Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 68 (1970)

Heft: 10

Artikel: Calcul d'un "cheminement orthogonal" avec le calculateur électronique

de table Olivetti Programma 101

Autor: Miserez, A. / Frund, J.

DOI: https://doi.org/10.5169/seals-223680

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

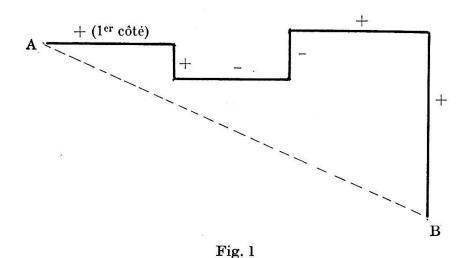
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Calcul d'un «cheminement orthogonal» avec le calculateur électronique de table Olivetti Programma 101


A. Miserez et J. Frund

1. Introduction

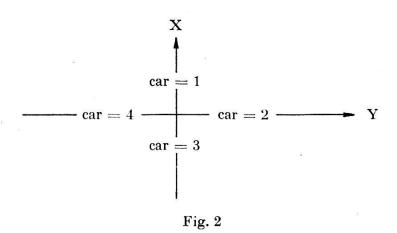
La méthode du cheminement orthogonal a été introduite en 1965 par la Direction du Cadastre du Canton de Vaud; elle est donc bien connue des géomètres praticiens vaudois. Elle permet de calculer les coordonnées des angles de bâtiments et d'ouvrages d'art, à partir des mesurages nécessaires, en mensuration graphique, à la construction sur le plan.

Rappelons que cette méthode, décrite dans [1], n'est applicable qu'à des ouvrages dont tous les angles sont droits et dont on a déterminé préalablement deux points A et B, par un autre mode de levé. Le cheminement de A vers B est considéré comme une polygonale sans rattachements angulaires et composée uniquement d'angles droits. En effectuant le levé, il n'est pas nécessaire de noter la valeur des angles; on inscrit simplement, sur un formulaire ad hoc, la longueur des côtés mesurés, en attribuant à chaque valeur un signe défini selon les principes suivants:

- a) Le premier côté est toujours positif.
- b) Les côtés suivants reçoivent le signe + ou selon qu'on tourne à droite ou à gauche (voir fig. 1).

S. Djazmati indique dans [1] comment calculer un tel cheminement. La programmation de ce calcul pour un ordinateur ne présente pas de difficultés. Au contraire, pour un calculateur de table comme l'Olivetti P101, la mise au point d'un tel programme est plus laborieuse.

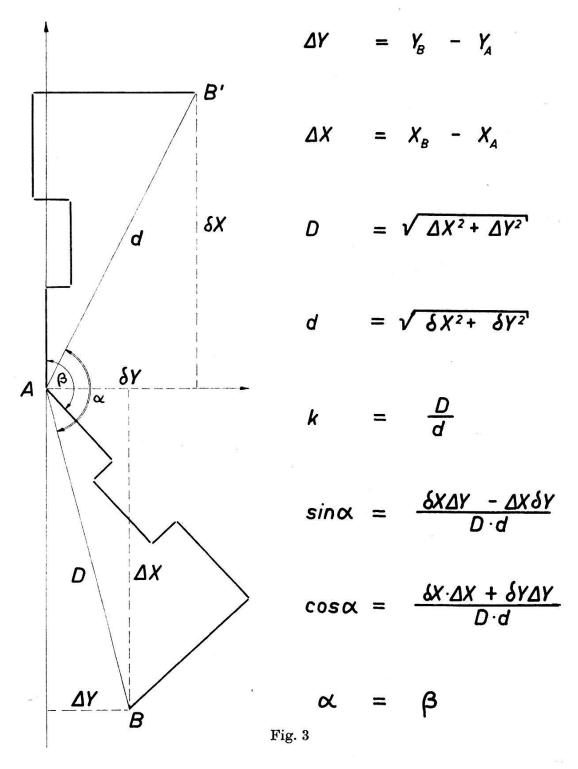
Nous ne donnerons pas de description du calculateur P101, puisqu'il a déjà été le sujet d'un article [2] de N. Wyss, paru dans cette revue en novembre 1967, et qu'il est en service aujourd'hui dans de nombreux bureaux techniques de notre pays.


2. Description du programme

Le programme nécessite l'emploi des deux pistes d'une carte magnétique, pour être conservé; il est en effet composé de deux parties.

