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Die Massefunktionen und das Niveauellipsoid

von K. Ledersteger, Wien

‘Wir stellen der auf die zonalen Glieder beschriankten Potentialentwick-
lung des tatsichlichen Erdkorpers

kE 3 a \" ;
[ ) P I

die analoge Entwicklung des Normalsphiroides gegeniiber

KRE C a\»
= [1 = 22 J: (—7) Py (cos '9)], (2)

worin alle ungeraden Massefunktionen verschwinden, wihrend die gera-
den Massefunktionen derart rapide abnehmen, dafl wir die Entwicklung

auf
k2E a \? a \4
Ll = [1 — J3 () P, — Jj (_—) P4] (2a)
r r r

beschrinken diirfen. Damit ergibt sich die Restfunktion 7' = (V — U)
in der Gestalt

K E [ \- a\" a\? L[ a\?
N L.

n=2

Hierin seien die Massefunktionen auf die Niveaufliche mit dem Aquator-
radius a = 6378,16 km bezogen. IThr Einflu nimmt nach oben ab; so ist
in einer Héhe von 1000 km bereits (a/r)? ~ 0,7473 und (a/r)* ~ 0,5585.
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Vernachlissigt man ganz im Sinne der Stokesschen Néiherung' die Ab-
plattung, ersetzt also a durch den mittleren Kugelradius R, so wird

I*E [/ R . R\»+1
Ve = R [(T) = nZan (T) P, (cos 19):[ (4)

 RE [ R\ +1
T, = — = [Z(J,.—J;)( ) Pn(cosz‘})]. )

r
=2

und

Ist beispielsweise h die Héhe eines kiinstlichen Satelliten (r = R + h),
so gehen die Fehler der abgeleiteten Massefunktionen im Verhiltnis
(1 + h/R)™*+1! vergroBert in die Potentialfunktion Vg ein. Der Aus-
druck () fiir die Restfunktion ist selbstverstindlich noch um die in (1)
vernachlissigten lingenabhingigen Glieder zu erweitern. Hat das Nor-
malsphiéroid die beiden Trigheitsmomente C und A* = (A + B)/2 mit
dem wirklichen Erdkorper gemeinsam, so verschwindet die Differenz
(J; — J3) exakt. Ferner verschwinden, wenn nur die Koordinaten-
achsen mit den Haupttrigheitsachsen des Erdkoérpers zusammenfallen,
mit den Deviationsmomenten

[éndm = [n{dm = [{£dm = 0 | (6)

auch drei zugeordnete Kugelfunktionen 2. Ordnung, so dall nur die
sektorielle Funktion

Cys=—(B— A): 4ER? (7)

iibrigbleibt, welche bekanntlich die sogenannte Elliptizitit des Erd-
dquators bewirkt.

Fiur das mit der wirklichen Erde volumgleiche Normalsphiroid, wel-
ches keine Gleichgewichtsfigur ist, wohl aber eine Gleichgewichtsanord-
nung reprisentiert, ergab sich in [1, S. 211] auf Grund der Ausgangs-
daten

E = 5976,106.10% g; «® = 5,317496.10-° sec-2;

(8)
a* = 6,378390.108 cm ; J3 = 108271.10%; Ji = — 315,5.10°8
mittels des Helmertschen Gleichungssystems
&% = 346175,4.10®; e* = 335260,4.10-% = 1: 298,28 ;
a*
fi=— 347,8.10%; hp. = Tf; = — 5,646 m; yp = 977,9704 gal ;

* = 530460,7.10-%; pi = 3382,9.10-%; Wy = 62635,315.107 cm? sec?
om = 5,5164 . (8a)
206



Im angenommenen Achsenwert ist die mittlere Kontinentalh6he von
225 m nach der Preyschen Entwicklung der Héhen- und Tiefenverhilt-
nisse der Erde beriicksichtigt. Zwecks Ubergangs auf das Geoid (a =
6378,165 km) hat man also y, mit dem Preyschen Gradienten 0,2224
mgal/m, der einer Wasserplatte der Dichte 1,028 entspricht, zu redu-
zieren und findet so y, = 978,0204 gal, welcher Wert um ca. 12 mgal
zu klein sein diirfte. Selbstverstidndlich ist dieser kleine Widerspruch in
der empirischen Unsicherheit der wichtigen Groe k2 E begriindet.

