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«Strenge» Ausgleichung
von Polygonzügen und -netzen mit Fehlerellipsen,

ohne Normalgleichungen

Von H. Matthias

1. Einleitung

Diesem Thema wurde in der Literatur schon viel Druckerschwärze
geopfert. Dennoch riskiert der Autor einen weiteren Beitrag; dabei
möchte er einige allgemeine Überlegungen zur Auswertung von Polygonzügen

und -netzen äußern und sodann - nach einer kleinen Umschau
in der Ausgleichungsreehnung - zum eigentlichen Thema einen einfachen
Lösungsweg aufzeigen.

2. Allgemeines zur Auswertung von Polygonzügen und -netzen

2.1. Züge und Netze mit geringen und mittleren Genauigkeitsanforderungen

2.11. Darunter fallen Netze, bei denen die vorgeschriebenen
Fehlergrenzen dank der angemessenen Genauigkeit der Koordinaten der
gegebenen Fixpunkte und der zur Verwendung gelangenden Instrumente
leicht eingehalten werden. Als Beispiel seien Polygonnetze der
schweizerischen Grundbuchvermessung der Instruktionsgebiete III und II
angeführt, deren Toleranzen relative Genauigkeiten von 1:1000 bis 1:2500
vorschreiben. Diese werden mühelos regelmäßig nur bis zu zirka 30% -
wie es übrigens auch sein soll - ausgenützt, wenn bei richtiger Gerätewahl

mit Bezug auf die Richtungsübertragung und die Überwachung der
Längeneichung sorgfältig gearbeitet wird.

2.12. Bei solchen Netzen ist die Art der Auswertung im Hinblick auf
die Genauigkeit der Resultate belanglos. Verknotungen sollen allerdings
zweckmäßig berücksichtigt werden, während es im übrigen aber gleichgültig

ist, nach welchen Näherungsmethoden ausgeglichen und ob
zugsweise oder in einem Guß und programmiert ausgewertet wird. Der
Unternehmer hat die freie Wahl und richtet sie nach wirtschaftlichen
Gesichtspunkten und den ihm zur Verfügung stehenden Mitteln.

2.13. An dieser Stelle sei noch eine Bemerkung mit Bezug auf die
elektronische Distanzmessung beim gegenwärtigen Stand der Technik
beigefügt: Wie mancher schönen Gemeinde begegnet man - insbesondere im
Frühjahr -, in der von zwei oder drei markanten Punkten aus fast der
ganze Bann überblickt wird, teilweise sogar auch der überbaute Teil -
und vergißt dabei, daß man als Geometer von diesen gleichen, ganz
wenigen Standpunkten aus, durch Schnittpunkte mit elektronischer
Distanzmessung, das ganze Festpunktnetz für die Detailaufnahme mit
sehr homogener Genauigkeit und wahrscheinlich recht wirtschaftlich
bestimmen könnte; dasselbe gilt auch für die Bestimmung von Fixpunkten
vom Gegenhang aus als Grundlage für Aufnahmen im steilen Laubwald.
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2.2. Züge und Netze mit hohen Genauigkeitsanforderungen

2.21. Darunter fallen Netze, bei denen die vorgeschriebenen
Fehlergrenzen klein sind; unter Berücksichtigung der Genauigkeit der
Koordinaten der gegebenen Fixpunkte und der Eigenschaften der verwendeten

Meßgeräte entspricht ihre Größenordnung im Sinne der Fehlertheorie

und Fehlerfortpflanzung nicht den zu erwartenden Maximalfehlern,

sondern vielmehr den zu erwartenden mittleren Fehlern. Als
Beispiel seien Polygonnetze mit elektronisch gemessenen Distanzen
erwähnt, mit denen das Netz der Punkte II. und III. Ordnung der
Landestriangulation auf die IV. Ordnung verdichtet wird. Für die Auswertung

der Beobachtungen und die Berechnung derartiger Netze gelten
folgende grundsätzliche Bemerkungen:

2.22. An die Stelle von Näherungsverfahren, die ihre Begründung in
stark idealisierten Zugsformen haben, soll hier bei der Ausgleichung die
Methode der kleinsten Quadrate in ihrer möglichst strengen Form treten.
Dafür gibt es drei Hauptgründe:

- Das zuvor erwähnte Verhältnis zwischen der Größenordnung der
Fehlergrenzen und den zu erwartenden mittleren Fehlern verlangt
nach einem Auswerteverfahren, das tatsächlich zu den wahrscheinlichsten

Werten der Beobachtungen und ihrer Funktionen führt.

- Oft weisen die Züge in den Netzen dieser Kategorie weder ähnliche
Seitenlängen auf noch sind sie gestreckt. Die Fehlerfortpflanzung
kommt deshalb sowohl infolge des Zusammenwirkens der verschiedenartigen

Beobachtungsgrößen als auch infolge der Zugsgeometrie voll
zur Wirkung und begründet die Anwendung einer Auswertung, die
diesen Faktoren korrekt Rechnung trägt.

