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DK 528.234

Nochmals zur Problematik des Niveauellipsoides

von K. Ledersteger

Im Juniheft 1967 dieser Zeitschrift habe ich mich ziemlich eingehend mit
der Frage des Niveauellipsoides befaßt [1]. Neben den bekannten Lösungen

von Pizzetti und Somigliana einerseits [2] und von "W.D. Lambert [3]
andererseits konnte eine Reihe weiterer Massenanordnungen angegeben
werden, die aber durchwegs ebenso wie die früheren physikalisch sinnlos
sind. Man muß entweder mit Flächenbelegungen oder mit unendlicher
Dichte operieren oder eine Zunahme der Abplattung der Niveauflächen
oder eine Abnahme der Dichte nach innen in Kauf nehmen. Nun ist es

zwar richtig, daß die Wahl des Bezugskörpers der Geodäsie innerhalb
gewisser enger Grenzen mehr oder minder willkürlich ist, insofern die
Zerlegung der Radienvektoren der Geoidpunkte oder der Punkte der physischen

Erdoberfläche in einen normalen Hauptteil und eine Undulation
oder Höhenanomalie in rein geometrischer Hinsicht auf verschiedene
Weise durchführbar ist. Redenkt man demgegenüber, daß bei Verwendung

des Normalsphäroides der Erde, das sich vom volumgleichen
Niveauellipsoid nur um wenige Meter unterscheidet, sowohl die Undulationen
wie auch die Schwerestörungen und Lotabweichungen als reiner Ausdruck
der Massenstörungen in der Erdkruste physikalischen Sinn gewinnen, so
scheint das starre Festhalten am Niveauellipsoid, dessen fiktiver Charakter

gar nicht bestritten wird, einigermaßen befremdend.
Auf der XIV. Generalversammlung der UGGÌ wurde im Herbst vorigen

Jahres in Luzern und Zürich ein neues geodätisches Rezugssystem
beschlossen, und zwar wieder ein Niveauellipsoid, das wie alle Rotations-
Niveausphäroide durch fünf Restimmungsstücke in Näherung 4.O.
eindeutig festliegt:

k2E 398603.IO15 cm3 sec"2; a 6,378160.108 cm;
(1)

w2 5,317496.10"9 sec~2; ,12 108270.10"8; /4 0.

Mit k2 66,7.10-9 g-1 cm3 sec~2 folgt sofort E 5976,0570.IO24 g. Ferner
ist ë co2a3/k2E 346140,8.IO-8. Sodann liefern die beiden Gleichungen
des Helmert-Systems

1 5

„ (3 J2 + e) e - e2 + e ë - J4
2 8

(2)

/4 3,5 e2 - 2,5 e ë + 4,375 J4 0

die Abplattung e und die Massefunktion J4:

e 335291,4.10-8; J4 - 236,2.10-8 (2a)
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Schließlich sei der Vollständigkeit halber auch die Schwereformel
angeführt:

y 978,0318 (1 + 0,005 3024 sin2«; - 0,000 0059 sin*» Gal. (3)

In [1] konnte an Hand der theoretischen Reziehungen zwischen den
Massefunktionen und den Formparametern gezeigt werden, daß für die Daten

der Erde (é xe; x~ 1,032) ein strenges Niveauellipsoid überhaupt
unmöglich ist. Für x 0,8 resultieren die einzig bekannten möglichen
Niveauellipsoide, nämlich die homogenen, MacLaurinschen Ellipsoide.
Tatsächlich schließt auch die berühmte Theorie Pizzettis und Somiglia-
nas keinen Reweis für die physikalische Möglichkeit des heterogenen
Niveauellipsoides in sich. Sie geht vielmehr von der Voraussetzung aus, daß
es für die mit vorgegebener Winkelgeschwindigkeit um eine feste Achse
rotierende Erdmasse eine heterogene Anordnung gibt, bei der die freie
Oberfläche von rotationsellipsoidischer Gestalt ist. Ebenso willkürlich
erscheint bei der Entwicklung der Kräftefunktion W in rotationssymmetrischen

Ellipsoidkoordinaten die für die Gewinnung des Niveauellipsoides
unerläßliche Forderung, daß die Konstante w$, eine bestimmte
Massefunktion 4. O., verschwindet, oder wie oben die Forderung /4 0.

