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La classification des points
en mensuration cadastrale numérique

Prof. Dr W. K. Bachmann

Résumé

Le premier rapport de la Commission suisse d'automation propose une
classification caractérisant la confiance qu'on peut avoir dans la
détermination des points d'une mensuration numérique. On relève que la
classe 4 des points déterminés une seule fois et contrôlés par une ou
plusieurs mesures indépendantes n'offre pas de garanties suffisantes du
moment qu'on ne tient pas compte de l'efficacité des contrôles. La notion
d'ellipse d'erreur permet de définir la configuration géométrique des
mesures de contrôle en un point et d'introduire une classe flottante, comprise

entre 4.0 et 5.0. W. K. Bachmann

La Commission suisse d'automation a publié en 1970, dans les numéros 7

et 8 de la «Revue suisse des mensurations», son premier rapport qui
donne une vue d'ensemble des différentes méthodes numériques utilisées
en Suisse pour la mensuration cadastrale. Sans aucun doute, ce document

sera d'une aide précieuse pour l'élaboration des nouvelles instructions

fédérales sur la mensuration numérique.
Dans ce qui suit, nous ne considérerons qu'une infime partie de ce

rapport en examinant de plus près la classification des points. Conformément

à la pratique exercée dans certaines régions de la Suisse, la
Commission a introduit 6 classes de points, à savoir:

Classe 1. Points fixes servant de base à la mensuration parcellaire
(triangulations géodésique et cadastrale).

Classe 2. Points fixes complémentaires ayant fait l'objet d'une compensation

(triangulation de 5e ordre et polygonation).
Classe 3. Points nouveaux ayant fait l'objet de deux déterminations in¬

dépendantes respectant les tolérances.
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Classe 4. Points nouveaux, déterminés une seule fois et contrôlés par une
ou plusieurs mesures indépendantes, respectant les tolérances
(distances ou éventuellement directions de contrôle).

Classe 5. Points déterminés une seule fois, sans mesures de contrôle
(limites de nature).

Classe 6. Points hors tolérance.

Cette classification nous donne une idée de la confiance que nous
pouvons avoir en un point; elle a été choisie en fonction des différents cycles
de calcul.

Dans [1], on a admis que la détermination des points-limites ne peut
s'effectuer qu'à partir des points de la classe 1, 2 ou 3 *. Etant donné que
les points des classes 1, 2 et 3 jouent exactement le même rôle au cours
des calculs, on aurait pu les réunir en une seule classe, mais on doit
admettre qu'il peut éventuellement être intéressant de savoir à quel genre
de points on a affaire, ce qui justifie dans une certaine mesure la classification

adoptée.
Les classes 5 et 6 ont fait leurs preuves dans la pratique, raison pour

laquelle il est indiqué de les maintenir telles quelles.
Quant aux points de classe 4, ils ont donné lieu à de nombreuses

difficultés. Rappelons qu'un point de la classe 5 passe à la classe 4 s'il a fait
l'objet d'une ou de plusieurs mesures de contrôle qui doivent toutes
respecter les tolérances. L'ordinateur traite une mesure de contrôle après
l'autre et dès qu'il y en a une qui dépasse les tolérances, le point passe
en classe 6 et il est impossible de le «repêcher», même si la détermination
initiale a été correcte.

Mais il y a encore une autre difficulté inhérente aux points de la classe
4: supposons que Pj et P2 soient deux points de classe 5 entre lesquels
on a mesuré a posteriori une distance de contrôle si,2. Si cette dernière
est hors tolérance, les deux points passent en classe 6, car on ne sait pas
si l'écart constaté provient

a) d'une mauvaise détermination de Pr, ou

b) d'une mauvaise détermination de P2, ou

c) d'une erreur sur si,2

A notre avis, il serait intéressant de reprendre cette programmation et
d'établir un programme de calcul permettant d'éliminer certaines de ces
difficultés.