- Der dritte Grund schlußendlich ergibt sich als Folgerung aus den beiden

vorgenannten und liegt darin, daß ein Auswerteverfahren
erforderlich ist, das einen Ausweis über die mittleren Fehler der Beobachtungen

und ihrer Funktionen nach der Ausgleichung liefert.

2.23. Ein einzelner Polygonzug weist eine schlechte Überbestimmung auf;
Verknotungen versteifen das Netz wesentlich. Die mannigfachen Vorteile

der Methode der Polygonnetze werden auch mit Bezug auf die
Genauigkeit dann voll ausgenützt, wenn in sich geschlossene Netzteile
möglichst in einem Guß ausgeglichen werden.

2.24. Für die ausgleichungstechnische Behandlung von Netzen in einem
Guß ist die Anwendung der allgemeinen Form der Ausgleichungsaufgabe
von Bedingungsgleichungen mit Unbekannten am naheliegendsten;
wahrscheinlich gibt es da und dort dafür Programme.

Sicher gibt es aber manchenorts Programme zur Ausgleichung von
vermittelnden Beobachtungen, deren erster Programmteil so generell
konzipiert ist, daß die Fehlergleichungen aus beliebigen Beobachtungen
von Richtungen, Winkeln und Strecken zusammengestellt werden. Ein
solches System bewältigt natürlich auch Polygonnetze; allerdings wird
die Zahl der Normalgleichungen bereits bei kleinen Netzen rasch groß.
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2.25. Die nachfolgende letzte Bemerkung hat allgemeine Bedeutung
für Netzbearbeitungen in einem Guß; bei Polygonnetzen ist sie überdies
von besonderer Bedeutung. Eine erste Durchrechnung, wenn auch nur
mit provisorischen Resultaten, soll dem Bearbeiter einerseits die
Möglichkeit geben, Unstimmigkeiten im gegebenen Festpunktfeld und grobe
Fehler in den eingeführten Beobachtungen aufzudecken, deren Ursache
abzuklären und sie auszumerzen, und ihm andererseits ein klares Bild
darüber geben, ob die Gewichtswahl im allgemeinen, das Verhältnis der
Gewichte von Strecken- und Winkelbeobachtungen zueinander im
speziellen und der Ansatz des mittleren Fehlers an der Gewichtseinheit
zutreffend waren oder noch zu revidieren sind.

3. Kleine Umschau in der Ausgleichungsreehnung

3.1. Der Titel dieses Abschnittes ist etwas weit gefaßt; das Gebäude der
Ausgleichungsreehnung nach der Methode der kleinsten Quadrate ist
groß und bereits so vielgestaltig und festgefügt durchkonstruiert, daß
eine Umschau im herkömmlich verstandenen Sinn den Umfang eines
Lehrbuches erfordert. Dieses Gebäude steht auf einer tragenden Säule.
Der empfehlenswerte Zutritt zu dessen vielen Räumen ist vom Fundament

her durch diese Säule möglich; leider wird dieser Weg nur selten
benutzt. Viel häufiger erfolgt der Eintritt aus Gründen, denen in Ziff. 3.6,
S. 191, noch etwas nachgegangen wird, seitlich durch Nebentüren auf
verschiedenen Stockwerken, wodurch sich der Besucher selbst von
vornherein den grundlegenden Überblick vorenthält. Oft und immer wieder
sollte deshalb vom Fundament und der erwähnten Säule die Rede sein;
im Dienste dieses Anliegens steht die nachfolgende kleine Umschau. Auf
Literaturhinweise wird dabei verzichtet; sie sind in jedem einschlägigen
Lehrbuch zu finden.

3.2. Das Ausgleichungsprinzip der Methode der kleinsten Quadrate
bestimmt die wahrscheinlichsten Werte der Beobachtungen derart, daß
die gewogene Fehlerquadratsumme

v* ¦ Q-1 -v (1)

zum Minimum wird. In dieser Matrizendarstellung ist v der Vektor der
Verbesserungen an den gemäß Ziff. 3.46, S. 187, im weitesten Sinne
verstandenen Beobachtungen; demnach können diese sowohl

- Verbesserungen an den ursprünglichen, unabhängigen oder «physikalisch»

korrelierten Beobachtungen, als auch

- Verbesserungen an Funktionen der ursprünglichen Beobachtungen
oder Funktionen von Funktionen der ursprünglichen Beobachtungen
sein, die in der Regel «algebraisch», bisweilen auch «physikalisch»
korreliert sind.

Q-1 ist die Inverse der Cofaktorenmatrix Q. Q und damit auch Q-1 sind
im Fall von unabhängigen Beobachtungen Diagonalmatrizen, im Fall
von korrelierten Beobachtungen, von Funktionen von Beobachtungen
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oder von Funktionen von Funktionen von Beobachtungen hingegen
vollständige Matrizen.