Der folgenden Untersuchung legen wir die Werte Kozais [2] fiir die
aus den kiinstlichen Satelliten abgeleiteten Massefunktionen J; bis J,
zugrunde

Jg = — 255.10-%; J; = — 21.10-®

Jy = — 165.10-%; J, = + 65.10°8.

9

Zunichst ergibt sich mit R = 6371,2 km der Potentialwert k2 E/R =
62563,8.107 cm? sec2. Mit y = k2 E/r? liefert sodann das Theorem von
Bruns gemif (5) fiir die einzelnen Glieder die Undulationsanteile
R\"-— 1

ANr:nz (ATn/'}’)rz — R(Jn == J;) (T) Py. (10)
Fiir J, resultiert die Differenz (J, — J3) = (— 165 + 316) = + 151.10-%,
also an der Oberfliche (r = R) AT, = — 0,0945.107 P, cm? sec? und
AN, = — 9,62 P, m und in der Héhe h = 1000 km analog AT, =
— 0,0456.107 P, cm? sec? und AN, = — 6,21 P, m. Fiir eine exakte

Néherung 4. Ordnung gehen wir vom Normalsphiroid (8) aus und finden
aus den Daten (E, w, W ,C-A, J,) in sukzessiver Anndherung

a = 6378’ ,6,41 m; e = 335354,7.10° = 1:298,19. (11)

Diese Niveaufliche desselben Potentialwertes weist trotz der Volum-
gleichheit mit dem Normalsphiiroid im Pol und im Aquator Depressio-
nen auf, die durch (¢ — ¢*) = — 9,59 m und (@ — a*) = — 3,59 m
bestimmt sind. Demgegeniiber hat man jetzt aber f, = + 312,0.10-8
und somit hmax = + 4,975 m. Gleichzeitig ist die Differenz der Radien-
vektoren der zugehérigen Ellipsoide in der Breite 45° (s — s*) =
— 6,58 m, so daf3 das neue Sphiroid in dieser Breite um 3,94 m iiber dem
Normalsphiroid liegt. Vergleichen wir diese Ergebnisse mit der obigen
Niherung AN, = — 9,62 P, m, so erhalten wir im Pol, im Aquator
und in ¢ = 45° der Reihe nach: — 9,62 m, — 3,61 m und 4 3,91 m,
und man sieht, dal die Abweichungen blo8 3 cm betragen. Damit ist
rein empirisch die Giite der Nidherungslosung (10) erwiesen.

Fiir die Massefunktion J, liefert (56) AT; = + 0,1595.107 (R/r)* P,
cm? sec? und (10): AN, = + 16,25 (R/r)?> P; m. Man erhilt also fiir r =
R in den beiden Polen der Oberfliche die Undulationsbetrige + 16,25 m,
welches Ergebnis unter dem sehr irrefithrenden Schlagwort von der
«Birnenform» der Erde bekannt ist. Nunmehr erstrecken wir die Unter-
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suchung auf alle vier obigen Massefunktionen, wobei blo3 zu beachten
ist, dafl im Normalsphiroid J§ und J: verschwinden, wihrend J{ =
+ 1.10-% ist. Damit wird an der Oberfliche in Metern:

AN = + 16,25 P, — 9,62 P, + 1,34 P, — 4,08 P, (12)
und analog fiir die Hohen h = 1000 km und fiir r = 2R, 3R und 4R:

AN = + 12,140 P, — 6,212 P, + 0,748 P, — 1,968 P,
AN = + 4,062 P, — 1,202 P, + 0,084 P, — 0,128 P,
AN = + 1,806 P, — 0,356 P, + 0,017 P, — 0,017 P,
AN = + 1,015 P, — 0,150 P, + 0,005 P, — 0,004 P,

und es ergibt sich folgende kleine Ubersicht

Hoéhe, km g = + 90° + 45° 0° — 45° — 90°

r=2R + 3,89 + 1,15 —-233 4+ 7,89 — 31,29
r = R + 1000 + 4,711 + 0,39 — 1,71 + 5,24  — 21,07
r =2R + 2,82 — 0,24 - 0,41 + 1,26 — 5,48
r =3R + 1,45 - 0,18 —0,13 4 0,47 — 2,20
r =4R + 0,87 -0,12 -0,06 +024 — 1,17