Un autre point encore donne lieu à des inquiétudes: un point de la
classe 5 passe en classe 4 dès qu'il a fait l'objet d'une ou de plusieurs
mesures de contrôle respectant les tolérances. Nous avons de ce fait en
classe 4 des points de différentes valeurs suivant que les contrôles effectués

sont suffisants ou non. En effet, si un point de classe 5 n'a fait l'objet
que d'une seule mesure de contrôle, il se peut qu'il soit faux, sans que
cette faute ait été mise en évidence par la mesure de contrôle. Si, par
* Dans [1], la «classe» s'appelle la «valeur» du point.
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contre, le point a été contrôlé par deux distances qui se coupent à peu
près à angle droit, nous obtenons une double détermination du point
et le contrôle est excellent.

Pour éviter l'inconvénient que nous venons de mentionner, on est
obligé de compléter le programme de calcul. Nous allons montrer qu'on
peut y parvenir en introduisant la notion d'ellipse d'erreur qui caractérise
la configuration géométrique des mesures de contrôle sans faire intervenir
leurs valeurs numériques.

"Vu que les directions de contrôle ne sont pas d'une grande utilité
pratique, nous ne considérerons dans ce qui suit que des distances de contrôle.
De plus, nous pouvons admettre qu'elles ont été mesurées avec un ruban
métrique, préalablement étalonné. Par hypothèse, ces mesures ont toutes
le poids un; elles sont indépendantes, sans biais, et ont une distribution
normale. Rappelons, avant d'aborder le problème proprement dit, la
définition de l'ellipse d'erreur moyenne.

§ 1. Définition de l'ellipse d'erreur moyenne

Soient et, e2, en des variables aléatoires normales indépendantes,
ayant pour distributions

e;~iV(0 ;o-i2) 1, 2, n (1.1)

Dans ces conditions, la probabilité élémentaire dpi de e; est donnée par
la formule

i e

dpi dei i 1, 2, n— e
V 2 n ai

(1.2)

Les variables g!, e2, en étant indépendantes, la probabilité élémentaire
dP du vecteur aléatoire (et, e2, e„) est

1

dP e
n

-i(>¦ On2 'de, ¦ den

(2n)"l2 n o-,-

>= i

(1.3)
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Par définition,

Sn

y (1.4)

est l'ellipse d'erreur moyenne du vecteur aléatoire (elt e„). En vertu
de (1.3), la densité de probabilité est constante sur la surface (1.4). Dans

un espace vectoriel à n dimensions, défini par la base orthonormée
(e1; e„), les axes alt <r2, on de cet ellipsoïde sont portés par les axes
de coordonnées. Si l'on a n 2, on obtient une ellipse d'erreur moyenne
et l'on sait que la probabilité d'obtenir un point à l'intérieur de cette
ellipse est de 39%.

§ 2. Ellipse d'erreur moyenne des distances de contrôle

Soient Pj, P„ des points fixes à partir desquels nous mesurons les

distances s/, sn' au point P à contrôler; voir figure (2.1).

Figure (2.1)

Par hypothèse, ces mesures sont indépendantes, sans biais, et distribuées
normalement; de plus, elles ont toutes le poids pi 1, l'erreur moyenne
à craindre sur l'unité de poids étant cr. Si et désigne l'erreur vraie de Si',
nous avons

Ei ~ N (0 ; a2) i= l,2,...,n (2.1)

et l'ellipsoïde d'erreur (1.4) devient dans ce cas

+ (2.2)

La valeur numérique de cr peut être estimée à partir des mesures. Mais,
étant donné que nous nous proposons uniquement de comparer les
différentes ellipses entre elles, nous n'avons pas besoin de connaître la valeur
de o et nous prenons simplement cr2 1. Dans ces conditions, nous
obtenons à la place de (2.2),

+ e2 1 (2.3)
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En vue du calcul du premier membre de cette équation, nous
introduisons les désignations suivantes:

Pi (Yi, X,) point fixe donné

P (Y, X) — point à contrôler

q>i gisement du vecteur Pi P

Si longueur du vecteur P,- P

En attribuant aux coordonnées Y et X du point vrai P les accroissements
ôY et ôX, l'erreur vraie e; de la distance Si est donnée par

et sincri • ÒY y cos9?; • ôX i 1,2,..., n (2.4)

voir figure (2.2).