3.3. In den Lehrbüchern wird in der Regel von folgenden vier
Ausgleichungsverfahren gesprochen: Ausgleichung direkter Beobachtungen -
Ausgleichung vermittelnder Beobachtungen - Ausgleichung bedingter
Beobachtungen - Ausgleichung vermittelnder Beobachtungen mit
Bedingungsgleichungen oder Ausgleichung bedingter Beobachtungen mit
Unbekannten.

Zu wenig kommt dabei zum Ausdruck oder die Tatsache wird vom
Leser zu wenig realisiert, daß es sich bei diesen Verfahren lediglich um
differenzierte Formelapparate handelt, mit denen bei verschiedenartiger
Aufgabenstellung die mathematisch korrekte Anwendung des
Ausgleichungsprinzips der Methode der kleinsten Quadrate am zweckmäßigsten
erfolgt, die im übrigen aber grundsätzlich dasselbe darstellen und zu
absolut denselben Resultaten führen.

3.4. Aus dieser Feststellung ergeben sich einige Folgerungen, die immer
wieder Gegenstand von Diskussionen und sogar Abhandlungen sind:

3.41. Von den in Ziff. 3.3, S. 186, genannten Verfahren verbleiben -
unter Vorbehalt der in Ziff. 3.43, S. 187, folgenden Ausführungen über
den allgemeinsten Fall der Ausgleichungsreehnung - als grundlegend
eigentlich nur die beiden klassischen Verfahren, deren Formelapparate
in Matrizenschreibweise explizit wie folgt dargestellt werden können:
Ausgleichung von vermittelnden Beobachtungen

v {A (A* • £H • A)-1 ¦ A* ¦ Q-1 - E) ¦ l (2)

Ausgleichung von bedingten Beobachtungen

v - Q ¦ A* (A • ß • A*)-1 • w (3)
Darin sind:

v der Vektor der Verbesserungen

A die Koeffizientenmatrix, und zwar

- bei der Ausgleichung von vermittelnden Beobachtungen die
Koeffizientenmatrix der Unbekannten X in den Fehlergleichungen v
A ¦ x - l

- bei der Ausgleichung von bedingten Beobachtungen die
Koeffizientenmatrix der Verbesserungen in den Verbesserungsbedin-
gungsgleichungen A • v + w 0

Q ist die Cofaktorenmatrix a priori der im weitesten Sinn gemäß
Ziff. 3.46, S. 187, verstandenen Beobachtungen

Z ist der Vektor der Absolutglieder in den Fehlergleichungen der
Ausgleichung nach vermittelnden Beobachtungen

w ist der Vektor der Widersprüche in den Verbesserungsbedingungs-
gleichungen der Ausgleichung nach bedingten Beobachtungen.
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3.42. Die Ausgleichung von direkten Beobachtungen ist der einfachste
Spezialfall der Ausgleichung von vermittelnden Beobachtungen. Die
geläufige Formel für das allgemeine arithmetische Mittel (4,5, S. 189) folgt
direkt aus (2, S. 186), wenn nur eine Unbekannte gesucht wird, alle
Beobachtungsgleichungen ferner die einfache Form U + vi x haben und
die Beobachtungen unabhängig sind. Unter Hinweis auf Ziff. 3.44,
S. 187, kann die Ausgleichung direkter Beobachtungen aueh als einfachster

Spezialfall der Ausgleichung bedingter Beobachtungen behandelt
werden; an die Stelle der Fehlergleichungen mit der die Verbesserungen
vermittelnden Unbekannten x treten Bedingungsgleichungen von der
Form

h + Vx l2 + V2 h + Vi.

3.43. Die Ausgleichung vermittelnder Beobachtungen mit
Bedingungsgleichungen oder bedingter Beobachtungen mit Unbekannten ist
der allgemeinste Fall der Ausgleichungsreehnung und kann als eine
Kombination der beiden klassischen Verfahren betrachtet werden. Die weiter
unten erwähnte Ähnlichkeit der Formelsysteme (2, S. 186) und (3, S. 186)
ermöglicht bei Kombination einerseits die direkte Lösung; eine Ausgleichung

in Stufen ist andrerseits gemäß den Ausführungen in Ziff. 3.2,
S. 185, möglich, wobei wahlweise zuerst die Ausgleichung der vermittelnden

und hernach der bedingten Beobachtungen oder umgekehrt
erfolgt, unter korrekter Berücksichtigung der sich jeweils aus der
vorherigen Stufe ergebenden Cofaktoren.

