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Die Massefunktionen und das Niveauellipsoid

von K. Ledersteger, Wien

"Wir stellen der auf die zonalen Glieder beschränkten Potentialentwicklung
des tatsächlichen Erdkörpers

k2E
1

OO

V JJ-^Yp»(cos0)1 (1)

die analoge Entwicklung des Normalsphäroides gegenüber

k2E
U fl - 2] Jn I-yf Pn(COS&) (2)

worin alle ungeraden Massefunktionen verschwinden, während die geraden

Massefunktionen derart rapide abnehmen, daß wir die Entwicklung
auf

U.
k2E a

1 -J_[ ~ TP, - Jl(~\ I\ (2a)

beschränken dürfen. Damit ergibt sich die Restfunktion T (V — U)
in der Gestalt

- - **.\YjJ±
r i—e

n= 2

Pn- JI
r I \ r

Px (3)

Hierin seien die Massefunktionen auf die Niveaufläche mit dem Äquatorradius

a 6378,16 km bezogen. Ihr Einfluß nimmt nach oben ab; so ist
in einer Höhe von 1000 km bereits (a/r)2 ~ 0,7473 und (a/r)* ~ 0,5585.
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Vernachlässigt man ganz im Sinne der Stokesschen Näherung die
Abplattung, ersetzt also a durch den mittleren Kugelradius R, so wird

und
oo

k2E rvi /RY + 1 „1
Tr - -£- 2j (J" _ J"} (TJ P"(C0S } ' (5)

Ist beispielsweise A die Höhe eines künstlichen Satelliten (r R + h),
so gehen die Fehler der abgeleiteten Massefunktionen im Verhältnis
(1 +h/R)n + 1 vergrößert in die Potentialfunktion Vr ein. Der
Ausdruck (5) für die Restfunktion ist selbstverständlich noch um die in (1)
vernachlässigten längenabhängigen Glieder zu erweitern. Hat das
Normalsphäroid die beiden Trägheitsmomente C und A* (A + B)/2 mit
dem wirklichen Erdkörper gemeinsam, so verschwindet die Differenz
(J2 — J%) exakt. Ferner verschwinden, wenn nur die Koordinatenachsen

mit den Hauptträgheitsachsen des Erdkörpers zusammenfallen,
mit den Deviationsmomenten

jÇr)dm f-nÇdm =/££ dm 0 (6)

auch drei zugeordnete Kugelfunktionen 2. Ordnung, so daß nur die
sektorielle Funktion

C2<2= -(B - A):4ER2 (7)

übrigbleibt, welche bekanntlich die sogenannte Elliptizität des
Erdäquators bewirkt.

Für das mit der wirklichen Erde volumgleiche Normalsphäroid,
welches keine Gleichgewichtsflgur ist, wohl aber eine Gleichgewichtsanordnung

repräsentiert, ergab sich in [1, S. 211] auf Grund der Ausgangsdaten

E 5976,106.10" g ; co2 5,317496.10"9 sec-2 ;
(8)

a* 6,378390.10« cm ; J\ 108271.KH ; J% - 315,5.1g-8

mittels des Helmertschen Gleichungssystems

«* 346175,4.1c-8 ; e* 335260,4.10-0 1 : 298,28 ;

/î - 347,8.10^ ; TC* ~ fl - 5,546 m ; y„ 977,9704 gai ;

ß* 530460.7.10-8 ; ß% 3382,9.10"8 ; Wo 62635,315.10' cm2 sec-2

Qm 5,5164 (8a)
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Im angenommenen Achsenwert ist die mittlere Kontinentalhöhe von
225 m nach der Preyschen Entwicklung der Höhen- und Tiefenverhältnisse

der Erde berücksichtigt. Zwecks Übergangs auf das Geoid (a
6378,165 km) hat man also y0 mit dem Preyschen Gradienten 0,2224
mgal/m, der einer Wasserplatte der Dichte 1,028 entspricht, zu
reduzieren und findet so y0 978,0204 gal, welcher Wert um ca. 12 mgal
zu klein sein dürfte. Selbstverständlich ist dieser kleine Widerspruch in
der empirischen Unsicherheit der wichtigen Größe k2 E begründet.