x

Figure (2.2)

>

j.e

"y
Pi

yy
-y- A''' \ J\

/x

yy Sy

Si nous introduisons ces valeurs dans l'équation (2.3), nous obtenons
l'ellipse d'erreur

[sin2«p;] ÔY2 y 2 [sincri cosce,] ÔY ÔX + [cos2<p,] ÔX" 1 (2.5)

Avec les notations habituelles de la méthode des moindres carrés, cette
équation s'écrit sous la forme

e.i ai ÔY y bi ÔX i 1,2,. .,/?

ai — sinç>,- bi — cos (pt

[aa] ÔY2 y 2 [ab] ÔY ÔX + [bb] ÔX2 1

(2.0)
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[bb] - [aa]
ctg 2ip

2 [ab]

ab] ctgw [bb] ab] tgwaa

Pour le calcul des axes q-, et o2 de cette ellipse et de leurs gisements y>x

et y>2, nous pouvons utiliser les formules bien connues

(2.7)

(2.8)

Remarque

L'ellipse d'erreur, définie par l'équation intrinsèque (2.3), est indépendante

du système de coordonnées (Y, X). C'est donc un être géométrique,
qui caractérise la configuration géométrique des mesures de contrôle au
point P.

§ 3. Cas de deux distances de contrôle

Soient Px et P2 deux points fixes à partir desquels on a mesuré les
distances de contrôle s/ et s2' au point P; voir figure (3.1).

Figure (3.1)

t/x

Sx

L'ellipse d'erreur étant indépendante du choix du système de coordonnées,

nous pouvons simplifier les calculs en prenant l'axe des ôX
confondu avec la bissectrice de l'angle (PXP, P2P), car nous obtenons dans
ce cas [ab] 0. En ayant pour PXP le gisement
l'angle compris entre ces deux directions est

2ç>

- rp et — cp pour P2 P,

(3.1)

et nous pouvons exprimer les deux axes de l'ellipse en fonction de eu. En
appliquant les formules (2.6), nous obtenons

ax sin cp

a2 — sin qy

bx cos tp 1

62 coscp j

[aa] 2 sin29?

[bb] =2 cos2cp

[ab] 0
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d'où

2 sin2cp ¦ ôY2 + 2 cos2ç> • ôX2 1

ou bien

ÔY2 ÔX2

1/2 si J/2 cos ipsinn)

et par conséquent les deux axes de cette ellipse sont:

dans la direction des ôY: q

dans la direction des ôX: p

|/2 sin cp

1

J/2cosœ

(3.2)

(3.3)

En attribuant à cp successivement les valeurs 10sr, 20sr, 50sr, nous
obtenons les ellipses figurant au tableau (3.4).

0) 9 P

206r 4,52 0,72

40«r 2,29 0,74

606r 1,56 0,79

80er 1,20 0,87

1008r 1,00 1,00

f /JC

— /y
(3.4)

Ainsi, si nous prenons un angle d'ouverture u> 40«r, l'ellipse a pour
axes 0,74 dans la direction des ôX et 2,29 dans celle des ôY.

Si l'angle d'ouverture est de 100sr, les deux axes ont la valeur 1;
l'ellipse dégénère donc en un cercle de rayon R 1.

Remarque

Montrons que l'équation (3.2) admet une interprétation géométrique
très simple; voir figure (3.2). Soient Pi et P deux points distants de s;.
Soit d'autre part en, représenté par PQ, le vecteur-erreur de la distance
mesurée s,-. En première approximation, le lieu géométrique des points,
dont la distance à Pi est Si + cr;, est une droite perpendiculaire à PiP
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passant par le point Q. Cette droite intercepte sur les axes de coordonnées
les segments Oi/cosqn et m/sinipi. Ce sont les erreurs à craindre sur la
détermination de X et de Y. En prenant ensuite ai 1 et en considérant
deux distances de contrôle de gisements + ç> et — œ, il suffit d'appliquer
la loi de la propagation des erreurs pour trouver les axes de l'ellipse (3.2).

