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Der hyperoskulierende Kegelschnitt der Klothoide

Z. Nadenik, Prag

Zusammenfassung

Kurze Herleitung der Konstruktion des hyperoskulierenden Kegel-
schnittes der Klothoide und Kriterium, wann dieser eine Ellipse bezie-
hungsweise Parabel oder Hyperbel ist. Der hyperoskulierende Kegel-
schnitt 148t den Ansatz rasch konvergierender Nidherungsformeln fiir
Absteckungen von Sehnen und Tangenten der Klothoide zu.

Im folgenden werden fiir die Klothoide K mit dem Parameter A die Be-
zeichnungen nach Abbildung 1 verwendet. (Wenn B zwischen B, und dem
Wendepunkt W liegt, so ist o < 0.)

y

Die Transformationsgleichungen fiir die Koordinaten z, y und z, j des
Punktes B sind \

T = (T — Zy) €087y + (Y — Yo) sinz,
(1)

y = — (T — Ty) sinty + (§ — Yo) cos7y
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Die fundamentale Parameterdarstellung von K ist:

s

x =fcos“2A2 , —fsm , d (2)

0

= ? . 2 '
0 0

mit 7, im Bogenmal

Folglich gilt

Ty = So%/2 A? (4)

Nach dem Einsetzen von (2) bis (4) in (1) erhilt man

f S e dl sr So° +f i * dl i S0’
X = CcO s « COS——— S1n - . e e
9 A2 2 A2 92 A2 SIS Az
- 12 _ 302
= §—— dl 5
- L1 — sy
= | Bl

Durch die Substitution ! = 4 — s, kann man die Integrale rechts in (5)
wie folgt umformen:

a g

A sy + Yy A2 . A Se - %12 _
P = fcos RYTEE di, y =f51n YT di ; (6)
0 0

denn beil = s, beziehungsweise ! = s gilt offensichtlich A = 0 beziehungs-
weise A =85 — sy = 0.

Entwickelt man die Integranden in (6) nach den bekannten Formeln
in Potenzreihen und integriert dann, so ergibt sich

(7)
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Der nicht ausgeartete Kegelschnitt, welcher im Punkt B, mit der Klo-
thoide K eine gemeinsame Tangente hat, besitzt die Gleichung

ax? +20xy+cy*+2y£0 (8)
wo a, b, ¢ = konst., a = 0.

Das formale Einsetzen aus (7) in (8) gibt nach ganz einfachen Umfor-
mungen:

02{a+so PR P B }+
Az AT T 34z
(9
1) _ ___802 __1 _ So’ — S0’ } 4
+“{ Coan TP g Vg T gae T U

Folglich hat der Kegelschnitt (8) mit der Klothoide K im Punkt B, eine
Beriihrung 4. Ordnung (das heit «fiinfpunktige» Berithrung) dann, und
nur dann, wenn

So ' | 4 At — 9 st

:-—-——,b:—— 3 = 10
¢ A? 3s, ' °© 0 AZ 58 (10)

Die eingehendere Untersuchung zeigt, daB eine héhere Berithrung un-
moglich ist. Der Kegelschnitt (8) mit den nach (10) bestimmten KoefTi-
zienten — das hei3t der sogenannte hyperoskulierende Kegelschnill — ersetzt
die Klothoide in einer Umgebung ihres vom Wendepunkt verschiedenen
Punktes B, am besten*.

Der Kegelschnitt (8) ist eine Ellipse beziehungsweise eine Parabel
beziehungsweise eine Hyperbel, je nachdem #* — ac < 0 beziehungsweise
= 0 beziehungsweise > 0. Dementsprechend ist nach (10) fir

4
/5 .
A ] 9 < s, beziehungsweise = s, beziehungsweise > s,

der hyperoskulierende Kegelschnitt %, von K im Punkt B, eine Ellipse
beziehungsweise Parabel beziehungsweise Hyperbel.

Nach dem Einsetzen aus (10) in (8) kann man die Gleichung des
hyperoskulierenden Kegelschnittes x», folgendermalen umformen:

Yy —3px) =97 (@ +y* —2R,y) =0 (11)
WO
Az
R, = (12)
So

* Literaturhinweis: 4, Abschnitt des Aufsatzes «Uber Formeln zur Absteckung
von Klothoidenpunkten durch rechtwinkelige Koordinaten ...». Von Z, Nddenik in
Préace CVUT, IV/2, Praha 1964,
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der Krimmungsradius von K im Punkt B, ist und 7, den durch (4) ge-
gebenen Winkel der Wendetangente mit der Tangente {, von K im Punkt
B, bezeichnet.

Die Gerade y = 3 7, x schneidet den in B, konstruierten Kriimmungs-
kreis k, von K auller in B, noch im Punkt 7';, welcher nach (11) ein Punkt
des hyperoskulierenden Kegelschnittes x, ist. Die Tangente { von x,
in T, hat nach (11) die Gleichungx -+ () y — 2 R, r, = 0. Die Tangenten
{ und ¢, schneiden sich deshalb nach (12) und (4) im Punkt mit der
Abszisse s,. Aus diesen Angaben kann man schon den Punkt 7, und die
Tangente (¢ leicht konstruieren (s. Abb. 2).

Die projektive Geometrie der Kegelschnitte bietet nun fiir den durch
den Punkt 7, mit der Tangente ¢{ und durch den Punkt B, mit dem
Krimmungskreis k, eindeutig bestimmten hyperoskulierenden Kegel-
schnitt x, folgende einfache Konstruktion seiner weiteren Punkte
(s. Abb. 2): Es sei p eine beliebige Gerade, welche durch den Punkt B,
geht und von der Verbindungslinie B, 7', verschieden ist. Es seien P und
P’ die Schnittpunkte der Geraden p mit den Tangenten des Kegel-
schnittes %, und des Kreises k, im Punkt 7. Es sei ferner ¢ eine beliebige
Gerade, welche durch den Punkt B, geht und von den Geraden ¢, p
verschieden ist; ihre von B, verschiedenen Schnittpunkte mit dem Kegel-
schnitt », und dem Kreis k, bezeichnen wir mit Q und Q’. Den gesuchten
Punkt @ von x, konstruieren wir unmittelbar aus der Bedingung, dai
der Schnittpunkt der Verbindungslinien P’Q’ und PQ auf der Ver-
bindungslinie B, T, liegen mub.
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