Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 66 (1968)

Heft: 12

Artikel: Transformation de coordonnées rectangulaires spaciales x,y,z en

coordonnées géographiques,, H pour les hauteurs inférieures à 10km

Autor: Pavlov. Kiril

DOI: https://doi.org/10.5169/seals-222321

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schweizerische Zeitschrift für Vermessung, Photogrammetrie und Kulturtechnik

Revue technique Suisse des Mensurations, de Photogrammétrie et du Génie rural

Herausgeber: Schweiz. Verein für Vermessungswesen und Kulturtechnik; Schweiz. Gesellschaft für Photogrammetrie; Fachgruppe der Kulturingenieure des SIA Editeurs: Société suisse des Mensurations et Améliorations foncières; Société suisse de Photogrammétrie; Groupe professionnel des Ingénieurs du Génie rural de la SIA

Nr. 12 · LXVI. Jahrgang

Erscheint monatlich

15. Dezember 1968

DK 528.236.5

Transformation de coordonnées rectangulaires spaciales X, Y, Z en coordonnées géographiques φ, λ, H pour les hauteurs inférieures à 10 km

Kiril Pavlov

L'emploi des coordonnées rectangulaires spaciales en Géodésie a posé le problème de la transformation de ces dernières en un autre système de coordonnées universelles – les coordonnées géographiques.

Lors de l'utilisation d'un système de coordonnées rectangulaires, ayant le plan XOY identique au plan équatorial de l'ellipsoïde de référence ainsi que l'axe X passant par le méridien de Greenwich, l'axe Y à 90° à l'est de celui-ci et l'axe Z identique à l'axe polaire dudit ellipsoïde, on aura les relations suivantes entre X, Y, Z et φ , λ , H:

$$X = (N + H) \cos \varphi \cos \lambda$$

 $Y = (N + H) \cos \varphi \sin \lambda$ (1)
 $Z = (N + H - e^2 N) \sin \varphi$

où -N est le rayon de courbure du premier vertical, pour lequel on a:

$$N = -\frac{a}{W} \tag{2}$$

où

a-grand demi-axe de l'ellipse méridienne

b – petit demi-axe de l'ellipse méridienne

$$e^2 = \frac{a^2 - b^2}{a^2} \tag{3}$$

et

$$W = \sqrt{1 - e^2 \sin^2 \varphi}$$

Des formules (1) on déduit tout de suite la longitude:

$$tg \lambda = \frac{Y}{X} \tag{4}$$

Cependant la difficulté principale consiste à la détermination de la latitude φ que l'on déduit ordinairement à itérations consécutives. Nous allons résoudre le problème pour des points ayant une hauteur moindre de 10 km ($H \leq 10$ km), c'est-à-dire le cas des points sur la surface terrestre.

Nous allons démontrer que dans ce cas nous pourrions simplifier considérablement les formules de Riener et de Boutkiévitch, en les présentant sous une forme très commode.

Nous remarquons, en plus, qu'il existe pour la hauteur H une formule très applicable en calcul:

$$H = \Delta a \cdot W \tag{5}$$

où

et

$$\Delta a = a - a$$

$$\bar{a} = \sqrt{X^2 + Y^2 + (1 + e'^2) Z^2} \tag{6}$$

laquelle pour $H \leq 25$ km garantit une grande précision.

De la première et deuxième relation de (1) on a:

$$D = \sqrt{X^2 + Y^2} = (N + H)\cos\varphi \tag{7}$$

De (7) et (1) on obtient la formule pour $tg\varphi$:

$$tg\varphi = \frac{Z - e^2 N \sin\varphi}{D} \tag{8}$$

donnée par Laping.

Si, de cette formule, nous tirons une valeur approximative pour $tg\varphi$:

$$\operatorname{tg}\varphi_{1} = (1 + e^{2}) \frac{Z}{D} \tag{9}$$

on obtient

$$tg\varphi - tg\varphi_1 = -\frac{e'^2H}{N+H}tg\varphi \tag{10}$$

et par là:

$$tg\varphi = tg\varphi_1: \left(1 + e^{\prime 2} \frac{H}{N + H}\right) \tag{11}$$

laquelle formule est donnée par Riener.

