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DK 517.54:528.235.1

Représentation eonforme
et la méthode du facteur intégrant

B. Rogueff et L. Dimoff

Résumé

On montre l'application de la théorie du facteur intégrant bien connue en
analyse mathématique - dans les problèmes de projection conforme dans
la cartographie.

Les auteurs étudient la représentation conforme d'une surface gauche
(surface non développable) sur une surface développable et sur le plan et
en particulier la représentation conforme sur une surface de révolution et
le plan. Ils continuent avec la représentation conforme de l'ellipsoïde
terrestre sur un plan et aboutissent avec la projection classique de Gauss.

Zusammenfassung

Die Integration einer Differentialgleichung mit zwei Veränderlichen hat
Euler durch die Theorie des integrierenden Faktors verallgemeinert. Sie
wurde später von Jakobi für Systeme von Differentialgleichungen erweitert.

Die Theorie des integrierenden Faktors findet in der mathematischen
Analyse der konformen Abbildungen Anwendung.

Die Verfasser wenden die Theorie für die mathematische Kartographie
an, indem sie eine konforme Abbildung einer unabwickelbaren Fläche auf
eine abwickelbare Fläche betrachten. Sie schließen nach derselben
Methode auf zylindrische, kegelförmige und andere Abbildungen des
Erdellipsoids und wenden sie zuletzt auf die Gaußsche Projektion an.

1. Représentation conforme

La méthode d'intégration d'une équation différentielle à deux variables
séparées a été généralisée par Euler avec sa théorie du facteur intégrant
et puis elle a été développée par Jacobi aux équations différentielles
simultanées.

Cette théorie trouve une application très importante dans les
problèmes de représentation conforme de la cartographie.

Soit (S) une surface analytique, définie paramétriquement par les

équations
x — x (u, v) y y (u, v) z z (u, v) (1)

où les paramètres u et y sont des coordonnées curvilignes et que nous
écrivons sous la forme d'une seule équation vectorielle

(2)

(3)

115

M M (u, v).

La différentielle 8M 8M
dM - - du + - dv

8u 8v



est l'élément linéaire de (S). Les deux vecteurs

8M 8M
8u 8v

sont tangentiels par rapport aux deux courbes

v const. u const.

(4)

(5)

de la même surface.
A l'aide de multiplications scalaires on trouve la première forme

quadratique
da2 dM2 Edu2 + 2 Fdu dv + Gdv2, (6)

où

8MV
~du)

_¦/ dx N2

8u

G

8M 8M
__

8x dx
dv du dv

8x^2
~8v~

8u

dy_dy_
du dv

_ / dM Y
TkTj

ET
8u

dz dz

8u 8v

2

+'1T TT
(7)

Soit N un vecteur de longueur 1, dirigé suivant la normale en un point M
de (S), défini par le produit vectoriel

8M dM
x

où

N

EG - F2

du dv

]JEG - F2

dM dM V
du

x-
dv J

Y+ o.

(8)

0)

Le produit scalaire de (8) par différentielle vectorielle

d2M d2M d2M 8M 8M
d*M =-^-du + 2ynrdudv+^nrdv* +-s-d2u +-sr-d2v (io)du2 du dv dv2 du dv

donne la deuxième forme quadratique de (S)

d2M ¦ N E'du2 + 2 F' du dv + G' dv2 (H)

avec
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E'

F'

G'

l dM dM

\ du ' 8v

d2M \
' du2

]/EG-
I dM dM

F2

d2M \
\ du dv dudv J

\JFG-
IdM dM

F2

d2M \
\ du dv ' dv2

]/eg- F2

(12)

où les nominateurs de la partie droite désignent les déterminants vectoriels.