Unzweifelhaft miissen fiir jedes mdégliche Stoérpotential die Undulationen
nach oben stetig abnehmen und in einer gewissen Hoéhe hinreichend ge-
gen Null konvergieren. Dies gilt fiir jeden der vier Terme gesondert.
Wegen der Beschrinkung auf die vier zonalen Kugelfunktionen J, — J;
gestatten die vorliegenden Ergebnisse noch keinen biindigen SchluB3 hin-
sichtlich der GréBe der Undulationen und deren Abnahme mit der Hohe.
Fir die beiden Massefunktionen J; und J; allein wiirde man an den
beiden Polen die Undulationsbetrige + 17,59 finden, die fiir r = 4R auf
-+ 1,02 m absinken, wihrend im Aquator stets AN = 0 wire. Umgekehrt
wiire bei Rotations- und Aquatorsymmetrie (J; = J; = 0) an den beiden
Polen AN = — 13,70 und im Aquator — 2,33 m, welche Werte sich fiir
r =4R auf — 0,15 m und — 0,06 m verringern. Hingegen weist obige
Tabelle auf einen Widerspruch hin, wie man aus der anfinglichen Zu-
nahme der Undulation iiber dem Nordpol und aus dem unmédéglichen
' Zeichenwechsel fiir ¢ = 4 45° eindeutig erkennt. Wie die Beschrin-
kung auf die beiden ersten Glieder von (12) beweist, liegt dieser Wider-
spruch in der Unvertriglichkeit der Massefunktionen Jg; und (J, — J1)
begriind et.
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Um diese Frage niher zu studieren, iiberlegen wir folgendermafBen.
Die Massefunktion J; = — 255.10°® bietet keinerlei Anhaltspunkt. Eine
Asymmetrie zwischen Nord- und Siidhilfte, welche in den polaren Ra-
~ dien eine Abweichung von 4 16 m erzeugt, liegt anscheinend innerhalb
der empirischen GriéBe der Undulationen. Hingegen erscheint es sehr
bedenklich, wenn zwischen den Massefunktionen J, = — 165.10-% und
Ji = — 315,56.10-% ein Verhiltnis von nahezu 1:2 bestehen soll. Wir
gehen auf das Normalsphéroid (8) zuriick und finden hierfiir das Massen-
moment 4.0.: Kj = Ji Ea* = — 31,2077.10%® g cm?* Die homogene
Wasserhiille habe die Dichte 1,028 und die Michtigkeit 2601 m im
Aquator. Ferner lehrt die Gleichgewichtsfigur der Erde, daB der Ozean-
boden die etwas grioBere Abplattung von ungefidhr e’ = 1:297,3 =
336360.10-% hat. Damit findet man die Volumina der Gesamterde V und
der Festerde V’, ferner die Masse Oz des Ozeans und die Masse E’ der
Festerde:

V = 1083,336.10%* cm?; V' = 1082,000.10* cm?®; Oz = 1,374.10* g
E" = 5974,732.10*% g . (13)

Der Anteil des Ozeans am Massenmoment K, wird
12
AR, = — - 1,028 [(&¢ — e)Vat — (e — e®) V' a"]
(14)
= + 0,0260.10% g cm?, '

so daB fiir die Festerde mit dem Aquatorradius a’ = 6375,789 km gilt:
K, = — 31,2077 — 0,0260 = — 31,2337.10% g cm* . (14a)

(Ganz analog ergibt sich fir eine homogene Kruste der Dichte 2,80, wel-
che bis in die Tiefe von 33 km reicht (a” = 6345,390 km)

V” = 1066,611.1022 cm?®; Kr = 43,088.10% g; E” = 5931,644.10% g
fiir die Resterde bis zur Manteloberflache

K, = — 31,2337 + 0,7862 = — 30,4475.10% g cm* — J,” E” a”*,
also: - J,” = — 316,6.10-% . (15)

Mithin bewirkt die Abhebung des Ozeans und der gesamten Kruste ledig-
lich eine Anderung AJ, = — 1,1.10-8. Es folgt, daB3 die Massenunregel-
miligkeiten in der Kruste nur einen fast verschwindenden Einflu3
haben kénnen.
Setzt man
E=xe+ ...; fo=—ne; J,=—¢&e%, (16)
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so folgt fiir das Normalsphiroid r = 1,03256; » = + 0,30943; & =
+ 0,28070, wihrend der Beobachtungswert J, = — 165.10® auf & =
+ 0,14680 fiihrt, woraus mit der allgemein giiltigen Gleichung