2.1. Première partie: Calcul du cheminement avec orientation arbitraire, puis calcul des éléments de la transformation, soit rotation et changement d'échelle

Il fallait éviter le calcul de fonctions trigonométriques ou de fonctions inverses par une série ou un polynôme, car ce calcul dure 10 à 30 secondes dans le calculateur P101 et allonge considérablement le temps de travail. Pour ce faire nous avons:

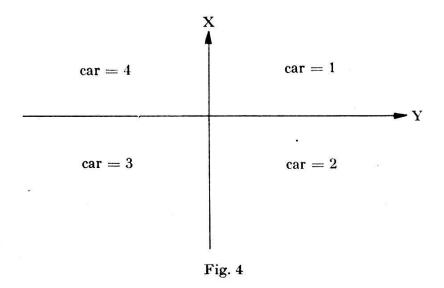

- a) choisi une orientation arbitraire du cheminement, pour le premier calcul, en donnant aux côtés des directions parallèles aux axes du système de coordonnées;
- b) calculé ensuite l'orientation définitive du cheminement, soit l'angle β (voir fig. 3), par de simples rapports que nous donnons plus loin. Les orientations arbitraires sont définies par des grandeurs appelées «caractéristiques», selon le schéma et la figure ci-dessous:
 - car = 1 direction positive des X ou Nord
 car = 2 direction positive des Y ou Est
 car = 3 direction négative des X ou Sud
 car = 4 direction négative des Y ou Ouest

Le programme est conçu de telle sorte que le premier côté du cheminement reçoive automatiquement la caractéristique 1 et soit donc toujours orienté vers le Nord. Pour les côtés suivants, le calculateur ajoute ou retranche 1 à la caractéristique du côté précédent, selon que la valeur mesurée est positive ou négative. Une série de tests est nécessaire pour que la caractéristique soit toujours positive et au plus égale à 4.

Pour obtenir δX (voir fig. 3), il suffit alors d'additionner les côtés de caractéristique 1 et de soustraire de cette somme les côtés de caractéristique 3. De façon analogue, δY est simplement la somme des côtés de caractéristique 2, diminuée des côtés de caractéristique 4.

Connaissant d'une part ΔY et ΔX , et d'autre part δY et δX , on calcule facilement la distance «vraie» $\overline{AB} = D$ et la distance «mesurée» $\overline{AB'} = d$, ainsi que le sinus et le cosinus de l'angle α , à l'aide des formules suivantes:

Ces calculs effectués, le calculateur garde en mémoire $\sin \alpha$, $\cos \alpha$ et k, les éléments de la transformation. Pour contrôle, il imprime les valeurs D et d. On ne devra continuer les calculs que si la différence D-d respecte les tolérances.


Cette différence est la seule grandeur qui permette le contrôle des mesures. On devra donc, pour obtenir de bons résultats, choisir les points A et B de telle sorte que la somme des côtés mesurés ne soit pas supérieure au double ou au triple de la distance AB.

2.2. Deuxième partie: Calcul des coordonnées compensées des points intermédiaires

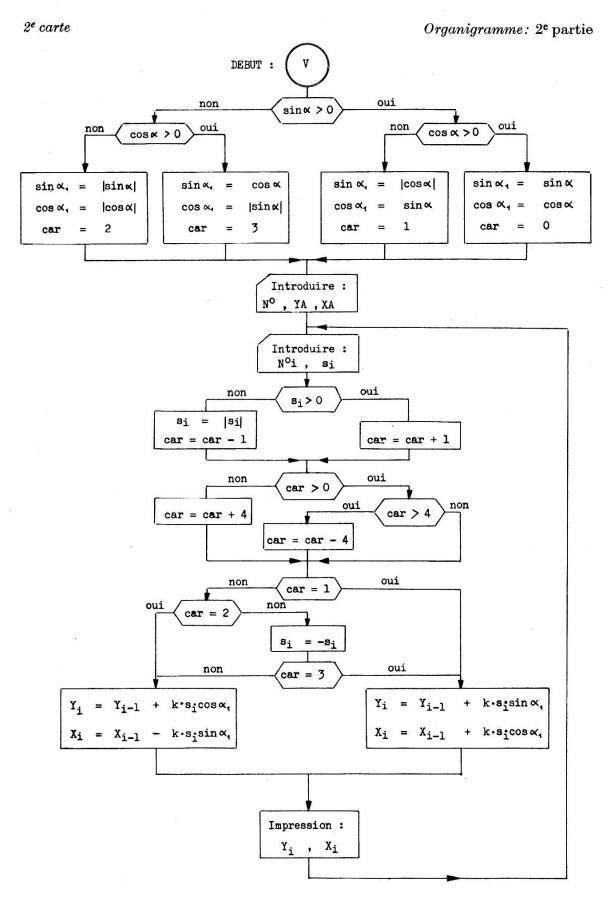
Selon le signe de $\sin \alpha$ et de $\cos \alpha$, le calculateur définit, à l'aide d'une série de tests, une caractéristique de départ, qui pourra prendre les valeurs 0, 1, 2, ou 3, et mémorise $\sin \alpha_1$ et $\cos \alpha_1$, c'est-à-dire les fonctions trigonométriques de l'angle α ramené au premier quadrant (voir organigramme).

