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Strecken- und Richtungsgewichte

Werner Fischer

Zusammenfassung
Das Problem der Bestimmung der Gewichte bei der Ausgleichung
verschiedenartiger Meßgrößen wird behandelt. Es wird gezeigt, daß für jede
Meßgröße pi C/m-2 gesetzt werden muß, wie das im Prinzip schon
von Helmert gemacht wurde. Im Falle eines konstanten relativen
Streckenfehlers kann auch die einfache geometrische Beziehung zwischen
dem Längenfehler und dem Querfehler einer Polygonseite benützt werden.

Résumé

On traite le problème de la détermination des poids pour des mesures
de différente espèce. Pour chaque sorte de mesures on peut mettre selon
Helmert pi C/m-2. En cas de mesures de distance, dont l'erreur relative
est constante, on peut profiter de la relation géométrique entre l'erreur
longitudinale et l'erreur transversale d'un côté polygonal.

1. Das alte Problem

Bekanntlich hat bei jeder Ausgleichung gemessener Größen die Wahl
der dazugehörigen Gewichte einen Einfluß auf das Resultat. Dies gilt
besonders, wenn verschiedenartige Meßelemente, wie zum Beispiel Strek-
ken und Richtungen, miteinander verknüpft werden. Das Problem ist
nicht neu, hat aber in letzter Zeit aus zwei Gründen erhöhte Bedeutung
erhalten. Erstens werden dank der Entwicklung elektronischer
Distanzmeßgeräte neben Richtungsmessungen vermehrt Streckenmessungen zur
Lösung von Vermessungsaufgaben herangezogen. Zweitens ermöglichen
elektronische Rechenanlagen die strenge Behandlung von Ausgleichungsaufgaben.

Die Frage nach den zutreffenden Gewichten für Strecken und
Richtungen ist deshalb in jüngster Zeit immer wieder aufgegriffen worden
[1, 3, 8, 9]. Mit den folgenden Ausführungen soll versucht werden, den
ganzen Fragenkreis zusammenhängend zu behandeln.

2. Was sagt Helmert dazu

Wir gehen nicht fehl, wenn wir uns auch in dieser Frage bei den alten
Lehrmeistern der Geodäsie Rat holen. Dabei erstaunt nicht wenig, mit
welcher Selbstverständlichkeit dort das Problem angegangen wurde, ja es

war offensichtlich überhaupt kein Problem. Bei Helmert [4] suchen wir
nämlich vergeblich nach einem Kapitel, das diesem Thema gewidmet
wäre. Im vierten Kapitel «Korrelatenausgleichung» behandelt er aber
im § 2 «Formelübersicht für die Ausgleichung bedingter Beobachtungen.
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Berechnung des mittleren Fehlers einer Beobachtung vom Gewicht 1.

Nichtlineare Bedingungsgleichungen» ein kleines Beispiel, aus dem
hervorgeht, was zu tun ist.

Es geht dort um die Ausgleichung eines Dreiecks, in dem zwei Winkel
mit dem mittleren Fehler + 20" und zwei Seiten mit dem mittleren
Fehler + 0,05 m gemessen sind, also um einen vereinfachten Fall unserer
Problemstellung. Nach der Aufstellung der Bedingungsgleichung schreibt
Helmert: «Wir bilden nun die Hilfsgrößen g wie folgt: Es sind die
reziproken Werte der Quadrate der in derselben Einheit wie die betreffenden
X ausgedrückten mittleren Fehler:

/ 1\2
für den Winkel gleich 1 : I —- =9

,3,

für die Seiten gleich 1 : j 400

wofür wir zur größeren Einfachheit setzen:

für den Winkel gleich 10, für die Seiten gleich 400,

so daß also ist:

für die Winkel g\ gì 1

für die Seiten g% — gi 40.»

Die Hilfsgrößen g, die wir heute allgemein als Gewichte p bezeichnen,
definiert Helmert am Schluß des zweiten Kapitels «Mehrfache Bestimmung

einer Größe» als reziproken Wert des mittleren Fehlerquadrates
pi2. In unserer Schreibweise gilt also für eine Beobachtung /

1

P' —¥¦mr

Für die Verbesserungen X [in der heute üblichen Bezeichnungsweise v]
wählte Helmert die Einheiten Minuten und Meter, weshalb er für den
mittleren Fehler des Winkels + 1/3', für den mittleren Fehler der Seiten

± 1/20 m setzt.