Soit (S') une seconde surface analytique, définie par les équations
paramétriques

S S(«,ß) V V(*,ß) z z («. ß)>

que nous mettons encore sous la forme vectorielle par

SK SOI (oc, ß),

(13)

(14)

où a et ß sont les coordonnées curvilignes.
Pour (14) les formes quadratiques fondamentales sont respectivement

ds2 dM2 edot2 + 2 fdoc dß + g dß2

d2$jl ¦ 91 e'da2 + 2 fdoc dß + g'dß2

(15)

(16)

où par 9t on désigne la normale en un point WI de (S'), analogique à (8).
Chaque transformation ponctuelle

ou

a (u, v)

D (oc, ß)

D (u, vj

ß=ß.u, v)

=4= o

(17)

(18)

établit une correspondance entre les points des deux surfaces (S) et (S').
Pour qu'elle soit une représentation conforme, il suffit d'avoir entre (6) et
(15) une relation de la forme

ds2 fi2 (u, v) do2 (19)

Dans ce cas la transformation (17) conserve les angles. Quand /i prend
la valeur particulière

fl2 (U, V) — i,do-
(20)
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la transformation (17) est isométrique, qui conserve à la fois les angles et
les longueurs.

Remplaçons (17) dans (13), respectivement dans (14). On trouve

%fl=Wl[c.(u,v);ß(u, v)]

d'où

dm —— du
du

em
~dV dv

dm dm do. dm dß

du dcx du dß du

dm dm da dm dß

dv

et par suite

dot. dv dß dv

ds2 dm2 ex du2 + 2f1dudv + gx dv2

avec

(21)

(22)

(23)

(24)

(25)

/dm\2 1 doc\2 t
da. dß dß\*

dm dm
_

da. dß /jte dß doc 8ß \ doc dß
1 du dv du dv \ du dv dv du I dv du

dm\2 I doc\2 „, doc dß

dv

(26)

Suivant (3) et (22) pour (S) et (S') on peut écrire

dM dM du dM dv dSW dm du dm dv

do du do dv do ds du ds dv ds
(27)

ou bien

dM dM
1 dM du \/e du dv ]/g dv dm

ds

dm dm
du ]/ea, du dv y g,, dv

/u, do ]/e fi da ]JG /j, do
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Il est à remarquer que les vecteurs

dM dM dM
da du dv

1/G

dm dm dm
ds du dv

sont des vecteurs unitaires.

H 9x

(29)

Supposons

1 du

jx da Vë

qu'on remplace dans (28). On en tire

1 dv

fi da Yg

dM dM dm
1 dM

ft da

du dv
-yy- x + yy v
]/e yg

dm
ds

dv

IT ¦x' +

em
dv'

lîx
et par des multiplications scalaires on trouve les équations

fi2 x'2
2 F

-x'y' + y'2) 1
9x

(30)

(31)

V~EG I E

des indicatrices (cercle et ellipse) de Tissaut

+ ^Jyx'y' ; y y'2 (32)
]/EG ]/G

Mais la transformation (17), respectivement (21), doit être une
représentation conforme de (S) sur (S') qui conserve les angles. Dans ce cas
l'angle d'intersection de deux courbes quelconques de (S) est égal à

l'angle d'intersection des deux courbes correspondantes de (S').
Pour qu'il soit ainsi on doit avoir les deux indicatrices - deux cercles

au rayons égaux, ou bien le système des équations

fx

F
fli
G ,y (33)

équivalent à (19).
En définitive on a au moins deux équations pour déterminer les deux

inconnues (17). Le problème aura en général une solution.
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2. Méthode du fadeur intégrant

Au lieu de (S') on considère un plan (n), et au lieu (13) et (15) on écrit

f « X n ß Y C 0 (34)

ds2 =dX2 + dY2 (35)

dSDtY

dX =1 '
dm dm
dX dY

0 g ay j i (36)

L'élément linéaire (6) peut être représenté sous la forme d'un produit de
deux facteurs

da2 yE du H T= dv
Vb

'i/tt F-iVEG- F2
yE du H 1~ dw

KF
(37)

Chacune des expressions

,/— F + ìVeG- F2 JVe duy —y= dv
Vë

i— F-i yEG - F2
/E du -i T= dv (38)

VË

admet un nombre illimité de facteurs intégrants, qui sont aussi des
fonctions analytiques.

Soit fi^ et ft2 deux facteurs. Posons

U,, X + iY U2 X - iY.