Si nous développons en série $\lg \varphi$ pour la place φ_1 , nous obtenons la différence $\varphi-\varphi_1$, en première approximation

$$d\varphi = \varphi - \varphi_1 = (\mathsf{tg}\,\varphi - \mathsf{tg}\,\varphi_1)\,\cos^2\varphi \tag{12}$$

laquelle conformément à (10) mène à la formule de Boutkiévitch pour

$$d\varphi = -\frac{e^2H}{2(N+H)}\sin 2\varphi \tag{13}$$

Commençons tout d'abord avec la formule de Boutkiévitch

$$d\varphi = \frac{e^{\prime 2}H}{2(N+H)}\sin 2\varphi \tag{14}$$

dans laquelle nous substituons

$$H = \Delta a \cdot W$$

$$N = -\frac{a}{W}$$
(15)

Nous obtenons

$$d\varphi = \frac{e'^2 \Delta aW}{2\left(\frac{a}{W} + \Delta aW\right)} \sin 2\varphi = \frac{e'^2 a}{2\left(\frac{a}{W^2} + \Delta a\right)} \sin 2\varphi \qquad (16)$$

où

$$W = \sqrt{1 - e^2 \sin^2 \varphi}$$

$$\Delta a = \bar{a} - a$$

$$\bar{a} = \sqrt{X^2 + Y^2 + (1 + e'^2) Z^2}$$
(17)

Nous pouvons présenter la formule (16) sous la forme:

$$d\varphi = \frac{\Delta a}{1 + \frac{\Delta a}{a/W^2}} \cdot \frac{e^{2}W^2}{2a} \cdot \sin 2\varphi \tag{18}$$

Etant donné que pour $H \leq 10 \ \mathrm{km} \ d \varphi_{\mathrm{max}} < 1'' \ \mathrm{et} \ \frac{\varDelta a}{a/W^2} < \frac{1}{600}$

nous pouvons établir la relation (18) ainsi:

$$d\varphi = \Delta a \left(1 - \frac{\Delta a}{6400} \right) \frac{e^{2}W^{2}}{2a} \sin 2\varphi \tag{19}$$

où nous avons développé

$$\frac{1}{1 + \frac{\Delta a}{a/W^2}} \tag{20}$$

suivant la série géométrique, tout en nous bornant au membre du premier ordre et en adoptant pour a/W^2 le chiffre rond de 6400 km.

L'erreur provenante de ces simplifications ne dépassera pas $1'' \times 10^{-5}$ en $d\varphi$.

Si dans les formules (19) nous posons:

$$\Delta \bar{a} = 10^{-4} \cdot \Delta a - 10^{-4} \cdot \frac{\Delta a^2}{6400} = 10^{-4} \cdot \Delta a - \delta \Delta a$$

$$K = \frac{10^4 \cdot \varrho'' \cdot e'^2 \cdot W^2}{2a} \sin 2 \varphi$$
(21)

nous obtiendrons les formules suivantes destinées au calcul:

$$tg \varphi_1 = (1 + e'^2) Z/D$$

$$d\varphi'' = \Delta \bar{a} \cdot K$$

$$\varphi = \varphi_1 + d\varphi$$
(22)

Pour l'utilisation pratique de (22) il sera necéssaire que des tables soient calculées pour les valeurs de K et de $\delta \Delta a$.