3. Ein weiteres klassisches Beispiel

Bei Jordan [5] tritt das Problem auch mehr beiläufig im § 49
«Ausgleichung der Winkel und Seiten eines ebenen Dreiecks» auf, in dem ein
Dreieck mit drei gemessenen Winkeln und drei gemessenen Seiten
bedingt ausgeglichen wird. Die Beobachtungen haben folgende mittlere
Fehler:

ma mß mY=r -j- T,
ma ± 8 mm, mt, +12 mm, mc +¦ 5 mm
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Die mittleren Fehlerquadrate erhalten wegen der Unsicherheit der mittleren

Fehler gerundete Werte:

mx2 mß2 niy2 50

ma2 75, mb2 150, mc2 25

Darauf werden «für die Gewichte, die ja nur relative Bedeutung haben,
die folgenden Werte» angenommen:

1

Pot Pß Py -y.

Pa -S Pb=—> Pc 1
3 b

Auch hier wird also wie bei Helmert nicht direkt

Pl Tn7

gesetzt; vielmehr wird dem Umstand Rechnung getragen, daß die
Gewichte Relativzahlen sind und mit einem beliebigen Faktor erweitert
werden können. Jordan schreibt dazu: «Wir wollen uns hierbei merken,
daß dem Gewicht 1 der mittlere Fehler + 5 entspricht.» Diesen mittleren

Fehler der Gewichtseinheit bezeichnen wir heute meist mit /no; mit
seiner Hilfe läßt sich aber das Gewicht definieren als

Pi
mo

.2rm

Das Gewicht einer Beobachtung l ist also das Verhältnis des
Fehlerquadrates einer Beobachtung mit dem Gewicht 1 zum Fehlerquadrat der
betreffenden Beobachtung. Dies gilt für verschiedenartige Beobachtungen

genauso wie für gleichartige. Im Falle verschiedenartiger Beobachtungen

ist aber noch der folgende Abschnitt im «Jordan» zu beachten:
« Bei der Gewichtsbestimmung verschiedenartiger Größen, wie der Winkel
und Längen im vorliegenden Falle, ist für zweckmäßige Wahl der
Einheiten der mittleren Fehler Sorge zu tragen. Wir haben hier die Sekunde
und das Millimeter gewählt, was an sich nicht unbedingt notwendig wäre.
Wenn wir jedoch zum Beispiel die mittleren Fehler in Minuten und
Millimetern ausgedrückt hätten, so wären die Gewichte derartig ungleich
geworden, daß sie zu einer unbequemen Zahlenrechnung geführt hätten.»

4. Netze mit verschiedenartigen Meßgrößen

In der neuesten Ausgabe des «Handbuchs der Vermessungskunde» von
Jordan/Eggert/Kneissl wird im Band I «Mathematische Grundlagen,
Ausgleichungsreehnung und Rechenhilfsmittel» das Problem der verschie-
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denartigen Beobachtungen nicht angeschnitten. Hingegen ist es im Band
VI «Die Entfernungsmessung mit elektro-magnetischen Wellen und ihre
geodätische Anwendung» [6] im § 98 «Netze mit verschiedenartigen
Meßgrößen» ausführlich behandelt. Der Abschnitt über das Ausgleichungsprinzip

und den Gewichtsansatz stützt sich auf einen Vortrag von Prof.
Wolf [13] am Internationalen Kurs für Streckenmessung in München vom
Oktober 1957. «Bezeichnen pi die Gewichte der Meßgrößen l [zum
Beispiel Strecken s, Richtungen r usw.], welche wir mit Hilfe der a priori
ermittelten oder geschätzten mittleren Fehler mi der Meßgrößen
bestimmen,

C

mi2

so muß die Ausgleichung nach der Forderung

[pi vi vi]
CVs v,

m,2
+

CVr Vr

~m~T~ + Min.

erfolgen. Darin ist C eine für alle Meßgrößen gleiche Konstante, und die
mittleren Fehler mi müssen in der gleichen Einheit ausgedrückt werden
wie die Verbesserungen vi.»

Vergleichen wir diese Formulierung für pi mit der von Jordan
übernommenen, sehen wir sofort, daß die Konstante C nichts anderes ist als
das Quadrat des Gewichtseinheitsfehlers mo Die Konstante C ist an sich
frei wählbar, wird aber eindeutig festgelegt, sobald wir das Gewicht
einer bestimmten Beobachtung, zum Beispiel einer Richtung, mit 1

bezeichnen. Die Bestimmung zutreffender Gewichte für verschiedenartige
Meßgrößen setzt also stets die Kenntnis des mittleren Fehlers a priori
dieser Meßgrößen voraus. Das Problem ist somit genau dasselbe wie bei
gleichartigen Beobachtungen mit unterschiedlicher Genauigkeit.