Auch die Zweischalenmodelle, der Grundtyp der heterogenen
Massenanordnungen, wurden bereits in [1] diskutiert. Doch sollen diese Betrachtungen

noch entsprechend erweitert und vertieft werden. Unter einem
Zweischalenmodell verstehen wir eine aus zwei homogenen Teilen
bestehende Massenanordnung, deren Oberfläche, die Manteloberfläche, ein
Sphäroid sein soll, während wir für die Kernoberfläche ein exaktes Ellipsoid

voraussetzen. Ein Teil Ex der Gesamtmasse E bildet also ein homogenes

Sphäroid, während die Restmasse E2 E — Ex zusätzlich im Kern
homogen verteilt wird. Für das homogene Ellipsoid ist bekanntlich:

J2 ^(2e-e2); J4=-~(2e-e2)2, (4)
5 35

zu welchen Werten beim homogenen Sphäroid nach Darwin [4] noch
hinzutritt:

àJ, - — U ; àJt + — h ¦ (4a)

Damit ergibt sich gemäß:

(C-A) =(C- A)x + (C- A)2
oder

J2E a2 J2,x Ex a2 + J2,2 E2 ak2

für die statische Abplattung des Zweischalenmodelles, wenn ak und ek

Achse und Abplattung der Kernoberfläche bezeichnen,

5 J2 (2 e - e2 - -|-/4) (EX:E) + (2 ek-ek2) (ak:a)2 (E2:E) (5)
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und analog für die Massefunktion .74:

35
-3-J* (2e-e2)2- --U (EX:E) + (2ek - ek2)2(ak:ay (E2:E).

(5a)

Setzt man in Näherung 2. O. é xe und 3 J2 — (2 — x) e und in Näherung
4.0. : /4 — k e2 und J4 — |e2, so kann die zweite Gleichung (2)
geschrieben werden

- k + 4,375 | 3,5 -2,5 x. (2b)

Mit den zu /c 0 gehörigen Werten (2a) ergibt sich zum Reispiel |
0,2101 und x 1,0324. Nunmehr halten wir die vier ersten Daten (1) fest
und wählen als 5. Restimmungsstück ,/4 — 308.IO-8, was annähernd
dem Normalsphäroid der Erde entspricht. Man findet e 335246,4.10~8;
k 0,2802; £ 0,2740 und schließlich x 1,0325. Im (x, A.)-Diagramm
fällt also die Kurve J2 const äußerst nahe mit einer Vertikalen x —

const zusammen. In aller Strenge jedoch nimmt in dieser Kurve mit
wachsendem k die Abplattung e geringfügig ab und x geringfügig zu. Für
jeden Punkt (x, tc) unserer Kurve liefern dann die beiden Gleichungen (5)
eindeutige Werte für (EX:E) y und (2 ek — ek2) (ak:a)2 z. Man erhält
also ein homogenes Sphäroid (a, e, /4) einer bestimmten Teilmasse Ex, dem
die Restmasse E2 in unendlich vielen konfokalen Ellipsoiden überlagert
sein kann, so daß der Punkt unendlich viele Zweischalenmodelle mit
untereinander konfokalen Kernoberflächen repräsentiert. Damit haben wir
eine lineare Reihe unwesentlicher Massenkonflgurationen gefunden, aus
denen wir selbstverständlich jene als «wesentlich» herausheben können,
für welche auch die streng ellipsoidische Kernoberfläche zur Niveaufläche

wird, das heißt die jeweils einzig mögliche zweiparametrige
Gleichgewichtsflgur (Wiechert-Modell).

Wir beginnen mit dem Fall Ex 0, also mit dem Schnittpunkt der
Kurve J2 108270.IO-8 mit der Parabel der äußeren Niveauflächen der
MacLaurinschen Ellipsoide F \Jt\: ./22 15/7. Hierfür gilt J4 —

251,2.IO-8, e 335282,0.IO-8 und /4 - 65,9.IO"8. Der zweite Grenzfall
ist durch z 0, also durch kugelige Kerne oder speziell durch das natürlich

bereits fiktive Wiechert-Modell ak 0 gegeben. Man findet y
0,80864, e 335227,6.10~8, J4 - 338,0.10~8, /4 - 446,6.10-*. Die
reellen Lösungen liegen also in den Grenzen 0 g y Sä 0,80864.

