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DK 528.234

Nochmals zur Problematik des Niveauellipsoides

von K. Ledersleger

Im Juniheft 1967 dieser Zeitschrift habe ich mich ziemlich eingehend mit
der I'rage des Niveauellipsoides befalit [1]. Neben den bekannten Losun-
gen von Pizzetti und Somigliana einerseits [2] und von W.D. Lambert [3]
andererseils konnte eine Reihe weiterer Massenanordnungen angegeben
werden, die aber durchwegs ebenso wie die fritheren physikalisch sinnlos
sind. Man mul} entweder mit Flichenbelegungen oder mit unendlicher
Dichte operieren oder eine Zunahme der Abplattung der Niveauflichen
oder eine Abnahme der Dichte nach innen in Kauf nehmen. Nun ist es
zwar richtig, dafl die Wahl des Bezugskorpers der Geodisie innerhalb ge-
wisser enger Grenzen mehr oder minder willkiirlich ist, insofern die Zer-
legung der Radienvektoren der Geoidpunkte oder der Punkte der physi-
schen Erdoberfliche in einen normalen Hauptteil und eine Undulation
oder Hohenanomalie in rein geometrischer Hinsicht auf verschiedene
Weise durchfithrbar ist. Bedenkt man demgegeniiber, dal3 bei Verwen-
dung des Normalsphiroides der Iirde, das sich vom volumgleichen Niveau-
ellipsoid nur um wenige Meter unterscheidet, sowohl die Undulationen
wie auch die Schwerestérungen und Lotabweichungen als reiner Ausdruck
der Massenstorungen in der Erdkruste physikalischen Sinn gewinnen, so
scheint das starre IFesthalten am Niveauellipsoid, dessen fiktiver Charak-
ter gar nicht bestritten wird, einigermaflen befremdend.

Auf der XIV. Generalversammlung der UGGI wurde im Herbst vori-
gen Jahres in Luzern und Ziirich ein neues geodiitisches Bezugssystem
beschlossen, und zwar wieder ein Niveauellipsoid, das wie alle Rotations-
Niveausphéiroide durch fiinf Bestimmungsstiicke in Nidherung 4.0. ein-
deutig festliegt:

kE = 398603.10% em? sec™?; a = 6,378160.10% cm;
w? = 5,317496.10-? sec?; J, = 108270.108; f, = 0.

(1)

Mit k2 = 66,7.10- g1 cm? sec? folgt sofort E = 5976,0570.10%* g. Ferner
ist £ = w?a®/k*E = 346140,8.10-8. Sodann liefern die beiden Gleichungen
des Helmert-Systems

1 5%
2-(3.12+é)=e—62+eé— 8 "

(2)
fo=35¢2—205e&+ 4,370 J, =0
die Abplattung e und die Massefunktion .J,:
e = 335291,4.10-%; J, = — 236,2.10-8 . (2a)
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SchlieBlich sei der Vollstindigkeit halber auch die Schwereformel ange-
fithrt:
y = 978,0318 (1 + 0,005 3024 sin?¢p — 0,000 0059 sin?¢p) Gal. (3)

In [1] konnte an Hand der theoretischen Beziehungen zwischen den Mas-
sefunktionen und den FFormparametern gezeigt werden, daB fiir die Da-
ten der Erde (¢ = xe; x ~ 1,032) ein strenges Niveauellipsoid iiberhaupt
unmaoglich ist. Fiir x = 0,8 resultieren die einzig bekannten maglichen
Niveauellipsoide, nimlich die homogenen, MacLaurinschen Ellipsoide.
Tatsédchlich schlieit auch die beriihmte Theorie Pizzettis und Somiglia-
nas keinen Beweis fiir die physikalische Moglichkeit des heterogenen Ni-
veauellipsoides in sich. Sie geht vielmehr von der Voraussetzung aus, dal3
es fiir die mit vorgegebener Winkelgeschwindigkeit um eine feste Achse
rotierende IErdmasse eine heterogene Anordnung gibt, bei der die freie
Oberfliche von rotationsellipsoidischer Gestalt ist. Ebenso willkiirlich er-
scheint bei der Entwicklung der Kriiftefunktion W in rotationssymmetri-
schen Ellipsoidkoordinaten die fiir die Gewinnung des Niveauellipsoides
unerliBliche Forderung, daB die Konstante w3, eine bestimmte Masse-
funktion 4. O., verschwindet, oder wie oben die Forderung f, = 0.