5. Die Kontrolle der Annahmen auf Grund des Resultats der Ausgleichung

Nach Durchführung der Ausgleichung werden wir wie üblich [pvv] und
den mittleren Fehler der Gewichtseinheit m bilden. Im Beispiel von
Jordan [5] wird

/l79,l)3~
± 7,75t

Der Kommentar hiezu lautet: «Bei der Festsetzung der Gewichte waren
wir davon ausgegangen, daß dem Gewicht 1 der mittlere Fehler +¦ 5

entspricht. Der soeben gefundene Wert von m sollte bei richtiger
Annahme der mittleren Fehler hiermit übereinstimmen, indessen ist der
Unterschied nicht erheblich, da der Berechnung von m bei der geringen
Zahl der v keine allzugroße Sicherheit beigemessen werden kann, anderseits

auch die a priori angenommenen mittleren Fehler nicht sehr genau
sind.»

109



Dem ist nichts beizufügen. Auf die Berechnung der mittleren Fehler
der einzelnen Meßgrößen, die sich nun leicht nach der Umkehrung

m
mi _ypi

bewerkstelligen ließe, wurde verzichtet, da anschließend das wichtigere
Problem, die Bestimmung des Gewichts des ausgeglichenen Winkels a,
behandelt wurde.

Anders bei Helmert [4], der auf den Begriff des mittleren Fehlers der
Gewichtseinheit verzichtete und aus [pvv] direkt den mittleren Fehler der
Beobachtungen ableitete:

m.F. der Winkelbeobachtung ± J/o,00924 ± 0,096 ±6",

m.F. der Seitenbeobachtung
1,00924

"40 ± 0,015 m

wozu er bemerkte: «Jedoch ist diese Bestimmung sehr unsicher, daher eine
Übereinstimmung mit den Schätzungen [der mittleren Fehler a priori]
nicht zu erwarten ist.»

6. Ein neueres Beispiel zur Veranschaulichung

Bei großen und stark überbestimmten Netzen ist es hingegen sehr wohl
möglich, zuverlässige Werte für die mittleren Fehler der verschiedenen
Meßgrößen abzuleiten und diese mit den entsprechenden mittleren Fehlern

a priori zu vergleichen. Das hat zum Beispiel Aeschlimann [1]
gemacht, indem er aus dem mittleren Fehler der Gewichtseinheit m
+ 14,5 folgende mittlere Beobachtungsfehler abgeleitet hat:

Beobachtung Instrument m.F. a priori Gewicht m. F. aus Ausgl.

Richtungen DKM 3 _j_ 2"c 10,0 ± 4,6cc
T2 ± 4cc 3,0 ± 8,4»"
DK-RT ± 60cc 0,01 ± 145 cc

Strecken NASM 4 B ±10 mm 0,4 ± 23 mm
DK-RT ± 20 mm/100 m 0,1 ± 46 mm/100 m

Das Resultat der Ausgleichung ist nicht so gut ausgefallen, wie aus den
mittleren Fehlern a priori erwartet worden wäre, indem die
Beobachtungsfehler rund doppelt so groß wurden. Der Grund dafür dürfte darin
zu suchen sein, daß es sich um Messungen von Studenten handelt, während

sich die Gewichte auf Erfahrungswerte stützen, die von geübten
Beobachtern erreicht werden. Zudem bewirken erfahrungsgemäß die
meisten Ausgleichungen eine Vergrößerung des mittleren Fehlers, da
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durch die Verknüpfung verschiedenartiger Beobachtungen miteinander
sich weitere Einflüsse bemerkbar machen als bei den einzelnen Beobachtungen

allein.
Das Größenverhältnis der Beobachtungsfehler kann allerdings

einfacher abgeleitet werden, wenn direkt die mittleren Gewichtseinheitsfehler

betrachtet werden. Für die Gewichtsberechnung nach pi C/m,2
wurde in [1] offenbar die Konstante C 40 benützt, was dort nicht
erwähnt wurde. Der zugrundegelegte Gewichtseinheitsfehler ist also

/no |/C J/iÖ= ±6,3.