Der folgenden Untersuchung legen wir die Werte Kozais [2] für die
aus den künstlichen Satelliten abgeleiteten Massefunktionen J3 bis J6
zugrunde

Js - 255.10-8; J5 - 21.10-8

J4 - 165.10-8; Jt + 65.10-8.

Zunächst ergibt sich mit R 6371,2 km der Potentialwert k2 E/R
62563,8.10' cm2 sec-2. Mit y k2 E/r2 liefert sodann das Theorem von
Bruns gemäß (5) für die einzelnen Glieder die Undulationsanteile

ANr n (A Tn/y)r - R (J„ - J$ ffi" P„ (10)

Für J4 resultiert die Differenz (J4 - JJ) (- 165 + 316) + 151.IO"8,
also an der Oberfläche (r R) ATt — 0,0945.10' P4 cm2 sec-2 und
ANt — — 9,62 P4 m und in der Höhe h 1000 km analog zlT4

- 0,0456.10' Pt cm2 sec-2 und ANt - 6,21 P4 m. Für eine exakte
Näherung 4. Ordnung gehen wir vom Normalsphäroid (8) aus und finden
aus den Daten (E, co, W ,C-A, J4) in sukzessiver Annäherung

a 6378' j6,41 m ; e 335354,7.1g-8 1: 298,19 (11)

Diese Niveaufläche desselben Potentialwertes weist trotz der
Volumgleichheit mit dem Normalsphäroid im Pol und im Äquator Depressionen

auf, die durch (c — c*) — 9,59 m und (a — a*) — 3,59 m
bestimmt sind. Demgegenüber hat man jetzt aber /4 + 312,0.1c-8
und somit /imax + 4,975 m. Gleichzeitig ist die Differenz der
Radienvektoren der zugehörigen Ellipsoide in der Breite 45° (s — s*)
— 6,58 m, so daß das neue Sphäroid in dieser Breite um 3,94 m über dem
Normalsphäroid liegt. Vergleichen wir diese Ergebnisse mit der obigen
Näherung zl.ZV4 — 9,62 P4 m, so erhalten wir im Pol, im Äquator
und in cp 45° der Reihe nach: — 9,62 m, — 3,61 m und + 3,91 m,
und man sieht, daß die Abweichungen bloß 3 cm betragen. Damit ist
rein empirisch die Güte der Näherungslösung (10) erwiesen.

Für die Massefunktion J3 liefert (5) AT3= + 0,1595.10' (R/r)* P3
cm2 sec-2 und (10): AN3 + 16,25 (R/r)2 P3m. Man erhält also für r
R in den beiden Polen der Oberfläche die Undulationsbeträge ± 16,25 m,
welches Ergebnis unter dem sehr irreführenden Schlagwort von der
«Birnenform» der Erde bekannt ist. Nunmehr erstrecken wir die Unter-
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suchung auf alle vier obigen Massefunktionen, wobei bloß zu beachten
ist, daß im Normalsphäroid J§ und J§ verschwinden, während JJ
+ I.IO-8 ist. Damit wird an der Oberfläche in Metern:

AN + 16,25 P3 - 9,62 P4 + 1,34 P5 - 4,08 P6 (12)

und analog für die Höhen h 1000 km und für r 2R, SR und 4P:

AN + 12,140 P3 - 6,212 P4 + 0,748 P5 - 1,968 P6

AN + 4,062 P3 - 1,202 P4 + 0,084 P5 - 0,128 P6

zdiV + 1,806 P3 - 0,356 P4 + 0,017 P5 - 0,017 P6

zJAT + 1,015 P3 - 0,150 P4 + 0,005 P6 - 0,004 P6

und es ergibt sich folgende kleine Übersicht

Höhe, km <p + 90° + 45° 0° - 45° - 90°

r R + 3,89 + 1,15 - 2,33 + 7,89 - 31,29

r R + 1000 + 4,71 + 0,39 - 1,71 + 5,24 - 21,07

r =2R + 2,82 - 0,24 - 0,41 + 1,26 - 5,48

r 3P + 1,45 - 0,18 - 0,13 + 0,47 - 2,20

r 4P + 0,87 - 0,12 - 0,06 + 0,24 - 1,17

Unzweifelhaft müssen für jedes mögliche Störpotential die Undulationen
nach oben stetig abnehmen und in einer gewissen Höhe hinreichend
gegen Null konvergieren. Dies gilt für jeden der vier Terme gesondert.
Wegen der Beschränkung auf die vier zonalen Kugelfunktionen J3 — J6