— % +4,374§ =35 — 25% 17

sofort » = — 0,27635 oder f, = + 310,6.10-® folgt. Im (z, x)-Dia-
gramm [1, S. 66] liegt also die neue Figur tief unter dem Normalsphiroid
und auch noch tief unter der zu den gleichen Daten (E, w, a, J,) gehé-
rigen dulleren Niveaufldche des entsprechenden MacLaurinschen Ellip-
soides (J, = — 251,3.10%; f, = — 67,1.10-®%). Figurenreihen mit den
Daten (E, w, a, J,) sind iibrigens nicht streng vertikal, da sich mit J,
auch geringfiigig e und damit x dndern. Es sei an zwei markanten Bei-
spielen demonstriert, dafl das homogene Ellipsoid oder eine seiner Niveau-
flichen niemals innerhalb einer physikalisch sinnvollen Reihe von
Niveausphéroiden liegen kann. Bemerkt sei, daB dabei im allgemeinen
nicht an Gleichgewichtsfiguren gedacht ist, selbst wenn diese Niveau-
sphiaroide mit der Oberfliche von Massenanordnungen zusammenfallen.

Wir betrachten zuerst die Reihe duBerer Niveauflichen sogenannter
einparametriger Massenanordnungen, welche entweder durch das in sehr
guter Annidherung gegebene stetige Dichtegesetz

x \2]2
e=eft=(5)] o

oder besser durch die Eigenschaft charakterisiert sind, da8 an ihrer
Oberfliche die Anderung des Formparameters f, im AuBenraum: a df,/
da = A = 0 ist. Die Kurve A = 0 ist eine Parabel mit dem Scheitel im
Punkte (x = 2/5, x = — 1/4); p; bedeutet die Dichte im Schwerpunkt.
Fiir y = 0 resultiert das MacLaurinsche Ellipsoid, fiir 0 < » < 1 die
Reihe der einparametrigen Gleichgewichtsfiguren bis zum einparametri-
gen Sphiroid der gréBten Massenkonzentration, fiir welches » knapp
unter 1 liegen muf3. Unterhalb des Ellipsoides, also im Bereich positiver
Formparameter, wird » negativ, d. h. die Dichte nimmt vom Schwer-
punkt gegen die Oberfliche stetig zu, was natiirlich physikalisch sinnlos
ist. Die Konstanz von J, und damit des Massenmomentes K, bedingt,
dall wir es mit dulleren Niveauflichen von Figuren der Reihe (w, K,) =
(w, C) mit konstantem Haupttrigheitsmoment C zu tun haben. Oberhalb
des Ellipsoides wird also die Massenkonzentration durch eine Expansion
der Figuren (zunehmender Aquatorradius der Oberfliche) wettgemacht,
wihrend unterhalb des Ellipsoides bei gleichzeitiger Verdichtung gegen
die Oberfliche deren Aquatorradius ¢’ immer kleiner wird. Unsere Reihe
beginnt also mit einer einparametrigen Gleichgewichtsfigur (a’ = a,
Jy = — 332,4.10-%). Nach abwirts folgen zunichst #HuBlere Niveau-
flichen einparametriger Gleichgewichtsfiguren bis herab zum MacLau-
rinschen Ellipsoid (a” = 5811,99 km, e’ = 326539.10%) mit J, =
— 251,2.10-8, Durch den Scheitel der Parabel A = 0 geht die Parabel
F = |J,| : J;* = 1,8080, woraus fiir die HuBlere Niveaufliche J, =
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— 212.10-® folgt. Die zugehérige Figur selbst ist durch die Daten:
a’ = 4773,93 km, e’ = 362853.10-%, J,’ = 193277.10%; J,” = — 677.1.
.10-® charakterisiert. Jenseits des Parabelscheitels, d. h. fiir x < 0,4,
nimmt F nur ganz geringfiigig ab (x = 1/5, F = 1,7857) und wichst
sodann wieder auf 1,8 fiir x = 0 an. Doch wichst fiir x < 0,05 die Ab-
plattung e’ bereits so stark an, da3 das Helmertsche Gleichungssystem
bald unbrauchbar wird.