Aus der Ausgleichung ergab sich m ± 14,5, so daß das Verhältnis der
mittleren Fehler der Gewichtseinheit

m 14,5-~y- 2,3
mo |/40

wird. Die einzelnen Beobachtungsfehler stehen nun im selben Verhältnis
zu ihren mittleren Fehlern a priori, abgesehen von kleinen Unterschieden,
die von der Rundung der Gewichte herrühren.

7. Waren die eingeführten Gewichte richtig?

Trotz der verallgemeinernden Erklärungen werden wir uns gerade bei
diesem Beispiel [1] die Frage stellen müssen, weshalb die Ausgleichung
eine derartige Vergrößerung der Beobachtungsfehler zur Folge hatte. Es
wäre ja sehr wohl denkbar, daß nur eine oder nur ein Teil der verschiedenen

Meßgrößen schlechter war, als ursprünglich geschätzt. Aeschlimann
bemerkt denn auch dazu: «Obwohl prinzipiell streng, ist die Ausgleichung
trotzdem nicht frei von einer gewissen Willkür, da die Gewichtseinführung
sich auf Erfahrungswerte von Genauigkeiten der Meßinstrumente
beziehen, welche wohl von geübten Beobachtern in den meisten Fällen
erreicht werden, jedoch im vorliegenden Beispiel nicht innegehalten worden
sind. Es könnte nun eine weitere Ausgleichung mit verbesserten Gewichten

angesetzt werden, doch ändern sich dadurch die interessierenden
Unbekannten nur unwesentlich.» Den letzten Nachsatz könnte man
immerhin in Frage stellen, so daß vorerst einmal das Problem zu lösen wäre,
die erforderlichen verbesserten Gewichte herzuleiten.

8. Eine bewährte Methode zur Überprüfung der Gewichtsannahmen

Zu diesem Zweck ziehen wir wieder einmal Helmert [4] hervor, der im
fünften Kapitel «Untersuchung der Beobachtungsfehler» im § 4 «Prüfung

und Verbesserung der Gewichtsannahmen» auf das Problem
eingeht. Wir begnügen uns mit dem dort angegebenen «Näherungsverfahren»,

zu dem er einleitend schreibt: «Eine Untersuchung darüber, ob die
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Beobachtungen mit richtigen Gewichten in die Ausgleichung eingeführt
sind, ist sehr wichtig, weil bei falschen Gewichtsannahmen die Ausgleichung

nicht die besten Werte ergibt.» Nach Helmert kann man nun «in
der Weise vorgehen, daß man ermittelt, ob die durchschnittlichen Werte
der X2 [bei uns der v2] im umgekehrten Verhältnisse der angenommenen
Gewichte stehen. Bei erheblichen Abweichungen ist eine neue Ausgleichung

vorzunehmen mit Gewichten, die dem umgekehrten Verhältnisse
jener Durchschnittsfehlerquadrate genügend entsprechen.»

Als Beispiel für dieses Vorgehen führt Helmert die trigonometrischen
Höhenmessungen am Gotthardtunnel von Koppe an mit «27

Bestimmungen für 9 Unbekannte. Die Gewichte g [ p] waren gleich 100 : s2

gesetzt, mit s als Distanz in km. Die Bildung von drei Gruppen [XX]

[ [vvi] ergab, daß g 1002 : s4 besser ist.»
[Die Zahlen dieses sehr instruktiven Beispiels seien hier in Tabellenform

wiedergegeben.

Ansatz P 100 : s2 p 1002 s4

Anzahl P [pvv] Durchschn. P [pvv] Durchschn.
8

8

11

1

2-5
6-60

6510
1617
972

814
202

88

1

4-25
36-3600

6 510
6 790

14 034

814
849

1276

Abschließend bemerkt Helmert dazu: «Bedenkt man, daß eine neue
Ausgleichung mit den vergrößerten Gewichten die entsprechenden X

[ v] verkleinern wird, so dürften die drei Gruppen wohl sehr nahe gleiche
Durchschnittswerte [XXg] [ [pvv] ] geben.»