gestatten die vorliegenden Ergebnisse noch keinen bündigen Schluß
hinsichtlich der Größe der Undulationen und deren Abnahme mit der Höhe.
Für die beiden Massefunktionen J3 und J5 allein würde man an den
beiden Polen die Undulationsbeträge + 17,59 finden, die für r 4P auf
+ 1,02 m absinken, während im Äquator stets AN 0 wäre. Umgekehrt
wäre bei Rotations- und Äquatorsymmetrie (J3 J6 0) an den beiden
Polen AN — 13,70 und im Äquator — 2,33 m, welche Werte sich für
r 4P auf — 0,15 m und — 0,06 m verringern. Hingegen weist obige
Tabelle auf einen Widerspruch hin, wie man aus der anfänglichen
Zunahme der Undulation über dem Nordpol und aus dem unmöglichen
Zeichenwechsel für cp + 45° eindeutig erkennt. Wie die Beschränkung

auf die beiden ersten Glieder von (12) beweist, liegt dieser Widerspruch

in der Unverträglichkeit der Massefunktionen J3 und (J4 — J%)

begründet.
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Um diese Frage näher zu studieren, überlegen wir folgendermaßen.
Die Massefunktion J3 — 255.IO-8 bietet keinerlei Anhaltspunkt. Eine
Asymmetrie zwischen Nord- und Südhälfte, welche in den polaren
Radien eine Abweichung von ± 16 m erzeugt, liegt anscheinend innerhalb
der empirischen Größe der Undulationen. Hingegen erscheint es sehr
bedenklich, wenn zwischen den Massefunktionen J4 — 165.IO-8 und
JI — 315,5.IO-8 ein Verhältnis von nahezu 1 : 2 bestehen soll. Wir
gehen auf das Normalsphäroid (8) zurück und finden hierfür das
Massenmoment 4.0. : Kl JI Ea* - 31,2077.IO56 g cm4. Die homogene
Wasserhülle habe die Dichte 1,028 und die Mächtigkeit 2601 m im
Äquator. Ferner lehrt die Gleichgewichtsflgur der Erde, daß der Ozeanboden

die etwas größere Abplattung von ungefähr e' 1: 297,3
336360.10-8 hat. Damit findet man die Volumina der Gesamterde V und
der Festerde V, ferner die Masse Oz des Ozeans und die Masse E' der
Festerde:

V 1083,336.1024 cm3 ; V 1082.000.1024 cm3 ; Oz 1,374.1024 g

E' 5974,732.1024 g (13)

Der Anteil des Ozeans am Massenmoment Kt wird

12
AKt 1,028 [(e2 - e3) Va4 - (e'2 - e'3) V a">]

35
(14)

+ 0,0260.1056 g cm4

so daß für die Festerde mit dem Äquatorradius a' 6375,789 km gilt:

Kt - 31,2077 - 0,0260 - 31,2337.1056 g cm4 (14a)

Ganz analog ergibt sich für eine homogene Kruste der Dichte 2,80, welche

bis in die Tiefe von 33 km reicht (a" 6345,390 km)

V" 1066,611.1024 cm3 ; Kr 43.088.1024 g ; E" 5931,644.1024 g

für die Resterde bis zur Manteloberfläche

Ki - 31,2337 + 0,7862 - 30,4475.10" g cm4 J4" E" a"4,

also: J4" - 316,6.10-8. (15)

Mithin bewirkt die Abhebung des Ozeans und der gesamten Kruste lediglich

eine Änderung A J4 — 1,1.10-8. Es folgt, daß die Massenunregelmäßigkeiten

in der Kruste nur einen fast verschwindenden Einfluß
haben können.