Als zweites Beispiel betrachten wir die Zweischalenmodelle. Wegen

' 5
3Jy,=2e — & —2e% | 2¢¢ —~TJ4

7 5 35 o

= e — ——ef L+ —J

fa 5 € 2 eé + g e
gehort zu jedem f, ein bestimmtes Wertepaar e und J,, zumal mit den
gegebenen Daten (E, w, a, J,) auch & = w? a®/k? E bestimmt ist. Wegen
der Konstanz von J; kann sich iibrigens e nur in sehr geringen Grenzen
dndern. Mit x und »x liegt jedesmal ein bestimmter Punkt des (x, x)-
Diagramms fest, zu dem im allgemeinen innerhalb eines gewissen Berei-
ches je unendlich viele Zweischalenmodelle gehoren, deren Oberflichen
Niveauflichen sind, ohne dafl daraus das Gleichgewicht folgt. Wiahlt man
z. B. eine Teilmasse E, = E — E, fiir eine «Mantelfigur», so liegen

[1, S. 114/15] bis auf GroBlen 6. oder hochstens 5. Ordnung mit

Jy = —;—(2e — e?) (E,: E) + ; (2er — ex?) (ak : Q)2 (E, : E) (20)

12

Jy= — ——
4 35

(e? — &) (E, : E) — ;i (ex? — e®) (ak : a)* (E, : E)
zwei Gleichungen mit den beiden Unbekannten ar und eg, d. h. fiir
Achse und Abplattung des Kernes vor.

Unsere Reihe beginnt mit dem Modell ax = 0, oder allgemeiner, mit
er = 0, da ja eine homogene Kugel unabhingig von ihrem Radius nichts
zu den Massefunktionen beitrigt. Zusammen mit (19) liefern die Glei-

chungen

5Jyg=2e —e%) (E,: E); —%—J4=(e2mea) (E,: E) (21)

eine streng eindeutige Losung fiir die vier Unbekannten e, J,, E; und
fu» d. h. das Wiechert-Modell mit dem Kernradius Null, welches in der
Geraden (x + 35 £/8) = 1,5 liegt:

e — 335263,4.10%; J, — — 310,7.10%; E,: E = 0,8087;
fa = — 326,7.10%; %= + 0,2907 . (21a)

Jeder unterhalb liegende Punkt (J,, J 4) oder (z, ») mit kleinerem ]J4[
und x reprisentiert unendlich viele Zweischalenmodelle, zu deren Be-
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stimmung wir (20) transformieren. Wir setzen abkiirzend (E, : E) =z
und (ax : @)? = y und finden:

DJy—Re—eNzl =Qe—e?) y(1 — 2) (20a)

35 2 3 2 3 2 (1
_[EJ4+(6 —e)ZJ=(ek —e)yr (1l —2).

Nun ist (2 ex — ex?)? ~ 4 (e&x? — e®). Quadriert man also die erste Glei-
chung und subtrahiert davon die mit 4 (1 — z) multiplizierte zweite
Gleichung, so resultiert

[5J; —(2e — e?)z]2 + [ESEJ“ —I—4(ez—e3)z](1 —z)=20
oder (22)

2[10J2(2e—ez)—4(e2—e3) +:;—5J4] —[(5J2)2+3§J4]=0.

Fiir alle diese Losungen:
Qe —e)(ar:a))=[>Jy;— 2e—e»)z]: (1 — 2) (20b)

ist E, oder die Manteldichte nahezu konstant. Man erkennt leicht, dai
der Fall z =1 oder E, = E, E, =0 bereits ausgeschlossen ist; denn
sonst hitten wir es mit einem homogenen Koérper zu tun, dessen Ober-
fliche Niveaufldche ist. Er miilte also selbst eine Gleichgewichtsfigur
sein, wiahrend bekanntlich in der Umgebung der Kugel die MacLaurin-
schen Ellipsoide die einzig mdéglichen homogenen Gleichgewichtsfiguren
sind. Tatsdchlich nimmt auch z, ausgehend vom Wert (21a):z =
0,8087, nach unten stidndig ab, bis in der Parabel F = 15/7 oder fiir
J, = — 251,2.10-8 der Wert z = 0 erreicht wird. In dem ganzen Bereich
— 310,710 = J, < — 251,2.10-8 gehoért zu jedem Punkt auch ein
Wiechert-Modell oder eine zweiparametrige Gleichgewichtsfigur, zu de-
nen wir auch die bereits fiktive Grenzléosung der dulleren Niveaufldche
eines MacLaurinschen Ellipsoides zidhlen diirfen: ar = 5811,988 km,
er = 326538,5.10-8, die aus (z = 0)

ek —e?) (ar: a)t =5J,; w?ad/k® E = % e + % e (23)
hervorgeht, wobei man die letzte Gleichung als Gleichgewichtsbedin-
gung betrachten darf. Alle iiberhaupt méglichen Zweischalenmodelle lie-
gen wie immer zwischen den Grenzen e = e oder ak, min UNd ek, min
oder ax, max, Welche zweite Grenzlésung durch gleiche Polarachsen
(cx = ¢) definiert ist: a(1 — e) = ar (1 — ep).