Natürlich können wir auch, wie hier angedeutet, sogleich mit den
ursprünglichen Gewichten p die durchschnittlichen Werte der [pvv]
bilden und miteinander vergleichen oder, was auf dasselbe herauskommt,
aus diesen [pvv] für jede Gruppe den Gruppeneinheitsfehler [2]:

\ ng n — u

n Anzahl Beobachtungen des Netzes

/ig Anzahl Beobachtungen der Gruppe

u Anzahl notwendige Beobachtungen

Der Faktor vergrößert die mittleren Fehlerquadrate aller Grup-
n— u

pen um einen konstanten Betrag, um sie mit dem m2 der Gesamtheit
vergleichbar zu machen. Für die Bildung der neuen Gruppengewichte
ist er aber bedeutungslos, weshalb er zum Beispiel bei Wolf [15], Formel
(436,11), weggelassen wird.
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9. Ausgleichungen mit verbesserten Gewichtsannahmen

Die Ausgleichungsreehnung ist so zu einer Iterationsaufgabe geworden,
wobei auch hier wieder gesagt werden muß, daß dies nicht nur für
verschiedenartige Meßgrößen zutrifft, sondern für alle Messungen, die nicht
als gleich genau angesprochen werden können (vgl. Wolf [15], Abschnitt
436 «Gruppengewichte»). Eine wichtige Voraussetzung dafür, daß die
Iteration zu einer vernünftigen Lösung führt, besteht allerdings darin,
daß die Beobachtungen genügend stark miteinander verknüpft sind. Ist
dies nämlich nicht der Fall, können wir uns leicht vorstellen, daß
Beobachtungen mit großen Verbesserungen ein kleineres Gewicht erhalten,
auf Grund desselben wieder größere Verbesserungen und damit wieder ein
kleineres Gewicht usw., bis sie zuletzt die Widersprüche zur Hauptsache
allein tilgen müssen, während andere Beobachtungen fast keine Verbesserung

erhalten. Diesem «Abgleiten» der Ausgleichung können wir
dadurch begegnen, daß wir die Gruppen groß genug wählen.

So wurde zum Beispiel das Bodensee-Testnetz «Österreich-Schweiz-
Deutschland» [14] mit 564 beobachteten Bichtungen in vier etwa gleich
große Teilnetze aufgegliedert. Die vier Gruppengewichte (1,00; 0,57;
0,31; 0,34) wurden vorerst aus den mittleren Fehlern der je für sich allein
gleichgewichtig ausgeglichenen Teilnetze abgeleitet. Aus den Verbesserungen

der Gesamtausgleichung wurden dann die verbesserten Gruppengewichte

(1,11; 0,46; 0,28; 0,38) bestimmt. Auf eine eigentliche Iteration
wurde bisher verzichtet, hingegen wurde noch eine weitere Gesamtausgleichung

durchgeführt, bei der die Beobachtungen aller vier Teilnetze
mit dem gleichen Gewicht versehen wurden. Aus den Verbesserungen
dieser Variante, die mir von Prof. Wolf bzw. vom Institut für Angewandte
Geodäsie in Frankfurt am Main freundlicherweise zur Verfügung gestellt
worden sind, habe ich die (auf die gleiche Gewichtssumme bezogenen)
Gruppengewichte (1,03; 0,46; 0,31; 0,41) abgeleitet. Aus diesen Zahlen
kann der Schluß gezogen werden, daß die Gruppengewichte weitgehend
durch die Beobachtungen in den vier Teilnetzen bestimmt sind,
unabhängig von den Gewichten a priori. Eine Iteration führt also bei dieser
Wahl der Gruppen sehr rasch zum Ziel.

Nun liegt im «Zeitalter der Automatisierung» der nächste Schritt
eigentlich auf der Hand. Wir können unser Rechenprogramm für die
vermittelnde Ausgleichung derart ausbauen, daß für anfänglich vorgegebene
Gruppen von Beobachtungen die durchschnittlichen Werte für [pvv]
gebildet werden. Streuen diese Werte stärker als der normalen Verteilung
der Beobachtungsfehler entsprechend, werden die Gewichte sinngemäß
geändert, und die Ausgleichung wird anschließend mit den neuen
Gewichten wiederholt usw. Selbstverständlich müssen die Ergebnisse der
einzelnen Schritte in einem Protokoll festgehalten werden, damit wir
nachträglich feststellen können, ob und bis zu welchem Schritt das
Verfahren richtig funktioniert hat; bei allfälligem Versagen müßte die
Gruppeneinteilung geändert werden. Eine Hauptschwierigkeit besteht
vermutlich in der Programmierung des Abbruchkriteriums, doch dürfte
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auch für diese Aufgabe eine der Fehlertheorie gerecht werdende Lösung
gefunden werden.