Envisageons maintenant la formule de Riener, présentée sous la forme:

$$tg\varphi = tg\varphi_1/C$$

où

$$C = 1 + e^{2} \frac{H}{N + H} \tag{23}$$

Nous remplaçons dans l'expression précédente N et H selon (15) et après des transformations similaires à ceux qui ont été opérés avec les formules (14), nous obtenons:

$$C = 1 + \Delta a \left(1 - \frac{\Delta a}{6400} \right) \cdot \frac{e^{2}W^2}{a} \tag{24}$$

ou bien en posant:

$$\Delta \bar{a} = 10^{-4} \cdot \Delta a - \delta \Delta a$$

$$L = \frac{10^4 \cdot e^{\prime 2} W^2}{a}$$
(25)

nous arrivons aux formules pratiques suivantes:

$$egin{aligned} & ext{tg}\,arphi_1 = (1 + e'^2)\;Z/D \ & C & = 1 + \overline{\varDelta a}\cdot L \end{aligned} \ & ext{tg}\,arphi & = ext{tg}\,arphi_1/C \end{aligned}$$

Nous calculons à une minute près la valeur de φ_1 à partir de laquelle on tire d'une table la valeur de L.

La comparaison des formules (22) et (26) donnera une préférence marquée à cette dernière, en effet la table de L ne présentera qu'une demie-page, tandis que celle de K aura un volume plus considérable (intervalle 10') et par conséquent d'une manipulation bien plus difficile.

Pour le calcul de la hauteur nous disposons de la formule très commode de Nicolaev:

$$H = \Delta a \cdot W \tag{27}$$

laquelle harmonise parfaitement avec les formules (22) et (26), dont on calcule φ .

On peut contrôler le calcul de φ et de H très facilement par la formule de Hirvonen:

$$H = Z \sin \varphi + D \cos \varphi - a \cdot W$$

$$D = \sqrt{X^2 + Y^2}$$
(28)

Littérature

- [1] Pavlov~K.: Sur la transformation de coordonnées rectangulaires spaciales X, Y, Z en coordonnées géographiques φ , λ , H. «Guéodésia, Kartografia, Zéméoustroistvo», 1967, No 5, Sofia (bulg.).
- [2] Boutkiévitch A.: Transformation de coordonnées rectangulaires spaciales en coordonnées géodésiques B, L, H. «Guéodésia i kartografia», 1963, Nº 10, Moscou (russe).
- [3] Riener K.: Geometrie mit Raumstrecken. «Zeitschrift für Vermessungswesen», 1958, 83, N^{o} 3.
- [4] Hirvonen R. A.: Praktische Rechenformeln für die dreidimensionale Geodäsie. «Zeitschrift für Vermessungswesen», 1964, No. 5.

Exemples numériques et tables

Ellipsoïde de Hayford

	$D = \sqrt{X^2 + Y^2}$ $\bar{a} = \sqrt{X^2 + Y^2 + (1 + e'^2)Z^2}$ $\Delta a = \bar{a} - a$ $H = \Delta a \cdot W$	$egin{aligned} ext{tg} arphi_1 &= (1+e'^2)Z/D \ &arDelta a &= 10^{ ext{-}4} arDelta a - \delta arDelta a \ & C &= 1 + arDelta ar{a} \cdot L \ & ext{tg} arphi &= ext{tg} arphi_1/C \end{aligned}$			
X Y Z D \overline{a} Δa H	4 092 237,057 3 069 177,793 3 810 713,173 5 115 296,321 6 386 397,6983 8 009,6983 8 000,0001	$egin{array}{c} { m tg} arphi_1 \ pprox arphi_1 \ 10^{10} \cdot L \ egin{array}{c} \Delta ar{a} \ C \ { m tg} arphi \ arphi \end{array}$	0,75000 63510 36°52′ 1 05855 0,79997 1,00000 84680 0,75000 00000 36°52′11″,63153		