Unterhalb der Kurve F 15/7 wird Ex immer stärker negativ, das
heißt alle diese Lösungen sind bereits fiktiver Natur. Speziell für das
genäherte Niveauellipsoid (/4 0) lauten die Gleichungen (5) mit den Werten

(2a):
541350,0 669458,7 y + z (1 - y)

2755,4 4481,7 y + z2 (1 - y)
oder (6)

(541350,0 - z) (669458,7 - z) y

(2755,4 - z2) (4481,7 - z2) y
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Diese Gleichungen sind nur für y — oo und für (669458,7 — z) (4481,7
— z2) 0 miteinander verträglich. E2 wird positiv unendlich und die
freie Oberfläche gehört der Schar der konfokalen Kernellipsoide an. Es
kann also der Mantel auf eine unendlich dünne, homogene Oberflächenschicht

mit einer unendlich großen negativen räumlichen Dichte
zusammenschrumpfen. Doch sind all diese Lösungen physikalisch völlig
sinnlos. Man erkennt dies deutlich, wenn man mit endlichen Massen
operieren wollte. Sind nämlich Oberfläche und Kernoberfläche konfokale

i

J2M

- A.ld3

3

2

»

1,33d 92.10 f 1 1,06270.10

-3 -2 -t

-/

_

1 ' e,"

Fig. 1

Ellipsoide, so könnte jedes derartige Zweischalenmodell durch unwesentliche

Verschiebungen in homogenen konfokalen Ellipsoidschalen in ein
homogenes Ellipsoid verwandelt werden, dessen Oberfläche bei der
vorgegebenen Rotationsgeschwindigkeit nur für eine größere Masse (E
7691,4828.1024 g) zur Niveaufläche wird.

Nunmehr wählen wir ein etwas allgemeineres Modell, indem wir die
Forderung der Homogenität des Mantels fallen lassen. Der Kern sei also
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ein homogenes Ellipsoid, der Mantel heterogen, die Oberfläche des
Gesamtmodells jedoch ein zur Kernoberfläche konfokales, exaktes Ellipsoid:

(2 ek - ek2) ak2 (2 e - e2) a2, (7)

das aber nur genähert gleichzeitig Niveaufläche ist. Dann ist für die freie
Oberfläche der Anteil des Kernes an der statischen Abplattung (2 e — e2)/5

133891,7.IO-8 und es gilt in Einheiten IO"8:

108270 J2,m (Em:E) + 133891,7 (EK:E) (8a)

Analog ist an der Oberfläche

- ö- J*,k (2 ek - ek2)2 (Ohio)* (2 e - e2)2,

- 236,17 Jt,M (Em:E) - 384,15 (EK:E) (8b)

Die Gleichungen (8) können für Em 0, Ek E nur zurecht bestehen,
wenn die Massefunktionen J2,m und Jt,M unendlich groß werden. Wir
schreiben sie:

-25621,7 (J2,m - 133891,7) (EM:E) (8a')

+ 147,98 (,74,m + 384,15) (EM:E) (8b')

Bei der an sich physikalisch sinnlosen Annahme Em < 0 sinkt das stets
positive J2,m zuerst rapide ab, erreicht für Em — E bereits den Wert
+ 159513,5.IO"8 und konvergiert für EM -> - co gegen + 133891,7.IO-8.
Für positives Em ist J2,m zuerst negativ, geht für Em + 0,191362 E
durch Null und nimmt für EM E den Wert + 108270.KH an. Schließlich

konvergiert es für Em —> + °° abermals gegen + 133891,7.IO-8. Doch
ist jede Lösung für Em > 1 wegen der damit verbundenen negativen
Kerndichte physikalisch sinnlos. Somit stehen allein die Lösungen für

+ 0,191362 E S Em y E (8a")

zur Diskussion (Figur 1).
Die Massefunktion Jt,M ist für Em < 0 zuerst stark negativ, wird für

Ex — E bereits — 532,13.10-8 und konvergiert für Em —> — 00 gegen
— 384,15.IO-8. Für positives Em ist .74,m zuerst stark positiv, geht für
EM + 0,385204 E durch Null und nimmt für EM E den Wert
— 230,2.10-" an. Für Em —*¦ + °° konvergiert ./4,m abermals gegen
— 384,15.IO-8. Mithin stehen bloß die Lösungen für

+ 0,385204 E ^ Em è E (8b")

zur Diskussion, was übrigens bei gleichzeitiger Berücksichtigung von
J2,m und J},m gültig bleibt (Figur 2).