3.44. Die klassischen Verfahren der Ausgleichung vermittelnder und
bedingter Beobachtungen sind formal sehr ähnlich; die Rolle der
Unbekannten beim einen Verfahren übernehmen die Korrelaten beim anderen
Verfahren. Die eigentlichen Resultate der Ausgleichung sind bei beiden
Verfahren die Verbesserungen an den Beobachtungen. Deshalb sind in
Ziff. 3.41, S. 186, die expliziten Lösungen (2, S. 186), (3, S. 186) für die
Vektoren der Verbesserungen dargestellt; auch daraus ist die erwähnte
Ähnlichkeit gut ersichtlich. Bei der Ausgleichung vermittelnder Beobachtungen

wird der vorrangigen Bedeutung der ermittelten Verbesserungen
als Schlußresultate neben den ermittelten Unbekannten als Zwischenresultate

in der Regel zu wenig Beachtung geschenkt.
3.45. Bei direkten Beobachtungen oder solchen, die eine

Summengleichung erfüllen, wird die Lösung immer direkt mit dem allgemeinen
arithmetischen Mittel angesetzt. Aber auch bei vermittelnden oder
bedingten Beobachtungen ist dieser direkte Weg bisweilen möglich; das

allgemeine arithmetische Mittel der J-Kombinationen von gesamthaft

n Beobachtungen bei r notwendigen Beobachtungen ergibt bei korrekter
Berücksichtigung der Cofaktoren das richtige Resultat.

3.46. Alle diese Folgerungen gelten analog den Ausführungen in
Ziff. 3.2, S. 185, sowohl für unabhängige als auch für «physikalisch» oder
«algebraisch» korrelierte Beobachtungen; demnach also sowohl für direkte
als auch für äquivalente oder fingierte Beobachtungen und damit auch
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für beliebige Funktionen der ursprünglichen, direkten Beobachtungen
oder für Funktionen von Funktionen der ursprünglichen, direkten
Beobachtungen.

3.47. Wirklich unabhängige, insbesondere «physikalisch» unabhängige
Beobachtungen im strengsten Sinn gibt es wohl kaum. Dennoch werden
diese Korrelationen mehrheitlich vernachlässigt. Mehr und mehr wird
den sich durch den Gang der Auswertung ergebenden «algebraischen»
Korrelationen Rechnung getragen. Immerhin ist es auch hier am Platz,
den Einfluß derartiger Korrelationen im einzelnen Fall abzuschätzen
und mit anderen, im früheren Verlauf der Messung und Auswertung
allenfalls bereits vernachlässigten Korrelationen oder hypothetischen
Ansätzen zu vergleichen. Bisweilen können dadurch weitere vernünftige
Vernachlässigungen gerechtfertigt und damit der Fortgang der Arbeit
wesentlich vereinfacht werden.

3.5. Kleine Anwendung
Die Ausführungen von Ziff. 3.41, S. 186, 3.42, S. 187, 3.45, S. 187, sollen

auf die Lösung einer einfachen vermessungstechnischen Aufgabe
angewendet werden:

ihZAhi
F2P'Fi

Fig. 1

Gegeben:

- Die Höhen HF 1, HF2 der Fixpunkte Fl, F2.

- Die beobachteten Höhendifferenzen Ahx bzw. Ah2 mit den Gewichten
px bzw. p2 (Vorzeichen von Ahx, Ah2 gemäß Richtungspfeilen in Fig. 1 ;

Annahme HF 1, HF 2 fehlerfrei).

Gesucht:

Die Verbesserung vx an der Beobachtung Ahx, wobei aus Übungsgründen
vier Lösungswege darzustellen sind.

3.51. Ausgleichung direkter Beobachtungen, allgemeines arithmetisches
Mittel

3.52. Ausgleichung direkter Beobachtungen, die eine Summengleichung
erfüllen

3.53. Anwendung der expliziten Formel (2, S. 186) für die Ausgleichung
vermittelnder Beobachtungen

3.54. Anwendung der expliziten Formel (3, S. 186) für die Ausgleichung
bedingter Beobachtungen.
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Lösungsweg 3.51

Der Ansatz des allgemeinen arithmetischen Mittels für die Höhe des
Punktes P ergibt

Hp _ Px (HFX + Ahx) + p2 (HF2 + Ah2)

Daraus folgt für die Verbesserung

vx (HP - HFX) - Ahx

~- KHF, + Ah2) - (HFX + Ahx)] (5)

Lösungsweg 3.52

Der allgemeine Ansatz für die Ausgleichung des Widerspruches bei
direkten Beobachtungen, die eine Summengleichung erfüllen, ergibt

1

— • w
Px - p*- w

[j] [P]
(6)

wobei Widerspruch w [(Ahx — Ah2) — (HF2 - HFX)]

und daraus

Vi ~ [(HFt + Ah2) - (HFX + Ahx)] (7) ^ (5)