Setzt man
ê xe + ..'.; /4=-«e2; J4 - f e2, (16)
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so folgt für das Normalsphäroid x 1,03256; x + 0,30943; £

+ 0,28070, während der Beobachtungswert J4 - 165.10"8 auf f
+ 0,14680 führt, woraus mit der allgemein gültigen Gleichung

- x + 4,374 è 3,5 - 2,5 x (17)

sofort x - 0,27635 oder /4 + 310,6.1c-8 folgt. Im (x,
^-Diagramm [1, S. 66] liegt also die neue Figur tief unter dem Normalsphäroid
und auch noch tief unter der zu den gleichen Daten (E, co, a, J2) gehörigen

äußeren Niveaufläche des entsprechenden MacLaurinschen
Ellipsoides (J4 - 251.3.10-8; fi - 67,1.IO-8). Figurenreihen mit den
Daten (E, co, a, J2) sind übrigens nicht streng vertikal, da sich mit J4
auch geringfügig e und damit x ändern. Es sei an zwei markanten
Beispielen demonstriert, daß das homogene Ellipsoid oder eine seiner Niveauflächen

niemals innerhalb einer physikalisch sinnvollen Reihe von
Niveausphäroiden liegen kann. Bemerkt sei, daß dabei im allgemeinen
nicht an Gleichgewichtsflguren gedacht ist, selbst wenn diese Niveau-
sphäroide mit der Oberfläche von Massenanordnungen zusammenfallen.

Wir betrachten zuerst die Reihe äußerer Niveauflächen sogenannter
einparametriger Massenanordnungen, welche entweder durch das in sehr
guter Annäherung gegebene stetige Dichtegesetz

Q Q>
x

v
a

(18)

oder besser durch die Eigenschaft charakterisiert sind, daß an ihrer
Oberfläche die Änderung des Formparameters /4 im Außenraum: a dfj
da A 0 ist. Die Kurve A 0 ist eine Parabel mit dem Scheitel im
Punkte (x 2/5, x — 1/4); q, bedeutet die Dichte im Schwerpunkt.
Für v 0 resultiert das MacLaurinsche Ellipsoid, für 0 g v < 1 die
Reihe der einparametrigen Gleichgewichtsflguren bis zum einparametrigen

Sphäroid der größten Massenkonzentration, für welches v knapp
unter 1 liegen muß. Unterhalb des Ellipsoides, also im Bereich positiver
Formparameter, wird v negativ, d. h. die Dichte nimmt vom Schwerpunkt

gegen die Oberfläche stetig zu, was natürlich physikalisch sinnlos
ist. Die Konstanz von Ja und damit des Massenmomentes K2 bedingt,
daß wir es mit äußeren Niveauflächen von Figuren der Reihe (co, K2)
(co, C) mit'konstantem Hauptträgheitsmoment C zu tun haben. Oberhalb
des Ellipsoides wird also die Massenkonzentration durch eine Expansion
der Figuren (zunehmender Äquatorradius der Oberfläche) wettgemacht,
während unterhalb des Ellipsoides bei gleichzeitiger Verdichtung gegen
die Oberfläche deren Äquatorradius a' immer kleiner wird. Unsere Reihe
beginnt also mit einer einparametrigen Gleichgewichtsflgur (a' a,
J4 — 332,4.1g-8). Nach abwärts folgen zunächst äußere Niveauflächen

einparametriger Gleichgewichtsflguren bis herab zum MacLaurinschen

Ellipsoid (a' 5811,99 km, e' 326539.10-«) mit J4

- 251,2.1c-8. Durch den Scheitel der Parabel A 0 geht die Parabel.
F | J4| : J22 1,8080, woraus für die
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— 212.IO-8 folgt. Die zugehörige Figur selbst ist durch die Daten:
a'= 4773,93 km, e' 362853.10-8, J2' 193277.10-8 ; J4' =- 677.1.
.IO-8 charakterisiert. Jenseits des Parabelscheitels, d. h. für x < 0,4,
nimmt F nur ganz geringfügig ab (x 1/5, F 1,7857) und wächst
sodann wieder auf 1,8 für x 0 an. Doch wächst für x < 0,05 die
Abplattung e' bereits so stark an, daß das Helmertsche Gleichungssystem
bald unbrauchbar wird.