10. Wie steht es um die Dimensionen bei verschiedenartigen Meßgrößen?

Eine etwas heikle Frage, die sich nun ausschließlich auf die Behandlung
verschiedenartiger Meßgrößen beschränkt, stellt sich bei der Wahl der
Dimensionen. Wie wir gesehen haben, wurde diese meist ganz beiläufig
erledigt, indem lediglich festgehalten wurde, daß für den mittleren Fehler
a priori bei der Bildung des Gewichtes und für die Verbesserungen einer
bestimmten Meßgröße die gleiche Einheit gewählt werden muß. Betrachten

wir nochmals die Definition

Pr mf

in der C eine für alle Meßgrößen gültige Konstante ist. An sich kann C

irgendeine Dimension annehmen, wenn sie nur für alle pi gleich ist.
Wird sie zum Beispiel derjenigen eines der auftretenden m,2 gleichgesetzt,
so wird das Gewicht der entsprechenden Beobachtungen dimensionslos.
Im Hinblick auf die Gleichbehandlung aller Beobachtungen ist es aber
eher gegeben, C als eine dimensionslose Größe einzuführen. Weil nun mi
je nach Meßgröße in Längenmaß (z.B. dm) oder in Winkelmaß (z.B. ")
oder in einem andern Maß (entsprechend der Wahl der Maßeinheit für
die Verbesserungen vi) gegeben ist, erhält damit das Gewicht pi die
Dimension [1/dm]2 oder [l/"]2 usw.

Somit besteht ein grundsätzlicher Unterschied gegenüber der Behandlung

gleichartiger Messungen, bei denen pi das Verhältnis mo2/mi2 zweier
in der gleichen Dimension ausgedrückter Fehlermaße mo2 und mi2
bedeutet und daher eine dimensionslose Größe wird, für die entsprechend
der Ableitung aus der allgemeinen Mittelbildung der sehr naheliegende
Begriff «Gewicht» geprägt wurde. Liegen hingegen ungleichartige
Messungen vor, läßt sich der von der Dimension der Beobachtungen
abhängige Ausdruck für pi nicht mehr schlechthin als «Gewicht» bezeichnen,

da seine Funktion eine ganz andere ist. So hat zum Beispiel Helmert
die Bezeichnung «Gewicht» sehr vorsichtig angewandt, indem er im
Abschnitt «Verallgemeinerung der Bedeutung der Gewichtszahlen» [4],
Seite 98, schrieb: «Wir können nun auch die Benennung der X und pt [in
unserer Schreibweise der v und m im Ausdruck [X2/pt2] Min.] ohne Fehler

wegstreichen und für die jetzt absoluten Zahlen ptx2, pt22, pt32

durch Vergleichung mit einer passend gewählten Zahl pt2 andere Zahlen
9x, 9z, 9s, ¦¦¦ einführen, genau so, als sollten Gewichte berechnet werden.»
Es wäre vielleicht angezeigt, bei der Behandlung ungleichartiger
Beobachtungen einen zutreffenderen Begriff für pi zu prägen, wie etwa
Standardisierungs-, Normierungs- oder Homogenisierungsfaktor.
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Die Wirkung dieser vorläufig unbenannten Größe pi ist eigentlich sehr
einleuchtend und wird in [6] wie folgt umschrieben: «Benutzen wir
homogenisierte Verbesserungen vi \/prvt, so ergeben sich dimensionslose
Verbesserungsgleichungen, und wir brauchen uns während der weiteren
Rechnung um die Frage der verschiedenen Dimensionen nicht zu
kümmern.»

Am Schluß der Ausgleichung werden wir uns nochmals mit den
Dimensionen befassen müssen, nämlich bei der Berechnung des mittleren
Fehlers der Gewichtseinheit

[Pl Vi Vi] 1 / [ps Vs Vs] + [pr V, Vr]

Nach Definition werden alle Glieder der Fehlerquadratsumme dimensionslos

und somit auch der mittlere Fehler der Gewichtseinheit, wie denn auch
im Beispiel von Jordan [5] ganz schlicht m ± 7,75 steht. Die mittleren
Fehler der Beobachtungsgrößen erhalten wir aber automatisch wieder
in ihrer richtigen Dimension, da nach

_ m
mi

ypi

der Gewichtseinheitsfehler m durch eine Größe mit der Dimension [1/dm]
oder [!/"] usw. dividiert wird.