Figure (3.2)

/x

ls

ITT

Sx
Y-

§ 4. Cas général

Lorsque nous avons affaire à un nombre quelconque de distances de
contrôle aboutissant au point P, nous calculons les axes de l'ellipse avec
les formules (2.7) et (2.8). Considérons un exemple:

Exemple n" 1

En prenant

ç?! + 20sr çç2 -20êr ç»3 +708'

nous obtenons

shKft +0,3090

sin<p2 -0,3090

sinç>3 +0,8910

[aa] +0,9848 [ab] +0,4045

2 [ab] 0,8090

bx cosffij +0,9511

62 cosœ2 +0,9511

63 cosœ3 +0,4540

[bb] +2,0153

tg2V
[bb] - [aa] 1,0305

0,785-056
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2-ip 426r 37e 10cc ou 2ip 242sr 37e 10co

ip,, 2lsr 18° 55co y>2 121«r 18e 55e0

tgvi 0,345*635 tgip2 -2,893'222

ctg y'i 2,893'222 ctg ip2 -0,345-635

q2
1 1

[aa] + [ab] ctg^ " [bb] + [ab] tgi/J

1

Q-3

2,155-109

1

0,844-992

0,464-014

1,183-443

j?! 0,681

Q2 1,088

Nous avons donc

¥>!«*+ 2lsr

V», « + 121ür

Qa, « 0,68

Q» « 1,09

o*

£1

</y

et

y.'.

Figure (4.1)
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Ce résultat est indiqué à la figure (4.1), qui contient les courbes suivantes:

C cercle de rayon r 1,00

Elt ellipse d'erreur pour q>1 + 20sr et cp2 — 20sr

El3 ellipse d'erreur pour <px +208', <p2 -20sr et q>3 + 70sr

La figure (4.1) nous montre que les deux ellipses El2 et El3 sont tangentes
aux points R et S, le diamètre RS étant perpendiculaire à la direction
P3P. Il en résulte que El3 est située à l'intérieur de El2. Cette propriété
n'est pas due au hasard; aussi allons-nous montrer qu'elle est d'ordre
tout à fait général.

En effet, soient dx 0 et d2 0 les équations de deux droites et
C 0 l'équation d'une conique. Désignons les intersections des droites
avec la conique par Qx, Q2, Q3, Q4; voir figure (4.2).

L'équation

Xdxd2 (4.1)

où X désigne un paramètre, représente le faisceau de coniques passant
par les points Qx, Q2, Q3 et Q4.

Figure (4.2)

Si les deux droites dx et d2 sont confondues, l'équation (4.1) devient

C - Xd2 0 (4.2)

et nous obtenons un faisceau de coniques, tangentes à C aux points Px
et P2 ; voir figure (4.3).

X

Figure (4.3) «tL= «/<
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Cela étant, appliquons cette propriété aux ellipses d'erreur. Soit

[aa] ÔY2 + 2 [ab] ÔY ÔX + [bb] ÔX2 1 (4.3)

l'ellipse d'erreur de (n — 1) distances de contrôle. En y ajoutant une ne
distance .s„ PnP, ayant le gisement œ„, nous obtenons la nouvelle
ellipse

{[aa] + sin2 ço„} ÔY2 + 2 {[ab] + sin <pn cos ço„} ÔY ÔX + {[bb] + cos2çç„} ÔX2 1

(4.4)
En introduisant les notations

C [aa] dY2 + 2 [a&] ÓY <5X + [bb] ÔX2 - 1

(4.5)
rf sinœ„ • (5Y + cosçsn • <5X

L'équation (4.4) s'écrit
C + rf2 0 (4.6)

Nous avons ainsi obtenu une équation de la forme (4.2) et la propriété
énoncée est démontrée.

Lorsque nous avons affaire à un nombre quelconque de distances de
contrôle aboutissant au point P, nous calculons les axes de l'ellipse avec
les formules (2.7) et (2.8).