Als zweites Beispiel betrachten wir die Zweischalenmodelle. Wegen

5
3J2 2e-é-2e2 +2eê ;- J4

4

7.5 35
T

(19)

gehört zu jedem /4 ein bestimmtes Wertepaar e und J4, zumal mit den
gegebenen Daten (E, co, a, J2) auch ê cu2 as/k2 E bestimmt ist. Wegen
der Konstanz von J2 kann sich übrigens e nur in sehr geringen Grenzen
ändern. Mit x und x liegt jedesmal ein bestimmter Punkt des (x, x)-
Diagramms fest, zu dem im allgemeinen innerhalb eines gewissen Bereiches

je unendlich viele Zweischalenmodelle gehören, deren Oberflächen
Niveauflächen sind, ohne daß daraus das Gleichgewicht folgt. Wählt man
z. B. eine Teilmasse Ex — E — E2 für eine «Mantelfigur», so liegen
[1, S. 114/15] bis auf Größen 6. oder höchstens 5. Ordnung mit

J2 — (2c - e2) (Ex : E) + — (2 ek - ek2) (ak : a)2 (£„ : E) (20)
0 ö

J* - ~ (e2 - c3) (Ex : E) - i| (ek2 - e*3) (ak : a)4 (E2 : E)
35 35

zwei Gleichungen mit den beiden Unbekannten ak und ek, d. h. für
Achse und Abplattung des Kernes vor.

Unsere Reihe beginnt mit dem Modell ak 0, oder allgemeiner, mit
ek — 0, da ja eine homogene Kugel unabhängig von ihrem Radius nichts
zu den Massefunktionen beiträgt. Zusammen mit (19) liefern die
Gleichungen

5 J2 (2e - e2) (Ex : E) ; - iL J4 (e2 - e3) (Ex : E) (21)

eine streng eindeutige Lösung für die vier Unbekannten e, J4, Ex und
/4, d. h. das Wiechert-Modell mit dem Kernradius Null, welches in der
Geraden (x + 35 f/8) 1,5 liegt:

e 335263.4.10-8 ; J4 - 310,7.1c-8 ; Ex : E 0,8087 ;

/4 - 326.7.10-8 ; « + 0,2907 (21a)

Jeder unterhalb liegende Punkt J2, J4) oder (x, x) mit kleinerem | J41

und « repräsentiert unendlich viele Zweischalenmodelle, zu deren Be-
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Stimmung wir (20) transformieren. Wir setzen abkürzend (Ex : E) z

und (ak : a)2 y und finden:

[5 J2 - (2 e - e2) z] (2 e* - e*2) y (1 - z)

35

(20a)

12
J4 + (e2 - e3) z (ek2 - ek?) y2 (1 - z).

Nun ist (2 et — et2)2 <« 4 (et2 — c*3). Quadriert man also die erste
Gleichung und subtrahiert davon die mit 4 (1 — z) multiplizierte zweite
Gleichung, so resultiert

[5 J2 - (2 e - e2)z]2 +
35
~Ji+A(e2-- e3) z (1 - z) 0

1er (22)

10 J2 (2 e - e2)
35

_ 4 (e2 - e3) + — J4 - 35
(5 J2)2 + — J4 0.

Für alle diese Lösungen:

(2 ek - efc2) (ak : a)2 [5 J2 - (2 e - e2) z] : (1 - z) (20b)

ist i?! oder die Manteldichte nahezu konstant. Man erkennt leicht, daß
der Fall z 1 oder Ex E, E2 0 bereits ausgeschlossen ist; denn
sonst hätten wir es mit einem homogenen Körper zu tun, dessen
Oberfläche Niveaufläche ist. Er müßte also selbst eine Gleichgewichtsflgur
sein, während bekanntlich in der Umgebung der Kugel die MacLaurinschen

Ellipsoide die einzig möglichen homogenen Gleichgewichtsflguren
sind. Tatsächlich nimmt auch z, ausgehend vom Wert (21a) : z
0,8087, nach unten ständig ab, bis in der Parabel F 15/7 oder für
J4 — 251,2. IO-8 der Wert z 0 erreicht wird. In dem ganzen Bereich

- 310,7.1c-8 è J4 ^ - 251,2.10-8 gehört zu jedem Punkt auch ein
Wiechert-Modell oder eine zweiparametrige Gleichgewichtsflgur, zu
denen wir auch die bereits Aktive Grenzlösung der äußeren Niveaufläche
eines MacLaurinschen Ellipsoides zählen dürfen: ak 5811,988 km,
ek 326538,5.10-8, die aus (z 0)

4 22
(2 ek - ek2) (ak : a)2 5 J2 ; co2 ak3/k2 E ek

35
ei? (23)

hervorgeht, wobei man die letzte Gleichung als Gleichgewichtsbedingung
betrachten darf. Alle überhaupt möglichen Zweischalenmodelle

liegen wie immer zwischen den Grenzen ek e oder ak, min und ek, min
oder at, max, welche zweite Grenzlösung durch gleiche Polarachsen
(et c) definiert ist: a(l — e) ak(\ — ek).