Hieraus geht bereits klar hervor, daß für unser Modell ein strenges
Niveauellipsoid undenkbar ist. Denn mit jeder weiteren Massefunktion
rückt die untere Grenze immer näher an E heran, während sich die An-
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nähme Em E für einen endlichen Kern bereits als unmöglich erwiesen
hat. Wir begnügen uns hier mit der Näherung 4.0., obwohl für die Daten
der Erde sogar noch in Näherung 8.0. Niveauellipsoide denkbar sind, wobei

freilich die Frage offen bleibt, ob man hierfür physikalisch sinnvolle
Massenanordnungen finden kann. Gemäß (7) ist die Abplattung der
Kernoberfläche größer als die der ellipsoidischen Oberfläche, welche
voraussetzungsgemäß in Näherung 4. O. gleichzeitig Niveaufläche ist. Da aber

-3 -2 -l

-6
4.10 -

2

J4M

\ 1 2 3

-3,d
-6

42.10

\ î
' ' "

\ I -6 E,:E\ | -2,362.10 '
-2 sT,J

-4

— S

— a.w6

Fig. 2

die Abplattung der inneren Niveauflächen mit abnehmendem Äquatorradius

niemals zunehmen kann, folgt, daß die Kernoberfläche niemals
gleichzeitig Niveaufläche sein kann. Unser Modell kann also weder
Gleichgewichtsflgur noch Gleichgewichtsanordnung sein, darf also bloß
als allgemeine rotations- und äquatorsymmetrische Massenanordnung
gewertet werden. Schon dies lehrt, daß eine derartige Massenanordnung
in der Natur, das heißt für einen Himmelskörper kaum realisierbar ist.
Zufolge (8b") muß die Kernmasse zwischen den Grenzen
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Q< EKy + 0,614796 E (9)

liegen und im Grenzfall ek 1, das heißt für die Fokalscheibe mit dem
Radius ak 0,08182045 a 521,864 km wäre die Kerndichte bereits
unendlich groß.

Der weiteren Analyse legen wir den annähernd in der Mitte des
Gültigkeitsbereiches liegenden Wert Em 0,7 E zugrunde, für welchen die
Gleichungen (8)

J2iM + 97289,26.10-8; J4,M - 172,76.10-" (10)

liefern. Diese Massefunktionen sind wesentlich kleiner als die eines
homogenen oder in konfokalen ellipsoidischen Schalen geschichteten Mantels:

J2,m + 133891,7.IO-8, J4,M - 384.15.10-8, so daß im Mantel in
irgend einer anderen Schichtung bereits eine kräftige Massenkonzentration

vorliegen muß. Demnach muß die Kerndichte jedenfalls größer sein
als die mittlere Manteldichte. Es ist:

4
qm Em : ti [a3 (1 — e) — at3 (1 — ek)\

4
qk Ek : n ak3 (1 — et)

0,7 ai3 (1 - et) < 0,3 [a3 (1 - e) - ak3 (1 - et)]

at3(l -et) < 0,3 a3(l-e). (11)

Zusammen mit (7) liefert dies den maximalen Kernradius

ak 0,6703589 a 4275,656 km; et 747662,5.IO"8. (12)

Wegen der Massenkonzentration im Mantel muß der maximale
Kernradius aber beträchtlich kleiner sein, damit an der Kernoberfläche nicht
ein negativer Dichtesprung entsteht. Unabhängig vom möglichen
Kernradius, der innerhalb der Schranken 4275,656 < ak < 521,864 km liegen
muß, hat der homogene Kern an der konfokalen Manteloberfläche stets
dieselben Massefunktionen J-u.k, Soll dies auch für den Mantel gelten, so
müßte er konfokal geschichtet sein und man könnte durch unwesentliche
Verschiebungen die Gesamtfigur zu einem homogenen Ellipsoid machen,
was aber für die Massefunktionen (10) unmöglich ist. Man erkennt dies
auch daran, daß dieses homogene Ellipsoid nur für eine kleinere
Rotationsgeschwindigkeit oder eine größere Masse ein MacLaurinsches Ellipsoid

sein kann. Es folgt, daß für jede Wahl des Kernradius eine andere
wesentlich verschiedene Massenkonfiguration resultiert. Alle diese
Anordnungen unterscheiden sich bei in Näherung 4.0. gleichbleibenden Werten