Lösungsweg 3.53

Aus Ziff. 3.41, S. 186, entnehmen wir Formel (2, S. 186)

v {A (A* ¦ Q-i • A)"1 • A* ¦ Qr1 - E) ¦ I

Die Fehlergleichungen lauten:

vx=HP- (HFX + Ahx) ; Pl

v2= HP - (HF2 + Ah2) ; p2

Die gegebenen Matrizen lauten bei der zu lösenden Aufgabe

A-\x) Q -\0,pj l-[HF2+Ah2)
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Die Durchrechnung erfolgt mit allen Zwischenresultaten

Pi Pt

i i [Pl ' [Pl
A* (1, 1) A (A* Q-1 A)'1 ¦ A* • Q-1 f

Pi Pa

JP] ' [Pl.
A* • Ô"1 =(px,Pi)

A* Q-L A =[p] /^__1,^
i / [p] [Pl

1 A (A* Q-1. A)"1 A* - Qr1 - E
(A* Q-i • A)"1 —- \ Pi p,

- P» Pt

ACA^.Q-iA)-1^-! l" j =1 [Pl '[Pl
i / \ jy - Pi

Jp] ' [p]

Vom gesuchten Vektor v '

[Pi

[P]

ergibt sich die Verbesserung vx zu

P"
(HFX + Ahx) + p- ¦ (HF2 + Ah2)

[Pl v * " [PÌ

-jrfiKHF, + Ah2) - (HFX + Ahx)] (8) s (5)

Lösungsweg 3.54

Aus Ziff. 3.41, S. 186, entnehmen wir Formel (3, S. 186)

v -QA*{AQ A*)-1 ¦ w

Die Verbesserungsbedingungsgleichung lautet

vx-v2+ [(Ahx - AhJ - (HF2 - HFX)] 0

Die gegebenen Matrizen lauten bei der zu lösenden Aufgabe daher

/-Ì-.0
A (1, - 1) Q I Pl

t
| « - (i/Fx - HF, + ziAx - z)/i2)

\ ' Pa,
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Die Durchrechnung erfolgt mit allen Zwischenresultaten

1 \ f TL

~QA* ' Pl
4* —

aq-:1. ]
^Pi Pa

Pa

Px Pt LP J - Q A* (A Q A*rl
+

Pt
[P]

Pi
[P]

(A Q AT1 f 1

[7]

Vom gesuchten Vektor v [ 1

W
ergibt sich die Verbesserung vx zu

vx= + Jfil-HF* + Mt) - .HFX + Ahx)] (9) ^ (5)

3.6. Zum Schluß dieser Umschau soll versucht werden, einen Grund
aufzudecken, der mancherorts zu den in den Ziff. 3.1, S. 185, 3.3, S. 186,
angedeuteten Fehlern führt. Die Lehre der Ausgleichungsreehnung
zerfällt in drei Hauptthemen:

- «Grundlagen» (Fehlerlehre und Ausgleichungsprinzip im speziellen
sowie im allgemeinen Rahmen von Statistik und Wahrscheinlichkeitsrechnung,

Ausgleichungsverfahren).

- «Ansätze» (mathematische Erfassung des Problems, auf das das
Ausgleichungsprinzip angewendet werden soll; mit andern Worten
Beobachtungsplan, Wahl des Ausgleichungsverfahrens, Aufstellen der
Beobachtungs- oder/und Bedingungsgleichungen, Cofaktoren a priori,
Beurteilung der Resultate).

- «Calcul» (rein mathematischer Teil, der von den Beobachtungsgleichungen

oder/und Bedingungsgleichungen und Cofaktoren a priori zu
den Verbesserungen und Cofaktoren a posteriori führt).

Die Vermittlung der Ausgleichungsreehnung, angewendet auf irgend eine
Ingenieurwissenschaft, soll folgenden Forderungen genügen:

- Die drei Themen: Grundlagen, Ansätze, Calcul sind sauber getrennt
darzustellen.

- Das Schwergewicht hat eindeutig auf den Grundlagen und den
Ansätzen zu liegen.
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- Der Calcul soll aus didaktischen Gründen besonders deutlich vom
übrigen Stoff getrennt und nur im wirklich notwendigen Umfang
behandelt werden. Dieses Thema hat rein mathematischen Inhalt und
ist deshalb für die angewandten Ingenieurwissenschaften von sekundärer

Bedeutung. Für die Ausbildung von Vermessungsfachleuten
bietet es reichen Aufgabenstoff für die Schulung im disziplinierten,
sicheren numerischen Rechnen.

Diesen Gedanken wird bisweilen vielleicht zu wenig Rechnung getragen.
Die Themen Ansätze und Calcul kommen stark ineinander verflochten
zur Darstellung. Schon bald steht man mitten im Dickicht des Calculs,
wendet damit unwillkürlich seine Aufmerksamkeit und seine Zeit
insbesondere diesem Thema zu und übersieht die viel wesentlicheren
Fragestellungen der Ansätze. Damit ist der in Ziff. 3.1, S. 185, erwähnte Eintritt

in das Gebäude der Ausgleichungsreehnung durch eine Seitentüre
bereits erfolgt und der grundlegende Überblick in Frage gestellt.