11. Das Gewicht sei von einem bekannten Fehlergesetz abhängig

Wir wollen auch die Möglichkeit betrachten, das Gewicht einer Meßgröße
nicht auf Grund ihres mittleren Fehlers a priori, sondern auf Grund eines
vorgegebenen Fehlergesetzes zu bestimmen, wobei wir uns an die
Ausführungen in Jordan/Eggert/Kneissl [6] halten. «Bei einer gemeinsamen
Ausgleichung von Strecken und Richtungen wird es im allgemeinen
zulässig sein, den beobachteten Richtungen a priori den gleichen mittleren
Fehler, also das gleiche Gewicht zuzuordnen und dieses als Gewichtseinheit
anzunehmen. Wir können in diesem Fall die Konstante C aus den
Beziehungen

C C
Pr 1 Ps= -mr2 m,2

eliminieren. Führen wir noch den relativen Fehler der Streckenmessung

m, 1

s pi
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ein, so erhalten wir für die Streckengewichte die Formel:

P.=\ -i-^-mr'.

Aus physikalischen Gründen ist die Annahme eines proportional mit der
Entfernung zunehmenden mittleren Fehlers plausibel. Hierfür werden
relativer Fehler und pt Konstante und das Streckengewicht verkehrt
proportional zum Quadrat der Entfernung, so daß die Gewichte

C
pr 1 ps —-, C (fi- mT)2

s2

in die Ausgleichung einzuführen sind.»
Obschon «aus physikalischen Gründen die Annahme eines proportional

mit der Entfernung zunehmenden mittleren Fehlers plausibel» ist, ließen
sich auch andere Gesetzmäßigkeiten anwenden. Dies ist gelegentlich
auch gemacht worden, so zum Beispiel bei der Ausgleichung der
Richtungen und Strecken im Testnetz Graz [6, 10, 11]. Im Anschluß an solche
Ausgleichungen mit verschiedenen Annahmen ist aber wiederum eine
Überprüfung der Gewichte nach dem von Helmert angegebenen Verfahren

angezeigt. Sie gibt ein zuverlässigeres Kriterium für die günstigste
Gewichtsannahme als der Vergleich der mittleren Fehler der
ausgeglichenen Größen.

12. Die Beziehung zwischen dem Längs- und dem Querfehler einer Polygon¬
seite ist nur bedingt anwendbar

Vielfach wird für die Gewichtsfestlegung von Strecken und Richtungen
das Verhältnis zwischen dem Längsfehler und dem Querfehler von
Polygonseiten herangezogen. Dieses Vorgehen soll deshalb auch noch erwähnt
werden, wobei wir der Darstellung von Gleinsvik [3] folgen. Da es sich
auch beim Querfehler um einen mittleren Fehler handelt, wollen wir aber
konsequenterweise dafür mq statt q setzen und zudem die Reihenfolge
der Beziehungen ms= f (mq) f (ma) umstellen. «Eine generelle
Verbindung zwischen der Genauigkeit der Winkel und Seiten läßt sich mittels
der Beziehung

s
t ma

Q

herstellen, wobei mq den durch den Winkelfehler mx erzeugten Querfehler,
das heißt die lineare Genauigkeit der Winkelmessung darstellt, während
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t eine Konstante ist, über welche wir frei verfügen können. Auf Grund
dieser Beziehung lassen sich die Gewichte von oc und s miteinander
verknüpfen.»

Gleinsvik berücksichtigt in der Folge den Proportionalitätsfaktor t
nicht mehr oder setzt ihn stillschweigend gleich 1. Wir wollen ihn aber
weiter in Betracht ziehen und finden für die Gewichte pr (wenn wir
anstelle der Winkel oc wieder auf die Richtungen r zurückgehen) und ps
nach Definition

C
__ C__ / Q V C

mr2 ' ' ms2 \t-sl mr2

Setzen wir pr 1 für die Richtungsbeobachtung r, so wird

Q V_ C c^l^'
t ¦ s s2

Wir erhalten somit für ps den gleichen Ausdruck wie bei der Herleitung
nach Jordan/Eggert/Kneissl [6], bei der ein konstanter Relativfehler
angenommen wurde. Wenn wir die hier zugrundegelegte Beziehung
zwischen m,, mq und mr bzw. mx betrachten, sehen wir aber, daß darin ebenfalls

die Voraussetzung mit eingeschlossen ist, daß der Streckenfehler
linear mit der Streckenlänge zunimmt. Die beiden Ausdrücke für C"
lassen sich einander gleichsetzen, und aus der Beziehung