Auch die Zweischalenmodelle, der Grundtyp der heterogenen Massen-
anordnungen, wurden bereits in [1] diskutiert. Doch sollen diese Betrach-
tungen noch entsprechend erweitert und vertieft werden. Unter einem
Zweischalenmodell verstehen wir eine aus zwei homogenen Teilen be-
stehende Massenanordnung, deren Oberfliche, die Manteloberfliche, ein
Sphiroid sein soll, wiihrend wir fiir die Kernoberfliche ein exaktes Ellip-
soid voraussetzen. Ein Teil E; der Gesamtmasse E bildet also ein homo-
genes Sphéiroid, wihrend die Restmasse E, = E — E, zusitzlich im Kern
homogen verteilt wird. Fiir das homogene Ellipsoid ist bekanntlich:

1 3
Jo=—@e—e); Jy= ——=(2e— e, @

zu welchen Werten beim ho_mbgenen Sphiiroid nach Darwin [4] noch hin-
zutritt:
2 8

Ay = — 3—5f4§ 4J, = + 16§f4 ‘ (4a)

Damit ergibt sich gemil:
(C—A) =(C—A4) +(C—A4),
oder

Js B 0® = gy By a® + gy, Bpa®

fur die statische Abplattung des Zweischalenmodelles, wenn ax und e
Achse und Abplattung der Kernoberfliche bezeichnen,

5J,=(Q2e — e — %]ﬂl) (E;:E) + (2 er—er?) (ar:a)? (E,:E) (5)
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und analog fur die Massefunktion .J,:

- 3;) oy = [(2 e — e?)? — S f{l (E E) + (2ex — e®? (ar: @)t (E,: E).
‘ (5a)

Setzt man in Ndherung 2.0. € =xe und 3.J, = (2 — x) e und in Nidherung
4.0.: f, = — ket und J, = — £e?, so kann die zweite Gleichung (2) ge-
schrieben werden

—k +4,375 & =3,6—-2,bx. (2b)

Mit den zu « = 0 gehorigen Werten (2a) ergibt sich zum Beispiel & =
0,2101 und x = 1,0324. Nunmehr halten wir die vier ersten Daten (1) fest
und wihlen als 5. Bestimmungsstiick J, = — 308.10-%, was annéihernd
dem Normalsphiroid der IErde entspricht. Man findet e = 335246,4.10-8;
k = 0,2802; & = 0,2740 und schlieBlich x = 1,0325. Im (z, x)-Diagramm
tallt also die Kurve J, = const dulerst nahe mit einer Vertikalen x =
const zusammen. In aller Strenge jedoch nimmt in dieser Kurve mit
wachsendem « die Abplattung e geringfiigig ab und x geringfiigig zu. Fir
jeden Punkt (x, k) unserer Kurve liefern dann die beiden Gleichungen (5)
eindeutige Werte fiir (E;: E) = y und (2 ex — ex?) (ax:a@)? = z. Man erhélt
also ein homogenes Sphiiroid (a, e, f,) einer bestimmten Teilmasse E,, dem
die Restmasse FE, in unendlich vielen konfokalen Ellipsoiden iiberlagert
sein kann, so dal3 der Punkt unendlich viele Zweischalenmodelle mit un-
tereinander konfokalen Kernoberfliichen reprisentiert. Damit haben wir
eine lineare Reihe unwesentlicher Massenkonfigurationen gefunden, aus
denen wir selbstverstandlich jene als «wesentlich» herausheben kénnen,
fir welche auch die streng ellipsoidische Kernoberfliche zur Niveau-
fliche wird, das heil3t die jeweils einzig mogliche zweiparametrige Gleich-
gewichtsfigur (Wiechert-Modell).