Le déroulement de la suite du calcul est analogue à celui de la première partie. Selon que le côté introduit est positif ou négatif, on ajoute ou retranche 1 à la caractéristique du côté précédent (pour le premier côté, à la caractéristique de départ), en procédant aux tests déjà mentionnés.

Dans cette deuxième partie du programme, la caractéristique ne représente plus une direction parallèle à l'un des axes du système de coordonnées, mais l'un des quatre quadrants, comme indiqué sur la figure 4.

La valeur de la caractéristique détermine le choix du couple de formules à utiliser pour calculer les coordonnées Y et X d'un point à partir de celles du point précédent.

Ajoutons qu'en multipliant les côtés mesurés par k, la différence entre D et d est répartie sur l'ensemble des côtés, proportionnellement à leur longueur. Après introduction de tous les côtés du cheminement, on doit obtenir finalement les coordonnés du point B; les calculs de compensation sont ainsi contrôlés.


3. Conclusion

Nous publions ci-après les deux organigrammes, qui pourront servir de mode d'emploi ainsi que les deux «listing» correspondant à chacune des

1re carte Organigramme: 1re partie DEBUT : Introduire YA, XA, YB, XB $\Delta Y = YB - YA$ $\Delta X = XB - XA$ $\sqrt{\Delta Y^2 + \Delta X^2}$ Impression $car = 0 \quad \delta Y = 0 \quad \delta X = 0$ Introduire : $s_i > 0$ Si car car+1 = car-l car oui non car > 0non car > 4car = car + 4car = car - 4oui car = 1oui car = 2 si = - sinon oui car = 3 $\delta Y = \delta Y + s_i$ $\delta X = \delta X + s_i$ Après l'introduction des n côtés : $d = \sqrt{3 Y^2 + 5 X^2}$ Impression $\sin \alpha = \frac{\delta X \cdot \Delta Y}{D \cdot d} - \frac{\Delta X \cdot \delta Y}{\Delta X \cdot \delta Y}$

 $k = \frac{D}{d}$

parties du programme. L'utilisation est extrêmement simple et le temps de calcul très réduit. En plaçant l'indicateur de décimales sur 5, on ob-

tient toute la précision utile. Relevons encore qu'il ne faut pas presser la touche de l'annulateur général en passant de la première à la deuxième partie de ce programme; on détruirait ainsi les éléments de la transformation.

1re partie du programme: «Listing»

Registre l			Registre 2			Registre F			Registre E			Registre D		
1	A	Y	25		+	49	A	W	73		S	97	A	V
2	R	*	26	A I	W	50	DI	1	74	A	Z	98		S
3	R	S	27	C	1	51	A	X	75	DI	X	99	BI	1
4	DI	*	28	E I	1	52	C	1	76	BI	*	100		S
5	D	*	29	C	1	5 3	D	1	77	D	X	101	В	#
6	1	♦	30	В	Y	54	A	X	78	BI	-	102	1	♦
7	В	V	31	Ε	+	55	C	+	7 9	C	:	103		S
8		S	32	CI	V	56	A	~	80	AI	1	104		+
9		#	33	D	+	57	EI	<i>‡</i>	81	DI	1	105	BI	-
10	1	V	34	EI	+	58	EI	0	82	BI	. #	106	A	X
11	A	*	35	D	*	59	CI	¥	83	C	*	107	BI	1
12	C	\$	36	C	V	60	EI	•	84		S	108	CI	1
13	E	+	37	BI	V	61	CI	#	85		S	109		S
14	C	W	3 8	E	+	62	EI	X	86		S	110		- /
15	AI	V	39	CI	W	63	C	#	87		S	111	В	-
16	C	<i>‡</i>	40	DI	ł	64	BI	#	88		S	112	A	X
17	E	-	41	ΕI	+	65	DI	X	89		S	113	В	1
18	В	W	4 2	DI	<i>‡</i>	66	EI	1	90		S	114	CI	+
19	AI	f	43	C	V	67	B	J	91		S	115	A	~
20	DI	+	44	BI	W	68	D	X	92		S	116	1	◊
21	٠	-	45	EI	<i>‡</i>	69	EI	+	93		S	117	A	◊
22	/	W	46	E	X	70	C	:	94	añ	S	118	CI	<i>‡</i>
23		+	47	ΕI	#	71	В	1	95		S	119	С	*
24	/	W	48	C	Y	72		Z	96		S	120		Y

Constante à introduire: -1 dans E

Nous n'avons pas la prétention d'avoir composé ce programme de façon optimale, et un programmeur chevronné pourra sans doute lui apporter des améliorations et l'adapter sans difficultés pour la Programma P203.