J (P ' mr)2

findet man schließlich den Wert des Proportionalitätsfaktors t. Er wird
zum Beispiel [6] für pt IO5 und mr= ± 2CC

g _
636620

pt-mT ~ 100000-2 3;

das heißt, der Streckenfehler ist hier rund dreimal so groß wie der
Querfehler. Für andere Annahmen für pt und mr können wir die entsprechenden
Werte bei Steiner [12] finden, wo in der Tabelle 8 das relative
Genauigkeitsverhältnis R (wie es dort genannt wird) für relative Winkel- und
Streckenfehler zwischen 1:50000 und 1:1000000 zusammengestellt ist.
Unter der Voraussetzung einer konstanten relativen Streckengenauigkeit
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können wir also den mittleren Streckenfehler in direkte Beziehung zum
mittleren Richtungsfehler setzen.

Sobald wir aber ein anderes Fehlergesetz für die Strecken annehmen
müssen, ist der Fall nicht mehr so einfach. So hat auch Gleinsvik [3] bei
der Ausgleichung eines Polygonnetzes die Gewichte stillschweigend nach
der allgemeinen Beziehung pi C/mi2 gebildet, nachdem seine
Genauigkeitsabschätzung für die Strecken keinen konstanten Relativfehler,
sondern den mittleren Fehler ms Konst. |/s gebracht hatte.

13. Einige abschließende Bemerkungen

Zusammenfassend läßt sich festhalten, daß auch bei verschiedenartigen
Meßgrößen das Gewicht einer Beobachtung nach der allgemeinen
Definition pi C/mi2 gebildet werden kann. Im Gegensatz zum Fall der
gleichartigen Beobachtungen ist pi allerdings kein dimensionsloser Faktor,

den man seinem Ursprung gemäß als Gewicht bezeichnet. Es hat
vielmehr eine Dimension, die von derjenigen der betrachteten Meßgröße
abhängt. Wenn man jedoch die Fehlergleichungen homogenisiert, das
heißt mit |/p7 multipliziert, werden sie aus diesem Grund dimensionslos,
und die Ausgleichung ist auf eine solche von bloßen Zahlen zurückgeführt.

Wie zur Bestätigung der hier vorgelegten Zusammenstellung erschien
kürzlich eine umfassende Arbeit von Rainsford [9] über das Prinzip
der vermittelnden Ausgleichung von Winkeln und Strecken. Darin sind
zwei Basisvergrößerungsnetze (Ridgeway und Caithness), deren Seiten
mit dem Tellurometer gemessen worden sind, in aller Ausführlichkeit
behandelt. Dabei stellte sich auch hier das Problem, möglichst zutreffende
Gewichtsansätze für Winkel und Strecken zu finden. Zu dessen Lösung
wurden mehrere Ausgleichungen mit verschiedenen mittleren Fehlern
für Winkel und Strecken durchgerechnet, bis der Durchschnittswert
[pvv]jn$ für Winkel und Strecken ungefähr gleich groß wurde. Zudem
sollte die Bedingung

[pvv] nc der Anzahl der Bedingungen n — u)

durch entsprechende Wahl der Gewichte möglichst gut erfüllt werden.
Dies heißt nichts anderes, als daß nach der Ausgleichung

m
[pvv]

werden sollte, nachdem für die Bildung der Gewichte C m02 1

gesetzt worden war. Als Besonderheit kann dabei vermerkt werden, daß
[pvv] und somit auch m stets zu klein wurde, weil auf Grund allgemeiner
Angaben über die Genauigkeit von Tellurometer-Messungen ps zu klein
eingeführt worden war. Die Ausgleichungen haben so den Beweis
erbracht, daß die Messungen ausnahmsweise besser waren als ihr Ruf.
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Rainsford führt übrigens auch noch eine lange Liste von Literatur auf,
aus der man erkennt, wie das Problem der Gewichtsbestimmung immer
wieder aufgegriffen worden ist. Wenn hier aus der Fülle der Aufsätze
nur noch derjenige von Lilly [7] erwähnt wird, so deshalb, weil er mit
einem auch auf die vorliegenden Ausführungen anwendbaren Satz
schließt. « It is hoped that this paper may make some contribution to
a clearer understanding and a satisfactory solution of the problem of
adjusting survey networks involving measured lengths and measured
angles.»
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