Wir beginnen mit dem Fall E; = 0, also mit dem Schnittpunkt der
Kurve .J, = 108270.10-% mit der Parabel der dulleren Niveauflichen der
MacLaurinschen Ellipsoide F = |J,|: J,® = 15/7. Hierfiir gilt J, = —
251,2.10°8, ¢ = 335282,0.10% und f, = — 65,9.10-8. Der zweite Grenzfall
ist durch z = 0, also durch kugelige IKerne oder speziell durch das natiir-
lich bereits fiktive Wiechert-Modell ax = 0 gegeben. Man findet y =
0,80864, e = 335227,6.10°8%, J, = — 338,0.10°%, f, = — 446,6.10-8. Die
reellen Losungen liegen also in den Grenzen 0 < y < 0,80864.

Unterhalb der Kurve FF = 15/7 wird E, immer stirker negativ, das
heilt alle diese Losungen sind bereits fiktiver Natur. Speziell fiir das ge-
niherte Niveauellipsoid (f, = 0) lauten die Gleichungen (5) mit den Wer-
ten (2a):

541350,0 = 669458,7y + z (1 —y)

2755,4 = 4481,7y + 22 (1 —y)
oder (6)
(541350,0 — z) = (669458,7 — z) y

(2755,4 — z%) = (4481,7 — z%) y
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Diese Gleichungen sind nur fiir y = — oo und fiir (669458,7 — z) = (4481,7
— z%) = 0 miteinander vertriiglich. E, wird positiv unendlich und die
freie Oberfliche gehért der Schar der konfokalen Kernellipsoide an. Es
kann also der Mantel auf eine unendlich diinne, homogene Oberfldchen-
schicht mit einer unendlich groflen negativen ridumlichen Dichte zu-
sammenschrumpfen. Doch sind all diese Ldésungen physikalisch véllig
sinnlos. Man erkennt dies deutlich, wenn man mit endlichen Massen ope-
rieren wollte. Sind nidmlich Oberfliche und Kernoberfliche konfokale

133892.10 -3
1,08270.10

E’.‘E

Fig. 1

Ellipsoide, so kéonnte jedes derartige Zweischalenmodell durch unwesent-
liche Verschiebungen in homogenen konfokalen Ellipsoidschalen in ein
homogenes Ellipsoid verwandelt werden, dessen Oberfliche bei der vor-
gegebenen Rotationsgeschwindigkeit nur fir eine groBere Masse (E =
7691,4828.102¢ g) zur Niveaufliche wird.

Nunmehr wihlen wir ein etwas allgemeineres Modell, indem wir die
Forderung der Homogenitit des Mantels fallen lassen. Der Kern sei also
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ein homogenes Ellipsoid, der Mantel heterogen, die Oberfliche des Ge-
samtmodells jedoch ein zur Kernoberfliche konfokales, exaktes Ellipsoid:

(2 e — ex?) ar® = (2e — e2) a?, (7)

das aber nur genihert gleichzeitig Niveaufliche ist. Dann ist fiir die freie
Oberfliche der Anteil des Kernes an der statischen Abplattung (2 e — €%)/5
= 133891,7.10-* und es gilt in Einheiten 10-8:

108270 = J,.m (Em: E) + 133891,7 (Ex: E) . (8a)

Analog ist an der Oberfliche
35
— g Ji k= 2er — er?)? (ar:a)! = (2e — e?)?,

also
( — 236,17 = J,,m (EMm: E) — 384,15 (Ex:E) . (8b)

Die Gleichungen (8) konnen fir Iy = 0, Ex = E nur zurecht bestehen,
wenn die Massefunktionen .J, » und J, m unendlich gro3 werden. Wir
schreiben sie:

