290.00 | 280.00 | 270.00 | 260.00 | 250.00
100 1.00 1.00 1.00 1.00 1.00 1.00 id.
0.71 0.71 0.71 0.71 0.71 0.71
285.41 | 282.44 | 280.00 | 277.56 | 274.59 | 270.00
120 1.09 1.17 1.20 1.17 1.09 1.00 id,
0.68 0.66 0.66 0.66 0.68 0.71
283.69 | 284.59 | 285.41 | 286.31 | 287.56 | 290.00
140 1.37 1.53 1.53 1.37 1.17 1.00 id.
0.64 0.62 0.62 0.64 0.66 0.71
287.56 | 290.00 | 292.44 | 295.41 | 300.00
160 1.99 2.29 1.99 1.53 1.20 id.
0.60 0.60 0.60 0.62 0.66
293.43 | 296.57 | 300.00
180 3.92 3.92 2.29 id.
0.58 0.58 0.60

179



§ 9. Calcul de la classe d’'un point

Nous admettons que la classe CL d’un point, déterminé une fois et con-
trolé par une ou plusieurs distances, est comprise entre 4.0 et 5.0. Pour
le calcul de la classe, nous ne faisons intervenir que le grand axe q de
I’ellipse d’erreur en prenant

J1

CL =4 si g < 1.
(1.5)?
g

CL = 5.0 si g > 1.5 (9.1)

q = grand axe de ellipse d’erreur

L.a seconde de ces formules nous donne alors

a) CL =5.0 si g = oo et

b) CL. = 4.0 si ¢ = 1.0 c’est-a-dire si I'angle de recoupement est
de 62.5 grades dans le cas de deux dis-
tances de controle (voir tableau 3.4).

Nous acceptons alors le point si I'on a CL = 4 tandis que nous le reje-
tons si CL > 4.0. En adoptant cette régle, I'ordinateur met en évidence
tous les points insuffisamment contrdlés, ce qui est d'une importance
capitale pour la mensuration cadastrale.

Exemple numérique

Nous avons traité par voie ¢lectronique un petit exemple de lever par
les méthodes polaire et orthogonale. Les résultats de la classification et la
structure de ce lever, qui est loin d’étre un modéle, sont représentés a la
figure (9.2). Les distances de contrdle mesurées y sont caractérisées par
des traits épais.
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Point Classe
101 4
102 5.0
103 5.0
104 4
105 4.1
106 4.1
107 4
108 5.0
109 5.0
110 3
111 3
112 4
113 4.2
114 4.2
115 4
116 4
117 4
118 4
119 3
120 3
121 4.8
122 4.3
123 4
124 4
125 5.0
126 3
127 3
128 4
129 5.0
130 5.0
133 4.8
132 4
133 4
134 3
135 3
136 4
137 4
138 4
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