(10) in den höheren Massefunktionen, und jedesmal resultiert ein an-
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deres genähertes Niveauellipsoid S' mit anderen höheren Formparametern,
wobei sich überdies auch die Abplattung geringfügig ändert und /4

gar nicht exakt verschwindet.
Legen wir der Dichtefunktion keinerlei Beschränkung auf, so kann der

homogene Kern auch bis zur Oberfläche ausgedehnt werden, und wir
erhalten folgende Lösung: der homogene Kern mit der Masse 0,3 E erfüllt
die ganze Figur, während der heterogene Mantel als Flächenbelegung mit
variabler Dichte erscheint. Die streng ellipsoidische OberflächeS (a, e) ist
keine exakte Niveaufläche; letztere ist vielmehr ein genähertes
Niveauellipsoid, für welches abermals der Formparameter /4 gar nicht exakt
verschwindet. Modifizieren wir unser Modell noch dahingehend, daß seine
Oberfläche mit dieser nahezu ellipsoidischen Niveaufläche zusammenfällt,

so liegt eine Verallgemeinerung der Lösung Somiglianas vor. Bei
dieser hat man ja von einer rellen Massenanordnung auszugehen, deren
Oberfläche für eine bestimmte Rotationsgeschwindigkeit eine Niveaufläche

ist. Dann darf die gesamte Masse im Innern dieser Fläche homogen
verteilt werden, während die Abweichungen von der Flomogenität als
Flächenbelegung teils positiver, teils negativer Dichte mit der Massensumme

Null erfaßbar sind. Beim vorliegenden Modell kann jetzt
allgemeiner eine Teilmasse homogen verteilt sein und die Restmasse als
Flächenbelegung aufscheinen. Aber diese Teilmasse kann gemäß (9) gar
nicht größer als 0,614796 E sein, um ein genähertes Niveauellipsoid mit
den Massefunktionen (10) zu erzielen. Hieraus erkennt man klar, daß die
Lösung des Stokesschen Problems nach Somigliana keinen Beweis für die
physikalische Möglichkeit des inhomogenen Niveauellipsoides in sich
schließt.

Wir kehren unser Modell um. Wieder seien Mantel- und Kernober-
fläche konfokale Ellipsoide, doch sei jetzt der Mantel homogen und der
Kern heterogen. In den Gleichungen (8) sind bloß die Indizes M und K
zu vertauschen und (8b") geht über in

+ 0,385204 EätEKy E (13)

Während beim vorhergehenden Modell der Fall Em E nur bei völligem
Verschwinden des Kernes physikalisch möglich erscheint, besagt die
Annahme Ek E bloß, daß der Mantel die Dichte Null hat oder daß die
gegebene «Oberfläche» S (a, e, /4 0) in Näherung 4.O. äußere Niveaufläche

für unendlich viele Kernellipsoide ist, wobei aber für jeden Radius ak
eine andere, wesentlich verschiedene Massenanordnung vorliegt. Analog
dem früheren Ergebnis haben alle diese Konfigurationen zum Eeispiel für
Ek — 0.7 E in Näherung 4.O. dieselben Massefunktionen

,72,K + 97289.26.10-8; J4,k - 172,76.10"8, (14)

unterscheiden sich aber in den Gliedern höherer Ordnung. Der physikalisch

bereits unmögliche minimale Kernradius ist wieder durch die
Fokalscheibe begrenzt, während der maximale Kernradius begreiflicherweise
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andere Werte annimmt als beim vorhergehenden Modell. An Stelle von
(11) tritt die Beziehung

«t3(l -et) S 0,7rt3(l - et). (15)

Speziell für Ek E ist also cik et möglich, das heißt der Mantel
verschwindet vollständig, genau so wie beim vorhergehenden Modell für
Em E der Kern verschwindet; beidemale resultiert dieselbe inhomogene

Massenkonfiguration mit derselben ellipsoidischen Oberfläche, welche

nur in Näherung 4.O. mit einer Niveaufläche zusammenfällt. Nach
wie vor bleibt aber die Frage nach der Schichtung und dem Dichtegesetz
dieser Massenkonfiguration und damit die Frage nach ihrer physikalischen

Möglichkeit offen. Eindeutig ausgeschlossen sind bloß negative
Dichten. Ferner wissen wir, daß relativ zur Homogenität bereits eine
stärkere Massenkonzentration vorliegt.