Exemple n" 2

Afin de nous rendre compte de la variation d'une ellipse de par
l'adjonction d'une nouvelle distance de contrôle, nous allons considérer le
cas w 406r du tableau (3.4) en lui ajoutant une 3e distance de contrôle.
Nous prenons

<px +20er çp2 -20sr <p3 1008r

Pour des raisons de symétrie, on voit que les axes de l'ellipse doivent être
confondus avec les axes de coordonnées. Nous obtenons

ax sin®! +0,3090 bx cosccj +0,9511

a2 sinœ2 —0,3090 b2 cosœ2 +0,9511

a3 sinço3 +1,0000 b3 cosœ3 +0,0000

[aa] r= +1,1910 [ab] 0 [bb] 1,8092

1,1910 ÔY2 y 1,8092 ÔX2 1

ÔY2 ÔX2

0,8396
+

0,5527
"

q |/o78396 0,92 p ^0,5527 0,74
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Nous constatons que l'axe p n'a pas varié, ce qui était du reste à prévoir,
tandis que l'axe q a fortement diminué. Pour trouver les nouveaux axes
il aurait du reste suffi de décomposer l'ellipse d'erreur, donnée par (3.2),
en deux vecteurs-erreurs conjugués, en prenant l'un d'eux confondu avec
l'axe des ôY, et de le combiner ensuite avec le vecteur-erreur relatif à

9?3; voir figure (4.4).

t/X

Jy

<.:
Figure (4.4)

§ 5. Cas d'une seule distance de contrôle

Lorsqu'on a affaire à une seule distance de contrôle, l'ellipse d'erreur
dégénère en deux droites parallèles, perpendiculaires à la distance
mesurée. Démontrons-le à l'aide de deux exemples.

Exemple n° 3

En prenant <p 0sr, nous avons

sinço 0 cose» 1 [aa] [ab] 0 [bb] 1

et l'ellipse d'erreur a pour équation

ÔX2 1

ce qui nous donne les deux droites ôX +1 et ôX — 1; voir figure
(5.1).

/x

Figure (5.1)
yy
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Exemple n" 4

Si nous avons deux distances de contrôle avec <px q>2 10081, nous
obtenons

ax +1 bx 0 a2 +1 &2 0

[aa] 2 [aft] [ftft] 0

et l'équation de l'ellipse d'erreur devient dans ce cas

2 <5Y2 1

ce qui nous donne les deux droites ôY + Vj/2 et ôY — l/j/2 ;

voir figure (5.2).

Figure (5.2) j> ^z>

/r
>£t ^T

</r

elltose
aefé

§ 6. Réduction d'une forme quadratique

Nous avons vu qu'on peut calculer les axes de l'ellipse d'erreur avec les
formules (2.7) et (2.8). Malheureusement, ces dernières ne se prêtent pas
très bien au calcul électronique, étant donné que les divers cas particuliers

doivent être programmés spécialement. Pour cette raison, nous
préférons avoir recours à la théorie des valeurs propres, qui fournit un jeu de
formules bien adapté aux ordinateurs. Rappelons brièvement cette
théorie; voir par exemple [2] ou [3] vol. 2.

Soit A une matrice carrée symétrique de dimension (n, n) et X'
(xx,..., x„) un vecteur-ligne, tandis que X désigne le transposé, c'est-à-dire
le vecteur-colonne correspondant. Vu la symétrie de A, on a A' A ct
l'équation

X'AX A' (6.1)
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est une forme quadratique, définissant dans l'espace vectoriel à n dimensions

une surface; voir figure (6.1). On obtient ses axes en cherchant les

valeurs maxima de la norme | X | ]/X'JC du vecteur X. Il s'agit donc
de calculer les maxima de X'X tout en tenant compte de la condition
(6.1).

X'AX I

Figure (6.1)

Pour trouver la solution de ce problème, nous appliquons la méthode des

multiplicateurs de Lagrange en introduisant la forme auxiliaire

Q =X'X - — (X'AX - 1) (6.2)

où À désigne un paramètre. En différentiant le scalaire Q par rapport à

X, nous obtenons

1
dQ dX' ¦ X + X' - dX - - (dX' ¦ A ¦ X + X' ¦ A ¦ dX) (6.3)

I.