Suivant (19), (33), (35), (38) on peut écrire les identités

dU1 dX + idY fit

dU2 dX - idY fi2

\i— F+i VEG -F2 yVE du + —y= dv
Vë

\i— F - i VEG - F2
VE du -| T= dv

Vë

avec /z,, fi2 fl'

(39)

(40)

(41)

(42)

Or, les membres gauches (40), (41) sont évidemment des différentielles
exactes; il en est de même pour les droits, d'où les deux conditions
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d

dv
fjt^E

d
~ Tu

d
HtVË

d
~ Tu

F + i VEG - F2~

Vë

Vëg

Vë
F2

(43)

d'intégrabilité des équations (40) et (41).

Supposons que /ilf Ux et fi2, U2 sont connues. On peut obtenir tous les

autres facteurs intégrants par relations de la forme,

fiK'= fiK0(UK) (44)

où 0 UK) est une fonction arbitraire de UK, respectivement de Uj, et U2.

3. Surface développable et plan

La forme générale de l'équation d'une surface réglée, rapportée à ses
coordonnées curvilignes ac et ß, est donnée

P (a, ß) a(ß) + ocb(ß) (45)

ai OS) bx(ß)

a2(ß) K<ß)

as(ß) b.(ß)

(46)

composantes de vecteurs a (ß), b(ß), fonctions de la seule variable ß.

Par rapport à un système de coordonnées rectangulaires £??£ les
équations paramétriques de (45) sont

S a.(ß) + ocb,(ß) rj a2(ß) + ocb2(ß) f a3(ß) + ocbs(ß), (47)

et au lieu de (7) et (12) on écrit respectivement

9

dP\2
ToTJ

dP dP
~doT '~dß

idpy-

z>2

da db
b + ocb -dß dß

da db \2

(48)
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et

sr =¦

da db

: da db \2 I da db Y2

da db db \
b'W + aWWÌ

; da db Y I da db \2
bi[dß+«w)-{b-W + ab-Tß)

da db d2a d2b

b'Tiß+adß'W + aTß2

/da db \2

b'T>+y b -
da

~dj
a. b •

db

Iß

(49)

Il est évident que e' est égal à zéro.
On démontre que la surface (45) est développable si la condition

e'g' - /' 0 (50)

est identiquement vérifiée par (49). Or e' est nulle, cette condition devient

/'

da db db

b'Hß+aTiß'TTß

\dß

ou bien, suivant (46)

/ da db Vb2(-^ + ocw)-lb

da db\
_

bx

da db \2

T + ocb-¥

dûj dôx

~df ~dß

da2 db2

~dß ~dß

da3 db3

~d~ß ~dß

0.

0 (51)

(52)

Désignons par te,, a2, a3 trois scalaires, qui ne sont pas tous nuls et qui
sont des fonctions de ß; au lieu de (52) on aura la relation

da db

^Tß+0C2W + X3b 0

da db
qui montre que les vecteurs ——, b, —— sont coplanaires.

dß dß

(53)
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Si a (ß) est constant (da 0), la surface P (oc, ß) est un cône ou bien,
en cas particulier, un plan.

Pour aj 0 (53) devient

db
oc,, „ + a., b 02

dß
3 (54)

db
et les vecteurs b et - sont colinéaires.

dß

Quand b est unitaire, il est orthogonal

db
b - —- 0

rf/3
(55)

dö
à sa dérivée Dans ce cas de (54) on tire

dß

db

Hß
0 (56)

Le vecteur b est alors invariable et la surface développable P (oc, ß) est un
cylindre.

Pour xx 4= 0 et ocs 0 (53) donne la condition

da

TtJ
oc- db db

oca, ~dß=K~dß (57)

da db
de la colinéairité des vecteurs —— et ——

dß dß

De (56) et de l'égalité scalaire

da
b ¦

dß
±b

db

Jß

¦*s; HÎJ
(58)

on peut conclure que les lignes oc const, sont parallèles à la ligne

P(0 ß) a(ß) (59)

123



Mettons (57) dans (48) on trouve

3P\-
doc

b2

dP dP I db
f =-dy-dj (K + x)[b-Tß

/ dP\2 / db V
°={w) "'+Tw)

(60)

et les expressions (15), (40), (41) sont remplacées par

db\
r (k

I db
ds2 b2doc2 + 2 b ¦ —-1 (k + oc) doc dß + (k + a)2 I — dß2 (61)

dUx dX + idY fiAyb2doc +

dU2 dX - idY fiAyïTdoc +

"'W1''" Hwî db\2
\lb2

avec

"whViwî-TP'
fia,' ¦ fl/ fl'2 1

\lb2

dß\ (62)

dß) (63)