4. Ein einfacher Lösungsweg für die «strenge» Ausgleichung
von Polygonzügen und -netzen mit Fehlerellipsen

4.1. Allgemeine Bemerkungen

Das im folgenden dargestellte Verfahren ist ein Beispiel für den in
Ziff. 3.45, S. 187, angedeuteten direkten Lösungsweg bei bedingten
Beobachtungen. Mit ihm wird ferner den in den Ziff. 2.22, S. 184, 2.23, S. 184,
2.25, S. 185, 3.47, S. 188, geäußerten Gedanken und den dort formulierten

Forderungen Rechnung getragen. Da das Verfahren einfach ist, wird
es im Interesse besserer Übersichtlichkeit mit Hilfe des beigelegten
Ausdruckes (Tabellen 1, 2) nur stichwortartig beschrieben und bewußt auf
eine ausführliche Behandlung verzichtet.

4.2. Erläuterung der Bezeichnungen auf dem Ausdruck (soweit erforderlich)

HZ, NZ Hauptzug, Nebenzug soweit Klassifikation überhaupt notwen¬
dig oder sinnvoll.

MEI Mittlerer Fehler an der Gewichtseinheit; im Kopf des Ausdruk-
kes a priori, im Schlußresultat a posteriori. MEI ist
dimensionslos.

Hin Indikationen für das Abrufen der einzelnen Programmschritte.
Rück
Mittel

QQB Cofaktoren der Brechungswinkel, Distanzen, Azimute, Y- und
QQD X-Koordinaten. (In der Literatur sind die Bezeichnungen
QQAZ QBB, QDD, QYY usw. üblich.)
QQY
QQX
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GRHA Große und kleine Halbachse der mittleren Fehlerellipse.
KLHA

TETA Azimut der großen Halbachse der mittleren Fehlerellipse.

G Zentesimalgrad

M Meter

MM Millimeter

VB Verbesserungen an Brechungswinkeln und Distanzen.
VD

PVV Gewogene Fehlerquadratsumme.

4.3. Einzelne Polygonzüge

4.31. Schema des Rechenganges (Fig. 2)

±
Eingabe

\/
Rechnung
Hin
Rück 1

Kontrolle

Korrekturen

/\
entweder

oder

normale
Fortsetzung

\/
Rechnung

|Ausql. BrechWl

Hin 2

Rück 2

\/
M ittel,Endgültige FehlereiIipsen,
Koordinaten,Distanzen, Azimute
a Brech.W. Verbesserg,[pwi,MEI.

Korr igierte
Eingaben

±Rechnung
Hin 1'

Rück V

\/

Mg. 2
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4.32. Bemerkungen zum Rechengang

Eingabe. Alle gegebenen Daten: Koordinaten der Anschlußpunkte
allenfalls mit Cofaktoren und Elementen der Fehlerellipsen, Orientierungen

auf den Anschlußpunkten mit Cofaktoren, Beobachtungen mit
Cofaktoren, MEI a priori.

Hin-1, Rück-1. Hin-1-Rechnung von A nach E und Rück-1-Rechnung
von E nach A. Cofaktoren für alle berechneten Azimute und Koordinaten
sowie Elemente der mittleren Fehlerellipsen. Widersprüche der
Winkelsummenbedingung und der Koordinatenabschlußbedingungen.

Kontrolle. Gründliche Analyse der Ergebnisse der Hin-1-, Rück-1-
Rechnung: Beurteilung der Orientierungen, Winkel- und Koordinatenwidersprüche

mit Cofaktoren und Elementen der mittleren
Fehlerellipsen vergleichen, allenfalls Untersuchung auf Kriterien für grobe
Distanz- oder Winkelfehler, Beurteilung der Anschlußpunkte.

Korrekturen. Wenn durch die Kontrolle entsprechende Indikationen
gegeben sind: Ausmerzen grober Unstimmigkeiten in den Anschlußpunkten,

den Orientierungen, den Winkel- und Distanzmessungen. Wo
erwiesen (womöglich auf Grund von Vergleichen mehrerer Züge),
Korrektur von MEI a priori. Wiederholung Hin-1'- und Rück-1'-Rechnung.

Hin-2, Rück-2. Ausgleichung der Brechungswinkel - wenn noch
erforderlich - proportional zu den Cofaktoren. Hernach analog Hin-1-, Rück-
1-Rechnung.

Mittel. Berechnung der endgültigen Koordinaten als allgemeines
arithmetisches Mittel aus den Werten der Hin-2-, Rück-2-Rechnung mit
den entsprechenden Cofaktoren (Vernachlässigung der durch die allenfalls

vorgängige Ausgleichung der Brechnungswinkel entstandenen
Korrelationen). Cofaktoren und Elemente der mittleren Fehlerellipsen der
Mittelwerte. Endgültige Azimute und Distanzen, Brechungswinkel,
Verbesserungen an den Beobachtungen [pvv], MEI a posteriori.