Setzt man die Reihe fiktiv nach unten weiter fort, so resultieren negative

z-Werte, d. h. die Manteldichte wird negativ und die Kernmasse ist
größer als E. Doch wird die absolute Grenze bald erreicht. Hierfür gilt:
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z-> - oo ; (2 ek - ek2) (ak : a)2 -»- (2 e — e2) (20c)

Gleichzeitig verschwindet in (22) der Faktor von z:

- iL j4 10 J2 (2 e - e2) - 4 (e2 - e3), (24)

was zusammen mit (19) auf e 335309,6.10-«; J4 - 237,1.10-8 und
/4 — 4,2.IO-8 führt. Die Lösung a& —>- a und et -» e stellt aber das zu
den gegebenen Daten (E, co, a, J2) gehörige Niveauellipsoid dar, für
welches die Gleichungen (19) mit /4 0 direkt e 335310,2.IO"8 und J4
— 236,2.IO-8 liefern, und wir erkennen besonders deutlich die physikalische

Sinnlosigkeit des Niveauellipsoides. Übrigens ist dies gar kein
strenges Ellipsoid, sondern hat sicherlich höhere Formparameter. In
derselben Annäherung 4. Ordnung repräsentiert diese Figur auch die
äußere Niveaufläche einer kleineren einparametrigen Massenanordnung
mit F 2,01466, also gleichfalls im fiktiven Bereiche.

Unsere erste Lösung stellt mithin überhaupt kein Niveauellipsoid im
engeren Sinne dar, bei welchem an eine Massenanordnung gedacht ist,
deren Oberfläche mit dem gewünschten Niveauellipsoid zusammenfällt.
Dies ist aber leicht durch Massenverschiebungen in homogenen konfokalen

Ellipsoidschalen zu erreichen, bei denen bekanntlich das Außenraum-
potential unverändert bleibt. Die zweite Lösung steht in einer interessanten

Analogie zum Niveauellipsoid von W. D. Lambert [3]; das homogene

MacLaurinsche Ellipsoid (a, e, co) hat eine zu große Masse (P2
7732,4.IO24 g), welche durch eine fiktive Flächenbelegung von hoher
negativer Dichte herabgedrückt wird. Eine vierte Lösung stellt die
Theorie von Pizzetti und Somigliana dar. Sie beruht auf folgender,
mathematisch einwandfrei bewiesenen Tatsache. Es sei eine physikalisch
mögliche Massenanordnung und eine dazu gehörige äußere Niveaufläche
gegeben. Dann bleibt die gegebene Niveaufläche und das gesamte Außen-
raumpotential unverändert, wenn die gesamte Masse im Innern der
Niveaufläche homogen verteilt wird, während alle Abweichungen von der
Homogenität durch eine Flächenbelegung teils positiver, teils negativer
Dichte mit der Massensumme Null erfaßt werden können. Wird aber
umgekehrt die Fläche willkürlich vorgegeben, so resultiert im allgemeinen
eine fiktive Lösung. In Näherung 4. Ordnung erhält man schließlich als
fünfte Lösung die sogenannte dritte Normalform von Helmert, bei der
per definitionem /4 0 gesetzt wird. Damit liefert die zweite Gleichung
(19) aus (E, co, a, e) oder (E, co, a, J2) wie oben direkt J4. Will man in
diesem Falle stets eine physikalisch einwandfreie Lösung erzielen, so muß
man mit /4 auch alle übrigen Größen 4. Ordnung unterdrücken und
sinkt damit auf die Näherung 2. Ordnung zurück, bei welcher alle
Niveausphäroide Ellipsoide sind; doch reicht bekanntlich .die Näherung
2. Ordnung für das Problem der Erdfigur nicht aus.