— 25621,7 = (J,,m — 133891,7) (Em:E) (8a’)

4+ 147,98 = (Jom +  384,15) (Em: E) . (8b7)

Bei der an sich physikalisch sinnlosen Annahme Eun < 0 sinkt das stets
positive J,, m zuerst rapide ab, erreicht fiir Ey = — E bereits den Wert
+159513,5.10-% und konvergiert fiir Ep — — oo gegen + 133891,7.10-8,
Fur positives Ea ist J, m zuerst negativ, geht fir Ep = + 0,191362 E
durch Null und nimmt fir Ey = E den Wert - 108270.10-® an. SchlieB3-
lich konvergiert es fiir Ky» — + oo abermals gegen + 133891,7.10-%. Doch
ist jede Losung fiir £y > 1 wegen der damit verbundenen negaliven
Kerndichte physikalisch sinnlos. Somit stehen allein die Lésungen fir

+ 0,191362 E = Em = E (8a”)

zur Diskussion (Iigur 1).
Die Massefunktion J, am ist fliir Eam < 0 zuerst stark negativ, wird fiir

E, = — E bereits — 532,13.10-% und konvergiert fiir Eyy — — oo gegen
—384,15.1078. IFiir positives En ist J, am zuerst stark positiv, geht fir
Ey = + 0,385204 E durch Null und nimmt fiir Eyy = E den Wert
— 236,2.10% an. Fir Em — -+ oo konvergiert .J,,m abermals gegen

— 384,15.10-%, Mithin stehen blof3 die L.osungen fiir
+ 0,385204 E < Em = E (8b”)

zur Diskussion, was iibrigens bei gleichzeitiger Beriicksichtigung von
Jo,m und J, m giltig bleibt (Figur 2).

Hieraus geht bereits klar hervor, da} fiir unser Modell ein strenges Ni-
veauellipsoid undenkbar ist. Denn mit jeder weiteren Massefunktion
riickt die untere Grenze immer niher an E heran, wihrend sich die An-
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nahme Ej = E Tiir einen endlichen Kern bereits als unmaoglich erwiesen
hat. Wir begniigen uns hier mit der Niherung 4. O., obwohl fiir die Daten
der Erde sogar noch in Nidherung 8. O. Niveauellipsoide denkbar sind, wo-
bei freilich die Frage offen bleibt, ob man hierfiir physikalisch sinnvolle
Massenanordnungen finden kann. GemaQ (7) ist die Abplattung der Kern-
oberfliche gréBer als die der ellipsoidischen Oberfliche, welche voraus-
setzungsgemil in Niherung 4.0. gleichzeitig Niveaufliche ist. Da aber

“M

-3.842.10

Fig. 2

die Abplattung der inneren Niveauflichen mit abnehmendem Aquator-
radius niemals zunehmen kann, folgt, dal die Kernoberfliiche niemals
gleichzeitig Niveaufliche sein kann. Unser Modell kann also weder
Gleichgewichtsfigur noch Gleichgewichtsanordnung sein, darf also blof
als allgemeine rotations- und &dquatorsymmetrische Massenanordnung
gewertet werden. Schon dies lehrt, daBl eine derartige Massenanordnung
in der Natur, das heiB3t fiir einen Himmelskérper kaum realisierbar ist.
Zufolge (8b”) mull die Kernmasse zwischen den Grenzen
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0< Ex= 4+ 0,614796 E (9)

liegen und im Grenzfall ¢, = 1, das heilit fiir die IFokalscheibe mit dem
Radius ar = 0,08182045 a = 521,864 km wiire die Kerndichte bereits un-
endlich groB. :

Der weiteren Analyse legen wir den annéhernd in der Mitte des Giiltig-
keitsbereiches liegenden Wert Ep = 0,7 F zugrunde, fiir welchen die Glei-
chungen (8)