 2^e partie du programme: «Listing»

Rea	Registre 1			Registre 2			Registre F			stre	Е	Registre			
1	A	Y	25	С	W	49	B/	X	73		S	97	A	V	
2	R	*	26	A/	Z	50	D	+	74	A	\boldsymbol{z}	98	1	v	
3	R	S	27	C	1	51	D	*	75	E	V	99	В	2	
4	B/	+	28	E	-	52	D	V	76	D/	•	100	1	W	
5	A	1	29	В	W	53	B/	V	77	D	٥	101	В	1	
6	В	1	30	A1	1	54	E	+	78	C	V	102	B/	1	
7	A	1	31	D/	+	55	C/	W	79		S	103	C	1	
8	B/	1	32		-	56	E/	1	80		S	104		Y	
9	1	◊	33	D/	V	57	B/	X	81		S	105	A/	W	
10		S	34		+	58	D/	+	82		S	106	B/	1	
11		S	35	D/	V	59	D/	1	83		S	107	E	-	
12	D/	1	36		+	60	E/	1	84		S	108	C	#	
13		S	37	E/	V	61	Ε	. X	85		S	109		Y	
14	D	1	3 8	C	<i>‡</i>	62	В	X	86		S	110	A/	V	
15	В	V	39	ΕI	*	63	D	+	87		S	111	В	1	
16	1	◊	40	C	1	64	D	#	88		S	112	1	Y	
17		S	41	В	Y	65	D	V	89		S	113	B/	1	
18		S	42	E	+	66	B/	W	90		S	114	E	+	
19		1	43	C/	V	67	E/	1	91		S	115	С	*	
20	C /	X	44	E/	ļ	68	Ε	X	92		S	116		Y	
21	/	Z	45	В	X	69	E/	1	93		S	117	A/	Y	
22	A	1	46	D/	+	7 0	C	Y	94		S	118	В	1	
23	C	1	47	D/	\$	71	D	V	95		S	119	B/	1	
24	E	+	48	E/	1	72		Z	96		S	120		Y	

Constante à introduire: -1 dans E

1^{re} partie du programme

2º partie du programme

		(V)	On introd									V
Y_A :	537221 • 48	(V) S	annuler 1		tenu d	e la	ma	-				
X _A :	151579 - 20	\$	chine. N	OA				1	0 (0 (S
			Y	A:		537	5 5	1	• 4	18		S
Y _B :	537232.05	S	Х	(_A :		151	5 7	9	• 2	0 9		S
х _в :	151576 • 87	S	No bl	*								•
Distance "vraie":	10.82376	A 0	sl					3	• 2	1 8		S S
	20-02310	A X	Y_1		537	224	• 6					
s ₁ :	3 • 28	S	x_1	:	151	580	• 0	8	1 (7	D	◊
s ₂ :	0 • 8 1	S	0									
s ₃ :	-2.77	S	No PS	:						2		S
s ₄ :	-1 - 3 2	S	s ₂	:					• 8			S
s ₅ :	3 • 47	S	Y_2	:	537	224	• 8	7	1 9	2	d	\Q
s ₆ :	5 • 5 6	S	x_2	•	151	579	• 2	9 '	7 1	7	D	◊
Après le n ^e côté :	40	W										
Distance "mesurée":	10.77649	• 0	etc							3		
							- 2				5	
					5377						d ()
					1515	80	0 4	1	2	5	0 ()
										4	9	;
							- 1		3	2	9	
					5372	27					d (
					1515						0 (
							150		1.50	alt "		,
										5	5	
									4		9	j
					5372	30	5 5	6	3	4	d ()
					1515	82	25	0	8	4	D¢)
			N ^o Pn:							6	S	:
			s _n :						5		9	
			$Y_n = Y_B$	_	5372	30.					d (
			$X_n = X_n$		1515						DÓ	
			n - n	5	1010	10	00	7	7	,	UV	, no

Bibliographie

- [1] $S.\ Djazmati$: Calcul électronique des levers de détail en mensuration cadastrale. Thèse EPUL, 1966.
- [2] N. Wyss: Ein programmierbarer elektronischer Tischrechner. Schweizerische Zeitschrift für Vermessung, 1967, Nr. 11.