Setzt man die Reihe fiktiv nach unten weiter fort, so resultieren nega-
tive z-Werte, d. h. die Manteldichte wird negativ und die Kernmasse ist
grofer als E. Doch wird die absolute Grenze bald erreicht. Hierfiir gilt:
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zZ—> — oc0;(2e — ex?) (ar: a)! — (2 e — €?). (20c)

Gleichzeitig verschwindet in (22) der Faktor von z:

35 _
——?J4=10J2(2e——e2)—4(e2—es), (24)
was zusammen mit (19) auf ¢ = 335309,6.10-8; J, = — 237,1.10-% und
fo = — 4,2.10°8 fithrt. Die Lésung ar — a und ex — e stellt aber das zu

den gegebenen Daten (E, w, a, J,) gehérige Niveauellipsoid dar, fir wel-
ches die Gleichungen (19) mit f, = 0 direkt e = 335310,2.10-8 und J, =
— 236,2.10-8 liefern, und wir erkennen besonders deutlich die physika-
lische Sinnlosigkeit des Niveauellipsoides. Ubrigens ist dies gar kein
strenges Ellipsoid, sondern hat sicherlich hohere Formparameter. In der-
selben Anndherung 4. Ordnung reprisentiert diese Figur auch die
dullere Niveaufliche einer kleineren einparametrigen Massenanordnung
mit F = 2,01466, also gleichfalls im fiktiven Bereiche.

Unsere erste Losung stellt mithin tiberhaupt kein Niveauellipsoid im
engeren Sinne dar, bei welchem an eine Massenanordnung gedacht ist,
deren Oberfliche mit dem gewiinschten Niveauellipsoid zusammenfillt.
Dies ist aber leicht durch Massenverschiebungen in homogenen konfoka-
len Ellipsoidschalen zu erreichen, bei denen bekanntlich das Aulenraum-
potential unverindert bleibt. Die zweite Losung steht in einer interessan-
ten Analogie zum Niveauéllipsoid von W. D. Lambert [3]; das homo-
gene MacLaurinsche Ellipsoid (a, e, w) hat eine zu groBe Masse (E, =
7732,4.10% g), welche durch eine fiktive Flidchenbelegung von hoher
negativer Dichte herabgedriickt wird. Eine vierte Losung stellt die
Theorie von Pizzetti und Somigliana dar. Sie beruht auf folgender, ma-
thematisch einwandfrei bewiesenen Tatsache. Es sei eine physikalisch
mogliche Massenanordnung und eine dazu gehorige dullere Niveaufliche
gegeben. Dann bleibt die gegebene Niveaufliche und das gesamte Auflen-
raumpotential unverindert, wenn die gesamte Masse im Innern der
Niveaufldche homogen verteilt wird, wiihrend alle Abweichungen von der
Homogenitat durch eine Flichenbelegung teils positiver, teils negativer
Dichte mit der Massensumme Null erfaBt werden kénnen. Wird aber um-
gekehrt die Fliche willkiirlich vorgegeben, so resultiert im allgemeinen
eine fiktive Losung. In Nidherung 4. Ordnung erhilt man schliellich als
fiinfte Losung die sogenannte dritte Normalform von Helmert, bei der
per definitionem f, = 0 gesetzt wird. Damit liefert die zweite Gleichung
(19) aus (E, w, a, e) oder (E, w, a, J,) wie oben direkt J,. Will man in
diesem Falle stets eine physikalisch einwand{reie Losung erzielen, so muf3
man mit f, auch alle iibrigen GréBen 4. Ordnung unterdriicken und
sinkt damit auf die Nidherung 2. Ordnung zuriick, bei welcher alle
Niveausphéiroide Ellipsoide sind; doch reicht bekanntlich die Niherung
2. Ordnung fiir das Problem der Erdfigur nicht aus.