(64)

Les équations différentielles (62) et (63) admettent les facteurs intégrants

fjtx e*0 ft2 e~

avec

et

IHwhTdb Y S db Y dß

dß j \ dß J b

(65)

(66)

dUa,

doc
Vb2 e«

d'où

dU a,

"df
db

b-w] + i «$n-F Vb
=—e''9, (67)

Ux fj/ô2 e*edoc >(ß) Vb 2 piee^oc + y(ß) (68)
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De l'équation (68) et de la seconde égalité (67) on déduit

dy
-dß

db\
b ¦ —-s )+ idß) HfR-r Vb2

(69)

et puis l'intégrale

Ua, Vb2 e''9 oc + l k

de l'équation (62).

•¦£M*&R-r pie

-z^dß
Vb2

(70)

Donc la transformation isométrique d'une surface développable (P)
sur un plan (n) est déterminée par

X Vb2 oc cos I

y Vb2 oc sin 9 + k

(e |-)cosO - H£)*-
d^

(71)

/KfJ-KR (72)

On voit bien que ces équations sont linéaires en oc. Les lignes ß const,
sont des droites, géodésiques du plan (n). De même ces lignes sont des

images de droites génératrices, c'est-à-dire des lignes géodésiques de la
surface développable (P).

Les lignes oc — const, sont parallèles entre elles, sans être orthogonales
à la ligne ß const.

La condition de l'orthogonalité (50), respectivement (51), s'écrit

dP dP I db

f-da-dß-(K + X)[b-~dß (73)

et elle reste équivalente à (55). Dans ce cas au lieu de (66), (71) on met

W"
X oc cos /csin I

oc sin 0 + f' coso

'(-ri*

avec
b2 1

(74)

(75)
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De la représentation conforme de la surface analytique (S) sur un plan
(n) et de la représentation conforme de la surface analytique (P) sur un
plan (n) on passe à la représentation conforme de (S) sur (P). En égalant
(40) avec (62) et (41) avec (63), on trouve les équations différentielles

(,,— F + iVEG -F2
fia, U/Edu + L= dv

fia,' | Vb2 doc +
db

b'W'+' ¦»vH-vl
F -iVEG-F2aA VE du -\ "—= dv

fi2' \ Vb2 dx + »>-

Vb2
dß) (76)

Hwî-TÏT \Tb2
dß (77)

f*l • 1*2

/ t
(ÀX * //2

fï< (78)

Les intégrales de ces équations donnent les transformations conformes

a a (u, v) ß ß (u, v) (79)

de la surface originale (S) sur la surface-image (développable) (P).

4. Surface de révolution et plan

Supposons que (S) est une surface de révolution, dont l'axe de symétrie
coïncide avec l'axe Oz. Au lieu de (2) et (1) on écrit

M M (u, v) (80)

x q (u) ¦ cosi; y q (u) ¦ sin y z — u (81)

Les composantes des vecteurs
dM dM d2M d2M
du ' dv

sont données respectivement par

cosy
dg
Tbl

— q sin y

sin y
dç
Tu

q cosy

du2 du dv
et

d2M
dv2

(82)

(83)
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d'où

et

d2Q
— - cosy

du2

d2g
— sin y
du2

sino
dg
Tu

g cosy

dQ

du
cosy

g smy

dM dM
F =0

du dv

/ dMY

d2£>

du2
£"

F'

1 +
fdQ\»

du

G' dg\-
du

0

0

(84)

(85)

(86)

(87)

(88)

Suivant (87) on peut écrire au lieu de (40), (41)

dUa,=- dX y idY fia. l+(^fdu+tedv

dU2 dX - id y fi2

qui admettent le même facteur intégrant

1 f |— j du — igdv

fix fi2 fi g(u)

et dont les intégrales sont

(89)

(90)
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RFWR
y

const,

const.
(91)

Elles établissent une transformation ponctuelle et une représentation
conforme de la surface (S) sur plan (n).

5. Ellipsoïde terrestre et plan

Comme la surface de révolution ellipsoïde terrestre est connue par l'équa
tion cartésienne

x2 + y2 z2

<V 6„2

où a,, et 60 sont ses demis-axes principaux.