Joom = + 97289,26.10-8; J, . m = — 172,76.10~% (10)

liefern. Diese Massefunktionen sind wesentlich kleiner als die eines ho-
mogenen oder in konfokalen ellipsoidischen Schalen geschichteten Man-
tels: J,,m = + 133891,7.108, J, m = — 384,15.10-%, so dal} im Mantel in
irgend einer anderen Schichtung bereits eine kriiftige Massenkonzentra-
tion vorliegen mull. Demnach mul} die Kerndichte jedenfalls groer sein
als die mittlere Manteldichte. Es ist:

4
om = Enm: 5 n[a*(1—e) — a® (1 — er)],

_ 4
ok = Ex: 3 moar® (1 — ex),

also
0,7 ax® (1 — ex) < 0,3 [a* (1 — &) — ax® (1 — ex)]
oder
ag* (1 —ep) < 0,3a*(1—e). (11}

Zusammen mit (7) liefert dies den maximalen Kernradius
a = 0,6703589 a = 4275,656 km; e, = 747662,5.10-8, (12)

Wegen der Massenkonzentration im Mantel mull der maximale Kern-
radius aber betrédchtlich kleiner sein, damit an der Kernoberfliche nicht
ein negativer Dichtesprung entsteht. Unabhingig vom maoglichen Kern-
radius, der innerhalb der Schranken 4275,656 << ar < 521,864 km liegen
mul}, hat der homogene Kern an der konfokalen Manteloberfliche stets
dieselben Massefunktionen Jz;, k. Soll dies auch fiir den Mantel gelten, so
miillte er konfokal geschichtet sein und man kénnte durch unwesentliche
Verschiebungen die Gesamtfigur zu einem homogenen Ellipsoid machen,
was aber fiir die Massefunktionen (10) unmdéglich ist. Man erkennt dies
auch daran, daf} dieses homogene Ellipsoid nur fiir eine kleinere Rota-
tionsgeschwindigkeit oder eine grofere Masse ein MacLaurinsches Ellip-
soid sein kann. Es folgt, dal3 fiir jede Wahl des Kernradius eine andere
wesentlich verschiedene Massenkonfiguration resultiert. Alle diese An-
ordnungen unterscheiden sich beiin Niherung 4. O. gleichbleibenden Wer-
ten (10) in den hoheren Massefunktionen, und jedesmal resultiert ein an-
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deres geniihertes Niveauellipsoid S’ mit anderen hdoheren Formparame-
tern, wobei sich iiberdies auch die Abplattung geringfiigig iindert und f,
gar nicht exakt verschwindet.

Legen wir der Dichtefunktion keinerlei Beschrinkung auf, so kann der
homogene KKern auch bis zur Oberfliche ausgedehnt werden, und wir er-
halten folgende Losung: der homogene Kern mit der Masse 0,3 E erfiillt
die ganze FFigur, wilhrend der heterogene Mantel als IFlichenbelegung mit
variabler Dichte erscheint. Die streng ellipsoidische OberflicheS (q, e) ist
keine exakte Niveaufliche; letztere ist vielmehr ein geniihertes Niveau-
ellipsoid, fiir welches abermals der Formparameter f, gar nicht exakt ver-
schwindet. Modifizieren wir unser Modell noch dahingehend, dall seine
Oberfliche mit dieser nahezu ellipsoidischen Niveaufliche zusammen-
fallt, so liegt eine Verallgemeinerung der Losung Somiglianas vor. Bei
dieser hat man ja von eciner rellen Massenanordnung auszugehen, deren
Oberfliche fiir eine bestimmte Rotationsgeschwindigkeit eine Niveau-
fliche ist. Dann darf die gesamte Masse im Innern dieser IFléiche homogen
verteilt werden, wiithrend die Abweichungen von der Homogenitit als
Fliachenbelegung teils positiver, teils negativer Dichte mit der Massen-
summe Null erfaBbar sind. Beim vorliegenden Modell kann jetzt allge-
meiner eine Teilmasse homogen verteilt sein und die Restmasse als Flii-
chenbelegung aufscheinen. Aber diese Teilmasse kann gemill (9) gar
nicht graoller als 0,614796 I sein, um ein genidhertes Niveauellipsoid mit
den Massefunktionen (10) zu erzielen. Hieraus erkennt man klar, dal3 die
Losung des Stokesschen Problems nach Somigliana keinen Beweis fiir die
physikalische Méglichkeit des inhomogenen Niveauellipsoides in sich
schliel3t.