Mais comme on a, vu que A' A,

X' • dX dX' • X et X' • A - dX dX' • A ¦ X

l'équation (6.3) devient

dû dX' ¦ X - X-1 dX' ¦ A ¦ X dX' (X - X~l AX) (6.4)

Pour obtenir les maxima, on doit avoir dû 0, quel que soit dX, ce qui
donne la condition

c'est-à-dire

X - A-1 AX 0

AX XX (6.5)
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En introduisant la matrice unitaire J, on peut écrire (6.5) sous la forme

(A - M)X (6.6)

Pour que ce système d'équations linéaires homogènes admette une solution

différente de xx x2 xn 0, il faut que son déterminant
Il A — XI || soit nul, c'est-à-dire que

A - XI \ (6.7)

ce qui nous donne le polynôme caractéristique de A. Il admet les n racines
Xx, Xn, qui sont les valeurs propres de la matrice A, et l'on sait qu'elles
sont toujours réelles lorsque A est symétrique. Il en est du reste de même
des vecteurs propres Xi, associés aux Xi par les équations (6.5). En prémultipliant

(6.5) par X' et en tenant compte de (6.1), nous obtenons

X'AX X'XX XX'X

d'où nous tirons

X'X-=T (6.8)

En désignant la norme du vecteur propre Xi par n, nous avons

n —, -]/Xi
i 1, 2, n (6.9)

Les formules établies nous permettent de calculer les axes de la surface
(6.1), ce qui nous donne la forme quadratique réduite.

Exemple numérique (voir [2], page 22)

En considérant la forme quadratique

8 x2 — A xy + 5 y2 1

nous avons

X
x

y
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ce qui nous donne l'équation caractéristique

- X -2
2 5 - X

c'est-à-dire

ou bien

(8 - X) (5 - X) - 4 0

X2 - 13 X + 36 0

(X - 9) (X - A) 0

Nous obtenons ainsi les valeurs propres

Xx 9 A2 4

D'après (6.9), les axes de la conique sont

1 i 1 i
/-1

]/Tx - Y Tt ~tt '~~ y.

La formule (6.5) nous permet maintenant de calculer les vecteurs propres
Xx et X2; elle nous donne

AX XX
8 x -2y

A
x

- 2 x + 5{/ y

8i - 2 {/ Ax

- 2x + 5 y hj

d'où

Nous obtenons donc pour

Ai =9 : - x - 2 y 0

A2 4 2 x + y 0 -> U 2x

et
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Ces équations nous donnent les gisements des vecteurs propres, dont la
norme peut être choisie arbitrairement. Elles nous montrent du reste que
Xx et X2 sont orthogonaux, ce qui est une propriété bien connue.

§ 7. Réduction de l'ellipse d'erreur

En écrivant l'équation (2.6) de l'ellipse d'erreur sous la forme

[aa] rj2 y 2 [ab] rjÇ + [ftft] Ç2 1 (7.1)

l'équation matricielle (6.1) devient

A
[ad] [ab]

[ab] [bb]
X

V

X'AX 1 A' A

(7.2)

et le polynôme caractéristique de A est d'après (6.7)

|| A -- XI ||
[aa] — A

[aft]

[ab]

[bb] - A
0 (7.3)

ou bien
{[aa] - X} {[bb] - X} - [ab] [ab] 0

ce qui nous donne

X2 - {[aa] + [ftft]} A + {[aa] [bb] - [ab] [ab]} 0 (7.4)

Les racines Xx ct A2 de cette équation sont

Ai,2= \ {[aa] y [bb] ± |/([ao]Tìftft])2 - A ([aa] [bb] - [aft] [aft])}

ou bien

Ai,2
*- {[aa] y [bb] ± \/([aa] - [ftft])2 + (2 [aft])2 } (7.5)
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Pour que les normes r; des vecteurs propres Xi, données par (6.9), soient
réelles, il faut qu'on ait Xx > 0 et A2 > 0. Il résulte de (7.5) que tel ne
peut être le cas que si l'on a

[aa] + [bb] > y |/([aa] - [ftft])2 + (2 [aft])2 (7.6)

ou bien, en élevant les deux membres de cette inéquation au carré,

[aa[2 + [ftft]2 + 2 [aa] [ftft] > [aa]2 + [ftft]2 - 2 [aa[ [bb] + 4 [aft]2

4 [aa] [bb] > 4 [ab] [ab]

[aa] [bb] > [ab] [ab] (7.7)

Mais nous savons que cette inéquation est toujours vérifiée, car (7.7)
n'est rien d'autre que l'inégalité de Schwartz; voir [3], volume 2, page 33.