Si on pose

u z y A g a,,

au lieu de (81) et (87) on a successivement

/ za
X ao r~ h 2

ua

et

cos X y a0 sin A

E-rr

n 2 r, 2
¦ "0 ü0

Ä 2

z0

7) 2y0

7 2

F= 0

Au lieu de (91) les intégrales deviennent

(92)

(93)

(94)

(95)

/^ / a02-V z2

dzR- V-V /
«o2 J 1--

K̂2
h

y X + const.
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Si l'on remplace

z |l - °°2 W
}Nsincp z — a0 sin y>

où cp est la latitude géographique, y la latitude réduite et

(97)

(98)

1-

(94) et (95) changent respectivement

sin2 cp

x N cosy cosX

y N coscp sin A

1 _
"o2 - bo

x a,, cosy COSX

y — a0 cosip sin X

N sinç? z b0 siny

(99)

£ 1
«o2 - V Y W £ a„2i

(7 2 — /) 2

F 0

G N2 cos2cp

y
F -r. 0

G a02 cos2y

cos'ip

(100)

d'où les équations différentielles (89) sous les formes

dcp + i N coscp dXdC71 dX + idY /ix

dU2 dX - idY fi2

N3 / q„2 - K2

a.2 \ a02

N3 t. a02 - V
-^T (^ ^i dçp - i iVcosçp dA

(101)

avec

et

/<1 /*2 N coscp
(102)

dC71 dX + i(îy ft

d[72 dX - idY fi2

o«2
cos2 ip dip + i a0 cos y dA

(103)

Oo 1 cos2y dy — i a„ cosy dA
ao
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avec
fix fi2

a0 cosy
(104)

Les intégrales générales de ces équations sont

a 2 _ h 2

; dtp + const.
«o2-V *

sm2cp coscp
^0 /

A + const.

0

Y

h «o2 - K2

ao2
cos Jy

dy + const.

+ const.

(105)

('- cosy

A

La quantité

a 2 — h 2

1 -
dcp

sin^r/) cos99

(106)

est connue comme latitude croissante ou variable de Mercator.

6. Projection cylindrique

Le cylindre c'est une surface développable. Il est défini par (45), avec
composantes de vecteurs

fll Ro cos/?

a2 Bo sin/?

«3 0

bx 0

h 0

y., 1

(107)

La première forme quadratique de cette surface est

1 daY nds2 dP2 da2 + — dß2 (108)

qui nous permet d'écrire au lieu de (76)

a 2 fi 2 \ j\T3 Ì

/ia, \ 1 ——— I —— dcp + i N coscp dX * /i,,' \ doc + i
da

dß (109)
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avec

fix

N C0SÇ9

1

R„

et

L'intégrale générale est

'(*;-*•

n 2 — h 2
"o "o

oc R0 dcp--- R0q

sm-'cp coscp

(110)

(111)

(112)

En posant
X oc R0 q

Y =R0ß =R0X (113)

on retrouve les équations définitives de la projection cylindrique de
Mercator.

7. Projections coniques

La développable (P) est un cône, qui est tangent à l'ellipsoïde terrestre
tout le long du parallèle

<P <Po (114)

L'équation vectorielle reste (45) avec composantes des vecteurs

ax 0

a,= Nn

a «o2-V 21 - sin2«?,,
"n

sin <p0

avec ß A et pour elles sont valables

bx sinr/>0cos/?

b2 sinç90 sin ß

b3 — cosçjq

(115)
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a const. b2 =1
da

0 b
db (116)

et la première forme quadratique s'écrit

/db Y
ds2 dP2 da2 + a2R-) dß2 (117)

ou

// db Y (118)

Des positions respectives du cône et de l'ellipsoïde terrestre on peut
conclure que cp croît lorsque la variable ac décroît et par analogie à (109),
respectivement à (76), avec k 0, permet d'écrire

IH 1-

où

a02 - V \ N3

et d'où

-dcp + i NcoscpdX /ix \ — doc + ioc

f*x =¦

Vx —¦

N coscp

1

doc

oc

1 -

db\2
W)

Or2 - 60!