Somit sind alle diese Niveauellipsoide, gleichgiiltig, ob es sich um
strenge Ellipsoide oder blo3 um Néiherungen 4. Ordnung handelt, fiktiver
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Natur. Génzlich unabhingig vom Charakter der Massenanordnungen
konnte aber in [1, S. 163] gezeigt werden, dal} fiir den x-Wert der Erde
(r ~ 1,032) zwar noch in Niherung 8. Ordnung ein Niveauellipsoid
denkbar ist, dieses aber dennoch bereits in den GréSen 4. Ordnung vom
Normalsphéroid abweicht. Setzt man nimlich:

1 ‘
é=xe;J2=-§—(2—:c); Jo == E&] Jg= + ned} Jy= — (&4 ..
fa=—xer; fo=—2€; fy=—pe;.. (25)

so gilt ganz allgemein:

LB 75
T g T T
231
B=(_),+W17)=(3,3—2,759:)—!—x(1,2—0,5x); (26)
1287 1 x
c(—u+ 22 = (143 — 1 ¥ 64—
C ( T g) o (143 —130@) + - (64 — 402)

A 4
(64 — ke,
+ gl 202) + = %

Die Gerade £ = 0 = F schneidet die x-Achse im Punkte x = 1,4, womit
die absolute obere Grenze definiert ist. Die Kurven B = const sind die
gleichseitigen Hyperbeln

(@ — 2,4) (£ 4 5,5) = — (2B + 6,6), @27)

woraus fiir die Kurve B = 0 als Schnittpunkt mit der x-Achse (x = 0)
x = 1,2 folgt. Da sich die Kurven B < 0 in Richtung wachsender x-
Werte anschlieBen und fiir diese mit » auch 42 > 231 /80 positiv sein
mufl, sind Niveauellipsoide in Nidherung 6. Ordnung nur fiir x < 1,2
moglich. Ganz analog kénnen wir weiterschlieBen. Fiir x = A = 0 erhalten
wir fiir die Kurve C = 0 den Schnittpunkt x = 1,1, und es sind Niveau-
ellipsoide in Ndherung 8. Ordnung nur im Bereiche r < 1,1 méglich. In
Fortsetzung dieser Schlulweise erkennt man leicht, daf3 das strenge
Niveauellipsoid mit dem MacLaurinschen Ellipsoid zusammenfillt.
Damit sind wir zu dem Ergebnis gelangt, dal das zu den empirischen
Daten (E, w, a, J,) der tatsichlichen Erde gehorige Niveauellipsoid nur
als Niaherung und nur fiir fiktive Massenanordnungen denkbar ist. Die
willkiirliche Annahme f, = O fithrt auch auf eine andere Massefunktion
J, = — 236,2.10-8 und auf eine theoretische Schwereformel, die nicht als
«normal» bezeichnet werden darf. Die damit gebildeten Schwerestérun-
gen haben ebensowenig einen klaren physikalischen Sinn wie die resul-
tierenden Geoidundulationen. Selbstverstidndlich ist die Aufspaltung in
ein theoretisches Feld und die zugehérige Korrektion innerhalb gewisser
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Grenzen willkiirlich. Doch ist es sicherlich wiinschenswert, von einem
physikalisch mdéglichen Modell auszugehen, welches mit der wirklichen
Erde die beiden Haupttrigheitsmomente gemeinsam hat, so daf3 die
Massefunktion J, identisch ist, widhrend die Massefunktion J, nur gering-
fiigig vom wahren Wert abweicht. Dann sind die Schwerestérungen und
die Undulationen klarer Ausdruck der Massenstorungen.

Die durch die Daten (E, w, a, J3) definierte Kurve des (x, x)-Dia-
gramms fillt fast mit einer Vertikalen x = const zusammen. Die beiden
diskutierten Grenzfille: stetiges Dichtegesetz und Zweischalenmodell ha-
ben gelehrt, dal unterhalb der Parabel F = 15/7 nur fiktive Massen-
anordnungen resultieren, die fiir stetiges Dichtegesetz bis auf J, =
— 209,5.10% und fir die Zweischalenmodelle bis zum Niveauellipsoid
Jy = — 236,2.10-8 herabreichen. Der «empirische» Wert J, = — 165.10-8
wird iiberhaupt nicht erreicht. Dariiber hinaus ist es offensichtlich, dai3
sowohl das Normalsphiroid wie auch das entsprechende Niveausphiroid
des tatsidchlichen Erdkdrpers zwischen den beiden Grenzfillen der ein-
parametrigen Gleichgewichtsfigur mit stetigem Dichtegesetz und den
Zweischalenmodellen mit der Kerntiefe 2900 km liegen muf3. Erstere
liefert J, = — 332,4.10-8, wihrend fiir die Zweischalenmodelle J, zwi-
schen den Grenzen — 310,7.10-8 < J, < — 288,8.10-8 liegt. Diese Werte
erfahren allerdings eine geringfiigige Anderung, weil sie in [1, S. 182] mit
etwas anderen Ausgangsdaten berechnet wurden. Gegen die Festlegung
der oberen Grenze durch die einparametrige Gleichgewichtsfigur kénnte
man einwenden, daB3 wir ginzlich vom Gleichgewicht zu abstrahieren
haben. Tatséchlich kann man vom Zweischalenmodell zum N-Schalen-
modell iibergehen, womit bei dem Grenziibergang N — oo beliebige
stetige Dichtegesetze approximiert werden kéonnen. Aber die Erde ist nun
nahezu im Gleichgewicht, und das Normalsphiroid ist eine Gleichgewichts-
anordnung, welche fiir eine geringfiigig grofere Rotationsgeschwindigkeit
eine Gleichgewichtsfigur reprisentiert. Daher muB der obere Grenzwert
von |J,| nahe bei 330 - 10-8 liegen.