Somit sind alle diese Niveauellipsoide, gleichgültig, ob es sich um
strenge Ellipsoide oder bloß um Näherungen 4. Ordnung handelt, fiktiver
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Natur. Gänzlich unabhängig vom Charakter der Massenanordnungen
konnte aber in [1, S. 163] gezeigt werden, daß für den x-Wert der Erde
(x'~ 1,032) zwar noch in Näherung 8. Ordnung ein Niveauellipsoid
denkbar ist, dieses aber dennoch bereits in den Größen 4. Ordnung vom
Normalsphäroid abweicht. Setzt man nämlich:

e xe; J2 =—-(2 - x) ; J4 - £ e2 ; J6 + rj es ; J8=-te4;...

/4=-xe2; /6=-Ae3; /, - fi e4 ; (25)

so gilt ganz allgemein:
35 7 5

x H t — x ;
8

s 2 2 '

(231 \- X + -^- »? \ (3,3 - 2,75 x) + x (1,2 - 0,5 x) ; (26)

c (-^ + ^-c) l(143-130K) + -|r(64-40ï)

+ -L(64-20x) + ^x2.

Die Gerade f 0 F schneidet die x-Achse im Punkte x 1,4, womit
die absolute obere Grenze definiert ist. Die Kurven B const sind die
gleichseitigen Hyperbeln

(x - 2,4) (x + 5,5) - (2 B + 6,6), (27)

woraus für die Kurve B 0 als Schnittpunkt mit der x-Achse (x — 0)
x 1,2 folgt. Da sich die Kurven B < 0 in Richtung wachsender x-
Werte anschließen und für diese mit r\ auch X > 23177/80 positiv sein
muß, sind Niveauellipsoide in Näherung 6. Ordnung nur für x < 1,2
möglich. Ganz analog können wir weiterschließen. Für x A 0 erhalten
wir für die Kurve C — 0 den Schnittpunkt x 1,1, und es sind
Niveauellipsoide in Näherung 8. Ordnung nur im Bereiche x < 1,1 möglich. In
Fortsetzung dieser Schlußweise erkennt man leicht, daß das strenge
Niveauellipsoid mit dem MacLaurinschen Ellipsoid zusammenfällt.

Damit sind wir zu dem Ergebnis gelangt, daß das zu den empirischen
Daten (E, co, a, J2) der tatsächlichen Erde gehörige Niveauellipsoid nur
als Näherung und nur für fiktive Massenanordnungen denkbar ist. Die
willkürliche Annahme /4 0 führt auch auf eine andere Massefunktion
J4 — 236,2.10-8 und auf eine theoretische Schwereformel, die nicht als
«normal» bezeichnet werden darf. Die damit gebildeten Schwerestörungen

haben ebensowenig einen klaren physikalischen Sinn wie die
resultierenden Geoidundulationen. Selbstverständlich ist die Aufspaltung in
ein theoretisches Feld und die zugehörige Korrektion innerhalb gewisser
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Grenzen willkürlich. Doch ist es sicherlich wünschenswert, von einem
physikalisch möglichen Modell auszugehen, welches mit der wirklichen
Erde die beiden Hauptträgheitsmomente gemeinsam hat, so daß die
Massefunktion J2 identisch ist, während die Massefunktion J4 nur geringfügig

vom wahren Wert abweicht. Dann sind die Schwerestörungen und
die Undulationen klarer Ausdruck der Massenstörungen.

Die durch die Daten (E, co, a, J2) definierte Kurve des (x,
»^-Diagramms fällt fast mit einer Vertikalen x const zusammen. Die beiden
diskutierten Grenzfälle: stetiges Dichtegesetz und Zweischalenmodell
haben gelehrt, daß unterhalb der Parabel F 15/7 nur fiktive
Massenanordnungen resultieren, die für stetiges Dichtegesetz bis auf J4
— 209,5.10-* und für die Zweischalenmodelle bis zum Niveauellipsoid
J4 — 236,2.10-* herabreichen. Der «empirische» Wert J4 — 165.10-8
wird überhaupt nicht erreicht. Darüber hinaus ist es offensichtlich, daß
sowohl das Normalsphäroid wie auch das entsprechende Niveausphäroid
des tatsächlichen Erdkörpers zwischen den beiden Grenzfällen der
einparametrigen Gleichgewichtsflgur mit stetigem Dichtegesetz und den
Zweischalenmodellen mit der Kerntiefe 2900 km liegen muß. Erstere
liefert J4 — 332,4.10-*, während für die Zweischalenmodelle J4
zwischen den Grenzen - 310,7.10"8 gJ4S- 288,8.IO-8 liegt. Diese Werte
erfahren allerdings eine geringfügige Änderung, weil sie in [1, S. 182] mit
etwas anderen Ausgangsdaten berechnet wurden. Gegen die Festlegung
der oberen Grenze durch die einparametrige Gleichgewichtsflgur könnte
man einwenden, daß wir gänzlich vom Gleichgewicht zu abstrahieren
haben. Tatsächlich kann man vom Zweischalenmodell zum .ZV-Schalen-
modell übergehen, womit bei dem Grenzübergang N —> oo beliebige
stetige Dichtegesetze approximiert werden können. Aber die Erde ist nun
nahezu im Gleichgewicht, und das Normalsphäroid ist eine Gleichgewichtsanordnung,