Il en résulte qu'on a effectivement Xx > 0 et A2 > 0. Les axes rx et r2,
donnés par (6.9), sont donc toujours réels, c'est-à-dire que nous avons
affaire à une ellipse.

Pour calculer les vecteurs propres Xx et X2, nous pouvons utiliser la
formule (6.5), qui nous donne

rj

[aa] [ab]

[ab] [bb]

d'où nous tirons

X}v{[aa [ab[ f 0

{[bb] A}£ =0ab] tj
(7.8)

En vertu de (7.3), ces deux équations sont compatibles; si nous désignons
les gisements des axes de l'ellipse par ipx et ip2, nous avons

tgyii
¦rj

tpi Arc tg
[ab]

Xt
Arctg

Xi - [bb]

[ab]
i 1, 2 (7.9)
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voir figure (7.1)

Figure (7.1)

\V

H ~*

Si l'on a

[aa] [ftft] et [ab] 0

la formule (7.5) donne

Xx A2 d'où rx r2

(7.10)

(7.11)

L'ellipse dégénère alors en un cercle et les gisements xpi deviennent
indéterminés vu qu'on a

0
tgv. 0

•

Un autre cas particulier est celui où l'un des axes de l'ellipse est infini.
Il en est ainsi lorsqu'on a

[aa] [ftft] - [ab] [ab] 0 (7.12)

En effet, dans ces conditions (7.5) devient

Ai,2 ^r\[aa] + [bb] ± \/[aa]2 + [ftft]2 - 2 [aa] [ftftf+4 [ab]2)

Ai,2 =—{[aa] y [bb] ± |/([aa] + [ftft])2 - 4 [aa][bb] + 4 [ab] [ab]

Ai,2 J {[««] + 1^1 ± (l"rtl + lftft0}

0 (voir (7.12)

A! 0 A2 [oa] + [ftft] (7.13)
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ce qui résulte du reste aussi de (7.4) pour Xx 0. Mais l'équation (7.12)
n'est vérifiée que si l'un des vecteurs

a (ax, a2, an) b (bx,b2, bn) (7.14)

est nul ou s'ils sont parallèles. Comme nous avons d'après (2.6) pour les

distances de contrôle

ai sing?; fti COSCPi (7.15)

les deux vecteurs «a» et «ft» ne sont parallèles que si

ai k ¦ bi tgq>i k i 1, n (7.16)

c'est-à-dire que toutes les distances de contrôle sx, sn doivent avoir
le même support. Pour n > 1 ce cas ne présente aucun intérêt pratique.
Par contre, (7.16) est toujours vérifiée pour n 1; l'un des axes devient
alors infini, c'est-à-dire que l'ellipse dégénère en deux droites parallèles,
ce qui est du reste évident au point de vue géométrique. En ayant a 0

ou ft 0, nous sommes encore amenés aux mêmes conclusions.
Pour le calcul des gisements yn d'après (7.9), nous considérons les

valeurs absolues du dénominateur, soit

Xx— [aa] \ X2 — [aa] [ab] (7.17)

et nous choisissons la formule correspondant à la valeur la plus grande.
Cette règle n'est en défaut que lorsqu'on a Xx X2 puisque l'ellipse
dégénère alors en un cercle.

§ 8. Calcul électronique des ellipses d'erreur

Pour le calcul électronique des ellipses d'erreur, nous avons établi un
sous-programme, appelé LIPSEM, qui donne les axes et leurs gisements.
L'organigramme qui le précède montre la configuration générale de ces
calculs.