4.33. Bemerkungen zum Verfahren

- Wie bereits in Ziff. 4.32 erwähnt, wird hier nicht weiter auf das wichtige

Problem der Wahl der Gewichtseinheit MEI, das Verhältnis der
Gewichte von Distanz- und Winkelmessungen untereinander und auf
die Dimensionen eingegangen.

- Die Cofaktoren der Azimute und Koordinaten der Hin- und
RückRechnung werden mit symbolischen Gewichtskoeffizienten ermittelt.

- Der Vergleich der Hin- und Rück-Rechnung mit allen Zwischenresultaten

(Azimute, Widersprüche der Winkelsummen- und der
Koordinatenabschlußbedingung, Cofaktoren, Elemente der mittleren
Fehlerellipsen) gibt dem Bearbeiter die erwünschte, wertvolle Möglichkeit,
den Polygonzug gründlich zu analysieren, alle groben Differenzen und
Fehler aufzudecken und dann auszumerzen.

Dieser Vorzug des Verfahrens ist mit Bezug auf alle möglichen
Fehlerquellen wichtig; insbesondere ist er aber zum Ersatz der sonst
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OPERAT P7 WI LIMMATTAL
•STRENGE'

BUËRO H

PZtVON XII WACH SPREIT KLASSIFIKATION! HZ MCI» f,
ART DER EINZWAENGHNGi kOORD.RICHTg.BETOS. HlN X RUPCK X MITTEL tf
BEMERKUMGENt STG.SpREI TENU ICH 3. ORONG.

HIN -1 OHNE AUSGL. DE« BRECH.W.

PKT.MR. BRECH.W. QQB SI« AZ Y X QOY OGX GRHA TETA
DISTANZ OOD AZIMUTE QOAZ COS AZ DY DX "LHA
(G / Ht im

219.97850 O.50

IM) (MI ("Ml

XII 77.385« 0.25 .9090361 69606.040 53781.960 O.OO O.OO 0 0
952.2"C 0.90 127.36390 0,75 -.4167173 865.621 -396.815 0

XIII 203.1716 0.25 .8371563 70471.661 53335.145 I.O 1 .5 8 27
97P.805 1.0 130.53550 1.0 -.1611691 868.353 -451.683 6

XIV 217.2681 0.?5 .7310771 71340.011 53933.457 2.3 3.6 12 29
604.990 0.70 117.80360 1.3 -.6832949 442.291 -412.782 8

XV 304.39H 0.25 -.7310620 71782.308 525?0.675 3.2 U.5 1" 32
1405.325 I«5 252.19500 1.5 -.6823110 -1027.JflO -958.869 10

SPREIT 332.2531 0.25
301.41810 1.8

70750.928 51561.Ö07 7.4 9.2 19
15

164

SOLLWERTP 381.14680 O.'IO 70T55.0O0 51561.840 0.0? 0.00 0 0
WJOERSPPUECHE 0.O0130 -0.072

0.07P
-0.034 0

RtJECK- 1 OHME AU4<SL. DER BRECH.W.

PKT.NR. BRECH.W. OQB SIN AZ V X QOY OSX GRHA TETA
DISTANZ 000 AZIMUTE QQA7 COS AZ DV OX KLHA
<G / MI (Gl

181.14680 0.40

<H> (Ml ("MI

SPREIT 67Ì7469 0.25 .7310481 70755.000 51561.840 0.00 0.00 O 0
1405.325 1.5 52.19370 0.65 .6023260 1027.360 95B.890 0

XV 95.606« 0.25 -.7310909 71782.360 525?0.730 2.3 2.4 11 152
601.990 0.70 317.80230 0.90 .6322800 -1U2.303 41?.773 7

XIV 182.7319 0.25 -.8871657 713(10.057 52933.502 3.0 3.2 12 153
978.805 1.0 330.53420 1.2 .1611511 -868.362 451.671

XIII 196.6281 0.25 -.9090446 70471.695 53365.173 4.4 5.5 lu 196
952.240 0.90 327.36260 1.4 .4166987 -665.629 3?6.797 13

XII 322.6196 0.25
19.97720 1.7

69606.067 53781.970 5.7 B.3 17
14

17

50LL*ERTE 49.97850 0.50 69606.040 53781.960 O.Ol O.OO 0 0
WIDER5PRUECHE -0.0013C - 0.027

0.028
0.010 0

HIN -2 MIT AUSGL. DER BRECH.W.