Ellipsoïde de Krassovsky

	$D = \sqrt{X^2 + Y^2}$ $\bar{a} = \sqrt{X^2 + Y^2 + (1 + e'^2)Z^2}$	$egin{aligned} \mathrm{tg} arphi_1 &= \left(1 + e'^2 ight) Z/D \ & artriangle ar{a} &= 10^{\text{-4}} \cdot arDelta a - \delta arDelta a \end{aligned}$				
0.0	$\Delta a = \overline{a} - a$	$C = 1 + \Delta \bar{a} \cdot L$				
	$H = \Delta a \cdot W$	t	$\mathrm{g}arphi = \mathrm{tg}arphi_{1}/C$			
X	4 531 527,896	$ ext{tg} arphi_1$	0,99420 43326			
Y	158 244,441	$pprox arphi_1$	44°50′			
Z	4 187 836,809	$10^{10}\!\cdot\! L$	1 05297			
D	$4\ 534\ 290,0632$	$\Delta \overline{a}$	0,50044			
\overline{a}	$6\ 383\ 253,\!3389$	C	1,00000 52695			
Δa	5 008,3389	$\mathrm{tg} arphi$	0,99419 90937			
H	5 000,000	φ	44°50′00″,00000			

Ellipsoïde de Hayford

φ		W	
36°30′	0,99881	000	937
40′	880	063	938
50′	897	125	940
37°00′	0,99878	185	942
10'	877	243	944
20'	876	299	945
37°30′	0,99875	354	

$Ellipso\"ide\ de\ Krassovsky$

φ		W	
44°00′	0,99838	374	975
10′	837	399	975
20′	836	424	975
30′	0,99835	449	975
40′		474	975
50′		499	975
45°00′	0,99832	524	

Tables pour $10^5 \cdot \delta \Delta a$

H_M	000	100	200	300	400	500	600	700	800	900
0000	0	0	0	0	0	0	1	1	1	1
1000	2	2	2	3	3	4	4	5	5	6
2000	6	7	8	8	9	10	11	11	12	13
3000	14	15	16	17	18	19	20	22	23	24
4000	25	26	28	29	30	32	33	35	36	38
5000	3 9	41	42	44	46	47	49	51	53	54
6000	56	58	60	62	64	66	68	70	72	75
7000	77	79	81	83	86	88	90	93	95	98
8000	100	103	105	108	110	113	116	118	121	124
9000	127	130	132	135	138	141	144	147	150	153

Table pour $10^{10} \cdot L$

Ellipsoïde de Hayford

φ°	0	1	2	3	4	5	6	7	8	9	d
0	106 111	111	110	109	108	106	103	100	097	094	0-3
10	106 089	085	080	075	069	062	057	050	043	035	4–8
20	106 028	019	011	002	993	984	974	964	954	943	9–11
30	$105 \ 932$	922	910	899	888	876	865	853	841	828	10-13
40	105 816	804	792	779	767	754	742	729	717	705	12–13
50	105 692	680	668	656	644	632	621	609	598	587	12-11
60	105 576	565	554	545	535	525	516	507	498	489	11–9
70	105 481	473	466	459	452	445	439	434	428	424	8–4
80	105 419	415	411	408	405	403	401	400	398	398	4-0
90	105 398					ere e					98

Table pour $10^{10} \cdot L$

$Ellipso\"ide\ de\ Krassovsky$

φ°	0	1	2	3	4	5	6	7	8	9	d
0	105 649	649	648	647	645	643	641	638	635	631	0-4
10 20	$105\ 627$ $105\ 566$	623 558	618 549	613 541	607 532	601 522	595 513	588 503	581 493	574 482	4–7 8–11
30	105 473	461	450	439	427	416	404	392	381	369	11–12
40 50	$105 \ 356$ $105 \ 234$	$\begin{array}{c} 344 \\ 221 \end{array}$	$\begin{array}{c} 332 \\ 209 \end{array}$	320 198	307 186	$\frac{295}{174}$	282 163	270 151	258 140	246 129	12–13 13–11
60	105 234	108	097	087	077	068	058	049	041	032	10-8
70	105 024	016	009	002	995	989	983	977	972	967	8–5
80 90	104 963 104 941	959	955	952	949	947	945	943	942	942	4–0
90	104 941		0.7				W.	23			