Mit all diesen Argumenten scheint der Wert J, = — 165.10-% zumin-
dest reichlich problematisch. Ebenso problematisch ist aber auch das
empirische Ergebnis, da} die hoheren geraden Massefunktionen anni-
hernd von gleicher GréBlenordnung sind. Demgegeniiber liefert die all-
gemeine Entwicklung der Niveausphiroide bis zur 8. Ordnung [1,
S. 87-97]

4 4 8

= - R - g 4- —— £

T4 SR BT O

8 20 06 80 40
Jo— — 8 _ 2 g _ Eshalr-
6= 7 @ T gr CE T aar ¢l g et agp s (og)
1 / 512

T = e (— 2288 et + 1024 ¢* f, + 1024 ¢ f, + 896 f, — [

12080 €2 & — 640 E e f, — 320§f6).
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Wohl kénnen hierin die Massefunktionen und die Formparameter nicht
eindeutig getrennt werden; sie sind durch die Gleichungen (26) miteinan-
der verkniipft. Wir werten daher diese Formeln mit den Daten (8a) fiir e
und £ fiir das fiktive Niveauellipsoid (f, = f; = f; = 0) aus und finden:

Jy = — 236,0.10°%; J,= + 0,6.10%; J, = — 0,002.10-8, (29)

d.h. es ist J, = — 393 Jg und Jgz = — 286 J,. Die Massefunktionen
nehmen also in ihrem Absolutbetrag ungefiahr mit den Potenzen der Ab-
plattung ab. Fir das Normalsphéiroid (8) erhélt man bei Vernachlissi-
gung von fg, das ohnedies nur mit einem Drittel seines Betrages eingeht,
Jy= + 0,88.10-8, also J, = — 396 J,. Der empirische Wert (9) wiirde
fur f; = — 185,2.10-® oder fir A = + 49.1 resultieren, was reichlich
unwahrscheinlich ist.

SchlieBlich kombinieren wir noch die empirischen Werte J, =
— 165.10-8 und J; = + 65.10-8, Man findet aus (19) und (28)

e = 335354,8.10%; [, = 4 312,033.10-%; f, = — 186,664.10-%, (30)
also A= +495(D,

mithin fast dasselbe unmaogliche Resultat. Weder J, noch J, sind glaub-
wiirdig: |J 4‘ ist nur etwa die Hélfte des plausiblen Wertes, und J, iiber-
steigt den richtigen Wert um rund den 70fachen Betrag.

Auf jeden Fall darf festgestellt werden, dal die Theorie der allgemei-
nen Niveausphiroide ein sehr wirksames Mittel fiir die kritische Uber-
priifung der aus den kiinstlichen Satelliten bisher abgeleiteten Masse-
funktionen darstellt. Wir haben oben fiir die fiktiven Lésungen untere
Grenzen gefunden, und zwar einerseits fiir das Niveauellipsoid (J, =
— 236,2.10-%) und andererseits fiir das an die Bedingung A = 0 ge-
kniipfte stetige Dichtegesetz (J, = — 209,5.10-8). Hier erhebt sich aber
die Frage, ob zu den Sphiroiden, die in der durch (E, w, a, J,) definierten
Kurve (x ~ 1,032) unterhalb der letztgenannten Lo4sung liegen
(— 209,5.10°8 = J, = 0), iiberhaupt irgendwelche, wenn auch physika-
lisch unmogliche Massenanordnungen gefunden werden kénnen.
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