Unschwer lassen sich weitere Verallgemeinerungen konstruieren.
Ausgehend von den Gleichungen (5) können wir zum Beispiel postulieren, daß
die Oberfläche ein genähertes Niveauellipsoid ist, wobei das strenge Ellipsoid

(a, e) nicht der Schar der konfokalen Kernellipsoide angehört. Wieder
sei der Mantel heterogen und der Kern homogen oder vice versa. Wieder
scheidet die weitaus größte Zahl der mathematischen Lösungen aus, weil
sie mit negativen Massen und Dichten oder mit einer Dichteabnahme
nach innen verknüpft sind. Dennoch aber bleiben noch unendlich viele
Lösungen, bei denen negative Dichten ausgeschlossen sind und an der
Kernoberfläche ein positiver Dichtesprung vorliegt; ob sie aber physikalisch

sinnvoll sein können, hängt vom Dichtegesetz des inhomogenen
Teiles ab.

Alle zu den Daten (1) gehörigen genäherten Niveauellipsoide liegen
gemäß (2a) in der Parabel F I J41 : ,7,2 2,01473 oder in deren unmittelbaren

Umgebung. Denkt man die, übrigens noch gar nicht exakt
bekannte Kurve der einparametrigen Gleichgewichtsflguren über das Mac-
Laurinsche Ellipsoid hinaus in den Bereich der positiven Formparameter
/4 bis zum Schnittpunkt mit dieser /«'-Parabel fortgesetzt, so liegt dort
eine Massenanordnung vor, bei welcher das stetige Dichtegesetz der
einparametrigen Gleichgewichtsflguren eine Dichteabnahme von der
Oberfläche bis zum Schwerpunkt liefert. Unser « Niveauellipsoid » ist dann
näherungsweise eine äußere Niveaufläche dieser physikalisch völlig sinnlosen
Massenanordnung. Ähnliches gilt für die Wiechcrt-Modelle. Jede Reihe
von Wiechert-Modellen (E, co, a, ak) mit konstantem Kernradius beginnt
fiktiv mit einem MacLaurinschen Ellipsoid (E, co, a) und endet, ebenfalls
bereits fiktiv, in der Parabel F 15/7 mit einer äußeren Niveaufläche
(qm 0) des MacLaurinschen Ellipsoides (E, co, at). Setzt man jede dieser

Reihen at const über das MacLaurinsche Ellipsoid hinaus bis zum
Schnittpunkt mit der Parabel F 2,01473 fort, so wird das Niveauellipsoid

in Näherung 4.0. gemeinsame äußere Niveaufläche von zahllosen
Modellen mit homogenem Mantel und homogenem Kern, für welche
jedoch stets physikalisch sinnlos die Manteldichte größer ist als die
Kerndichte.
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Oben wurde bereits betont, daß mit den Daten (1) sogar noch in Näherung

8. O. ein Niveauellipsoid möglich ist. Tatsächlich liefern für /4 /0

/8 0 die Gleichungen des allgemeinen Niveausphäroides die
Massefunktionen:

„ T /. 9 \ 25 593
3J, 2e-ë-e2-| ee e2 ë -\ e3 ê2 \ 7/49 11319

4 4 \ 4 50 1 226
— e2 -\ e ë I + — e3 e2 é e4 H e3 é
5 7/5 49 5 343

(16)
8 20 12 320

Je — e3 e2 é e4 -| e3 é6
7 21 7 147

Js iàr(~ 2288 e4 + 208°e3 ë)

und mit J2 108270,000.10"8; ë 346140,835.10"8 numerisch

e 335292,425.10-8; J4 - 237,126.10"8; Jc + 0,608.10-8;

Js= - 0,002.10-8. (17)

Es ist also J2 456,6. | ,74 [ ; | J41 390,0. J0 ; J6 304,0. \J8\, (18)

was wie bei den Gleichgewichtsflguren die rapide Abnahme der
Massefunktionen bestätigt.

Mit den vorstehenden Betrachtungen ist somit die Möglichkeit einer
physikalisch sinnvollen Massenanordnung für das genäherte Niveauellipsoid

nicht völlig ausgeschlossen. Aber schon die einwandfrei bewiesene
Tatsache, daß zumindest für die Daten der Erde oder exakter für alle
x > 0,8 ein strenges Niveauellipsoid gar nicht existieren kann, sollte für
den Geodäten genügen, diese Fiktion endlich fallen zu lassen, noch dazu,
wo die Abweichungen des Normalspäroides der Erde von einem exakten
Ellipsoid weit innerhalb der Unsicherheit in der Bestimmung der
Geoidundulationen liegen.
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