Finalement, ce programme a été appliqué au cas de trois distances de
contrôle formant les angles cox et eo2 entre elles. Les résultats, figurant au
tableau (8.1), nous montrent dans chaque cas l'efficacité du contrôle, et
il devient dès lors facile de fixer un critère pour qu'un point soit accepté
en classe 4.
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Organigramme
du sous-programme LIPS E M

pour le calcul de l'ellipse d'erreur des distances de contrôle

at sin œ; bi cosa,- i l,...,n

[aa] S ai a [bb] £ ft;fti [ab] S mb
» 1 i 1 i 1

z
ô ]/([aa] - [ftft])2 + (2 [aft])2

o 0 >-

-<( Ó [aa] +~jftft]

Jt - y G0«]+ [**]-*)

A2 — ([aa] + [ftft] + <5)

/, 0.

A2 [aa] + [ftft]

r, oor, r, r„
Rx

1 — ' Z

K
r«

VT M,

\ no
A, — [aa] > /. — [aa]

aft aft]
w2 arc tg% arc tg

X2 — [aa]Xx - [aa]

ft Vi + Vx - Va - -r

Vi Vs

[aa] + [ftft]

Vi % 0



Listage
FORTHAN IV du sous-programme LIP SEM

pour le calcul de l'ellipse d'erreur des distances de contrôle

SUBROUTINE LIPSEM (N, PHI, P, Q, PSIP, PSIQ)
DIMENSION PHI (5)
RO 63.66197724
AA 0.

BB 0.
AB 0.
DO 1 I 1,N
A SIN(PHI(I)/RO)
B COS(PHI(I)/RO)
AA AA + A**2
BB BB + B**2

1 AB AB + A*B
DELTA SQRT((AA - BB)**2 + 4.*AB**2)
IF(DELTA.LT.O.OOl) GOT02
IF(AA + BB - DELTA - 2.0E - 8)4,4,3

3 AMDAP (AA + BB + DELTA)/2.
AMDAQ (AA + BB - DELTA)/2.
P l./SQRT(AMDAP)
Q l./SQRT(AMDAQ)
GOT05

4 AMDAQ 0.

AMDAP AA + BB
Q 99999.99
P l./SQRT(AMDAP)

5 IF(ABS(AMDAQ - AA) - ABS(AMDAP - AA))7,6,6
6 PSIQ ATAN(AB/(AMDAQ - AA))*RO + 0.00001

IF(PSIQ.LT.0.)PSIQ PSIQ + 400.
PSIP PSIQ + 100.

IF(PSIP.GE.400.)PSIP PSIP - 400.
RETURN

7 PSIP ATAN(AB/(AMDAP - AA))*RO + 0.00001
IF(PSIP.LT.0.)PSIP PSIP + 400.
PSIQ PSIP - 100.

IF(PSIQ.LT.0.)PSIQ PSIQ + 400.
RETURN

2 P l./SQRT((AA + BB)/2.)
Q P
PSIP 0.000001
PSIQ 0.000001
RETURN
END
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4
§ 9. Calcul de la classe d'un point

Nous admettons que la classe CL d'un point, déterminé une fois et
contrôlé par une ou plusieurs distances, est comprise entre 4.0 et 5.0. Pour
le calcul de la classe, nous ne faisons intervenir que le grand axe q de

l'ellipse d'erreur en prenant

CL A si q < 1.5

(1.5)2
CL 5.0 - — y si q > 1.5

q2

q grand axe de l'ellipse d'erreur

(9.1)

La seconde de ces formules nous donne alors

a) CL =5.0 si q oo et

b) CL 4.0 si ç 1.5 c'est-à-dire si l'angle de recoupement est
de 62.5 grades dans le cas de deux
distances de contrôle (voir tableau 3.4).

Nous acceptons alors le point si l'on a CL A tandis que nous le rejetons

si CL > 4.0. En adoptant cette règle, l'ordinateur met en évidence
tous les points insuffisamment contrôlés, ce qui est d'une importance
capitale pour la mensuration cadastrale.

Exemple numérique
Nous avons traité par voie électronique un petit exemple de lever par

les méthodes polaire et orthogonale. Les résultats de la classification et la
structure de ce lever, qui est loin d'être un modèle, sont représentés à la
figure (9.2). Les distances de contrôle mesurées y sont caractérisées par
des traits épais.
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