welche für eine geringfügig größere Rotationsgeschwindigkeit
eine Gleichgewichtsflgur repräsentiert. Daher muß der obere Grenzwert
von | J4| nahe bei 330 • 10-* liegen.

Mit all diesen Argumenten scheint der Wert J4 — 165.10-* zumindest

reichlich problematisch. Ebenso problematisch ist aber auch das
empirische Ergebnis, daß die höheren geraden Massefunktionen
annähernd von gleicher Größenordnung sind. Demgegenüber liefert die
allgemeine Entwicklung der Niveausphäroide bis zur 8. Ordnung [1,
S. 87-97]

4 4 8
JJi=~-5e +Teê + Wh;

8 20 96 80
J

40
±Je — e3 e2 e et, /K -\ ë f.6 7 21 231 u 231 /6 231 '* (28)

512
2288 e4 + 1024 e2 /4 + 1024 e /e + 896 /8 — /42

1287

+ 2080 e3 ë - 640 ë e /4 - 320 ë /6
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Wohl können hierin die Massefunktionen und die Formparameter nicht
eindeutig getrennt werden; sie sind durch die Gleichungen (26) miteinander

verknüpft. Wir werten daher diese Formeln mit den Daten (8a) für e

und ë für das fiktive Niveauellipsoid (/4 /6 /8 0) aus und finden:

J4 - 236,0.10-* ; J6 + 0,6.10-8 ; J8 - 0,002.10-8, (29)

d. h. es ist J4 — 393 J6 und Je — 286 J8. Die Massefunktionen
nehmen also in ihrem Absolutbetrag ungefähr mit den Potenzen der
Abplattung ab. Für das Normalsphäroid (8) erhält man bei Vernachlässigung

von /6, das ohnedies nur mit einem Drittel seines Betrages eingeht,
J6= + 0,88.IO"8, also J4 - 396 J6. Der empirische Wert (9) würde
für /6 — 185,2.IO-8 oder für X + 49.1 resultieren, was reichlich
unwahrscheinlich ist.

Schließlich kombinieren wir noch die empirischen Werte J4

- 165.10-* und J6 + 65.10-*. Man findet aus (19) und (28)

e 335354,8.1c-8; /4 + 312,033.1c-8; /6 - 186,664.1c-8 (30)

also X + 49,5

mithin fast dasselbe unmögliche Resultat. Weder J4 noch Je sind
glaubwürdig: | J4| ist nur etwa die Hälfte des plausiblen Wertes, und J6
übersteigt den richtigen Wert um rund den 70fachen Betrag.

Auf j eden Fall darf festgestellt werden, daß die Theorie der allgemeinen

Niveausphäroide ein sehr wirksames Mittel für die kritische
Überprüfung der aus den künstlichen Satelliten bisher abgeleiteten
Massefunktionen darstellt. Wir haben oben für die fiktiven Lösungen untere
Grenzen gefunden, und zwar einerseits für das Niveauellipsoid (J4
— 236,2.10-*) und andererseits für das an die Bedingung A 0

geknüpfte stetige Dichtegesetz (J4 — 209,5.IO-8). Hier erhebt sich aber
die Frage, ob zu den Sphäroiden, die in der durch (E, co, a, J2) definierten
Kurve (x ~ 1,032) unterhalb der letztgenannten Lösung liegen
(— 209,5.IO-8 ^ J4 s; 0), überhaupt irgendwelche, wenn auch physikalisch

unmögliche Massenanordnungen gefunden werden können.
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