a„2
T0 dÇ5

Oo2 - On2
1 —¦ — sin299)cos9j

dß

«o2

dX

(119)

(120)

(121)

Alors une intégrale particulière est donnée par

ß X
(122)

où q est la variable de Mercator (106).
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Pour avoir les équations définitives de la projection conique dans le
plan (n) on change (62), (63) respectivement avec

dUx dX + idY fi,,'\ - doc + ia

dU2 dX — idY fi2 \ — doc — ioc

vf«\ <123)

db Y
dß

dß (124)

et

/ix e" fi2 e-*

/la,' ¦ fl2' 1

(125)

(126)

En tenant compte des conditions d'intégrabilité

d d 1 db Y 1 \
— eif> ia e'9 /w doc

d

l\dß)
_

d // db Y '
e-iB ia e'ie / —w da l\dß)

_

¦

(127)

au lieu de (66), (70) de (123) et (124), on tire

Ô - r0Jdß - T„ ß

Ux X + i Y a e~«°ß + const.

(128)

(129)

d'où les intégrales

X — X0 — a cos (r0ß)

Y a sin (r0ß)
(130)

ou bien

X X0 — a0 e-1» - cos (t0A) |

Y a0 e-*« i sin (t0A)
(131)

avec (122).

133



8. Projection de Gauss

Avec u — cp, v X et F 0 sur (40) et (41) on en tire

dUx dX + idY fix [VËdcp + i VcdX]

dU2 dX - idY fi2 [VËdcp - iVGdX]

(132)

(133)

avec

et

V
a2 \ an2

IG N coscp

dcp ¦dq.

(134)

(135)

Les conditions d'intégrabilité (43) changent avec

dX

d
~d~X

btxm i~[^xVG}

[fi2yË] -i^\ß2vo]
(136)

ou bien, en remplaçant cp avec q,

_[/M21/g] -î—[fi2yG]

(137)

(138)

Au lieu de (132), (133) on a

dUx dX + idY fia,VG [dq + idX]

dU2 dX - idY fi2VË[dq - idX]

(139)

(140)
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où les produits fix [/G et /i2 VG sont des fonctions analytiques et dévelop-
pables en séries illimitées par rapport à A

flx VG fl0' + Xjlx + X2fl2 + + Xnfln' + ¦¦

fi2 [/G fi0" + Xfix" + A>2" + + A>," +

(141)

(142)

où fi0', fix, fi2, et fia", fix", fi2", ne sont que des fonctions de cp,

respectivement de q (106).

On remplace (141) et (142) dans (137) et (138). On trouve

Ih

i dfi0'
1 dq

i dfix
2 ~dq~

i dfi2

3 dg

1 d2fi0'

2 dq2

i d3/i0'

3! dq3

Ih

fi2

Ms

(' dfi0"
1 dq

i dfix" 1 d2fi0"

2 dq 2! dq2

i dpt2"

3 dq

i d3fia"
""

3 dq3

(143)

Par définition la projection de Gauss est conforme, pour laquelle la
longueur du méridien central (X 0) reste invariable.

Avec dX 0 et

da VE dcp Vcdq

sur le même méridien et de (139), (140) on a

d'où donc

et

da dX fix VG dq Vc,dq |

da dX fi2 \lG dq Vodq >

fix fi2 1

,«o' Mo" yg

(144)

(145)

(146)

(147)
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Remplaçons (147) dans (143); on en tire

kVg-V5+±^ +^^ +^^ + -.. <148>^1V v II dq 21 dq2 3! dq3

„ 1/7T uw <-"> rfl/G (- *A)' d2VG (-ÌX)3 d3VG
fl*\/G VG+ u -^- + -Yi dqï-+-^-l dq— + -

(149)

et on voit que (148) et (149), respectivement (141) et (142) sont des

développements en séries de Taylor dans le voisinage d'un point

cp cp X 0 (150)

du méridien central.

Pour q const., dq 0 portons (148), (149) en (139) et (140). Après
une intégration élémentaire par rapport à X, on en tire définitivement la
projection classique de Gauss avec l'équation

iX a,- X2 dVÏÏ- iXa d2l/G ,..,.„Z=X + iY=B+ — Vg '- '-— + (151)
11 v 21 dq 31 dq2

où

<p

B (VE dcp (152)
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