Wir kehren unser Modell um. Wieder seien Mantel- und Kernober-
fliche konfokale Ellipsoide, doch sei jetzt der Mantel homogen und der
Kern heterogen. In den Gleichungen (8) sind bloB3 die Indizes M und K
zu vertauschen und (8b”) geht liber in

+ 0,385204 E< Ex = E . (13)

Wiihrend beim vorhergehenden Modell der Fall &y = £ nur bei vélligem
Verschwinden des Kernes physikalisch mdglich erscheint, besagt die An-
nahme Ex = E bloB, da3 der Mantel die Dichte Null hat oder daB3 die ge-
gebene «Oberfliche» S (a, ¢, f, = 0) in Niherung 4. 0. dullere Niveaufli-
che fiir unendlich viele Kernellipsoide ist, wobei aber fiir jeden Radius ax
eine andere, wesentlich verschiedene Massenanordnung vorliegt. Analog
dem fritheren Ergebnis haben alle diese Konfigurationen zum Beispiel fiir
Er = 0.7 E in Niherung 4. O. dieselben Massefunktionen

Jo k= + 97289,26.10°%; J,,x = — 172,76.10-8, (14)
unterscheiden sich aber in den Gliedern hoherer Ordnung. Der physika-
lisch bereits unmogliche minimale Kernradius ist wieder durch die Fokal-

scheibe begrenzt, wiihrend der maximale Kernradius begreiflicherweise
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andere Werte annimmt als beim vorhergehenden Modell. An Stelle von
(11) tritt die Beziehung

a® (1 — ex) = 0,7 a® (1 — ex) . (15)

Speziell fiir Ex = E ist also ap = a maoglich, das hei3t der Mantel ver-
schwindet vollstindig, genau so wie beim vorhergehenden Modell fiir
Ey = E der Kern verschwindet; beidemale resultiert dieselbe inhomo-
gene Massenkonfiguration mit derselben ellipsoidischen Oberfliche, wel-
che nur in Niherung 4. 0. mit einer Niveaufliche zusammenfiillt. Nach
wie vor bleibt aber die I'rage nach der Schichtung und dem Dichtegesetz
dieser Massenkonfiguration und damit die I‘rage nach ihrer physikali-
schen Moglichkeit offen. liindeutig ausgeschlossen sind blol3 negative
Dichten. Ferner wissen wir, dal} relativ zur Homogenitit bereits eine
stidrkere Massenkonzentration vorliegt.

Unschwer lassen sich weitere Verallgemeinerungen konstruieren. Aus-
gehend von den Gleichungen (5) konnen wir zum Beispiel postulieren, dai}
die Oberfliche ein genihertes Niveauellipsoid ist, wobei das strenge Illip-
soid (a, e) nicht der Schar der konfokalen Kernellipsoide angehort. Wieder
sei der Mantel heterogen und der Kern homogen oder vice versa. Wieder
scheidet die weitaus grolite Zahl der mathematischen Losungen aus, weil
sie mit negativen Massen und Dichten oder mit einer Dichteabnahme
nach innen verkniipft sind. Dennoch aber bleiben noch unendlich viele
[Losungen, bei denen negative Dichten ausgeschlossen sind und an der
Kernoberfliiche ein positiver Dichtesprung vorliegt; ob sie aber physika-
lisch sinnvoll sein konnen, hingt vom Dichtegesetz des inhomogenen
Teiles ab.

Alle zu den Daten (1) gehorigen genidherten Niveauellipsoide liegen
gemil (2a) in der Parabel F = | oIy | 0 J,2 = 2,01473 oder in deren unmittel-
baren Umgebung. Denkt man die, iibrigens noch gar nicht exakt be-
kannte Kurve der einparametrigen Gleichgewichtsfiguren {iber das Mac-
Laurinsche Ellipsoid hinaus in den Bereich der positiven Formparameter
f4 bis zum Schnittpunkt mit dieser I'-Parabel fortgesetzt, so liegt dort
eine Massenanordnung vor, bei welcher das stetige Dichtegesetz der ein-
parametrigen Gleichgewichtsfiguren eine Dichteabnahme von der Ober-
flache bis zum Schwerpunkt liefert. Unser « Niveauellipsoid » ist dann nihe-
rungsweise eine dulere Niveaufliche dieser physikalisch vollig sinnlosen
Massenanordnung. Ahnliches gilt fiir die Wiechert-Modelle. Jede Reihe
von Wiechert-Modellen (F, o, a, a;) mit konstantem Kernradius beginnt
fiktiv mit einem MaclL.aurinschen Ellipsoid (E, o, a) und endet, ebenfalls
bereits fiktiv, in der Parabel I = 15/7 mit einer iiulleren Niveaufliche
(om = 0) des Macl.aurinschen Ellipsoides (F, o, a;). Setzt man jede die-
ser Reihen a; = const iber das MacLaurinsche Ellipsoid hinaus bis zum
Schnittpunkt mit der Parabel I = 2,01473 fort, so wird das Niveauellip-
soid in Nidherung 4.0. gemeinsame iullere Niveaufliche von zahllosen
Modellen mit homogenem Mantel und homogenem Kern, fiir welche je-
doch stets physikalisch sinnlos die Manteldichte groGer ist als die Kern-
dichte.
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Oben wurde bereits betont, daB3 mit den Daten (1) sogar noch in Néihe-
rung 8. O. ein Niveauellipsoid mdglich ist. Tatsichlich liefern fiir f, = f; =
fs = 0 die Gleichungen des allgemeinen Niveausphiiroides die Masse-
funktionen: '

3J—(2e I3 ez—i—ge‘ 20 e2 g + 93 e3 &
5=k 7 °°) T 49 ©° T 11319 ©°°
, AU S ST . DV RO
Jy=|— — — — €% — —— €2 — — e
4 5 7 ¢¢ 5 49 5 343 “°
(16)
8 20 12 390
Poses, e S amE . T e Y Lmam
6= g T g T e g €8
J. = ;ﬁ(-— 2288 ¢t |+ 2080 ¢ §)
87 1287
und mit J, — 108270,000.10-%; & — 346140,835.10-% numerisch
e — 335292,425.10%; J, — — 237,126.10%; J, — -+ 0,608.10%;
Jy = — 0,002.105, (17)

Es ist also J, = 456,6.|J,|; |Jy| = 390,0. J;; Js = 304,0.|J5|, (18)

was wie bei den Gleichgewichtsfiguren die rapide Abnahme der Masse-
funktionen bestitigt.

Mit den vorstehenden Betrachtungen ist somit die Moglichkeit einer
physikalisch sinnvollen Massenanordnung fiir das gendherte Niveauellip-
soid nicht vollig ausgeschlossen. Aber schon die einwandfrei bewiesene
Tatsache, daB zumindest fiir die Daten der Erde oder exakter fiir alle
x > 0,8 ein strenges Niveauellipsoid gar nicht existieren kann, sollte fiir
den Geoditen geniigen, diese Fiktion endlich fallen zu lassen, noch dazu,
wo die Abweichungen des Normalspiiroides der Erde von einem exakten
Ellipsoid weit innerhalb der Unsicherheit in der Bestimmung der Geoid-
undulationen liegen. '
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