PKT.NR. BRECH.w. OQB SIN AZ Y X a«Y OflX GRHA TETA
DISTANZ 000 AZIMUTE QOAZ COS AZ D* DX KLHA
IG / MI CGI

219,97850 0.50

(Ml (Ml (MM>

XII 77.3851 0.25 .9090378 69606.040 53751.960 O.OO 0.00 0 0
952.2U0 0.90 127.36361 0,75 -.4167136 865.62? -396.811 0

XIII 203.1713 0.25 .8871600 70U7I.66? 53335.149 1.0 1 .5 e 27
978.805 1.0 130.53498 1.0 -.4614619 869.357 -451.681 6

XIV 217.2678 0.25 .7310054 7U40.019 52933.463 2.3 3.6 12 29
601.990 0.70 147.80282 1.3 -.6822860 «42.299 -412.776 e

XV 304.3911 0.25 -.7310509 717«?.318 52520.691 3.2 4.5 lu 32
1405.325 1.» 252.19396 1.5 -.6823230 -1027.364 -956.886 10

SPREIT 332.2528 0.25
384.14650 1.8

70754.954 51561.806 7.4 9.2 19
15

164

SOLLWERTE 3"4,11680 O.'IO 70755.000 51561.840 0.00 0.00 0 0
WIDERSPRUCHE 0.00000 -0.046

0.057
-0.034 0

RUECK- 2 MIT AUSGL. DER BRECH.W.

PKT.Nfl« BRECH.W. QQB SIN AZ Y X OQY QOX GRHA TFT A

0ISTAN7 000 AZIMUTE QOAZ COS AZ PY DX KL^A
(G / Hl (Gl

184.44680 0.40

IMI- (M> (MM)

SPREIT 67.7472 0*25 .7310509 70755.000 51561,840 0.00 0.00 0 0
1405.325 1.5 82.19396 0.65 .6823230 1027.364 958.886 0

XV 95.6089 0.25 -.7310854 71732.364 52520.726 2.3 2.4 lt 152
601.990 0.70 317.80282 0.90 .6522860 -442.299 412.776 7

XIV 182.7322 0.25 -.8871600 71340.065 52933.502 3.0 3.2 1? 153
978.805 1.0 330.53498 1.2 .4614619 -866.357 451.681

XIII 196.8287 0.25 -.9090378 70-171.708 53385.163 4.4 5.5 14 196
952.210 0.90 327.36361 1.1 .4167136 -865-622 396.811 13

XII 322.6J49 0»25
49.97850 1.7

69606.086 53781.994 5.7 8.3 17
1«

17

SOLLWERTE 49.97850 0.50 69606.040 53751.960 0,00 0.00 0 0
WIDERSPRÄCHE 0.00000 0.046

0.057
0.034 0

Tabelle 1

195



c.

POLYGON ZUG
OPERAT PZ NI LIMMATTAL

•STRENGE' AUSGLEICHUNG MIT FEHLERELLIPSEN
BUERO H. MATTHIAS LENZB. JAHR 1963

PZlVON XII NACH SPREIT KLASSIFIKATION! HZ MEI! 6
ART DER ETNZWAENGUNGi KOORD. R ICHTG.BE TDS. HIN X RUECK X MITTEL X
BEMERKUNGEN! S TG.SPREITENBACH 3. ORDNG.

MITTEL

PKT.NR. BRECH.*. VB
DISTANZ VD AZIMUTE SIN AZ
(G / Ml (G)

21-0.97850
XII 77.38«« -0.0010

952.245 0.005 127.36294 .9090424
XIII 203.1711 -0.0005

978.810 0.005 130.53402 .8871670
XIV 217.2680 -o.oooi

604.992 0.002 147.80201 .7310940
XV 304.3918 0.0004

1405.303 -0.022 252.19376 -.7310487
SPREIT 332.2530

PVV
MEI

-o.oooi

911.57U
17.432

384.44680

1

i

COS AZ

-.4167036

-.4614485

-.6822767

-.6823252

Y

OY
(Ml

69606.
865.

70M71.
366.

71340.
442.

71782.
-1027.
7075S.

040
631
671
368
039
306
345
345
000

X

OX

(Ml

537S1,
-396,

53385,
-451,

52933,
-412,

52520,
-958,

51561,

960
804
156
670
486
772
714
874
840

QQY

0.00

0.84

1.3

1.3

0.00

QQX GRHA TETA
KLHA
(MM)

0.00

1.2

1.7

1.6

O.OO

0 0
0
7 25
5
8 a
7
8 169
7
0 0
0

Tabelle 2



recht fragwürdigen Art der Ausgleichung von Widersprüchen der
Winkelsummenbedingung von Bedeutung, deren Größe nicht erklärlich

sind.
Die Berechnung der endgültigen Koordinaten als allgemeines
arithmetisches Mittel aus der Hin-2-, Rück-2-Rechnung entspricht dem in
Ziff. 3.45, S. 187, angedeuteten direkten Lösungsweg bei bedingten
Beobachtungen.
Zwischen den Koordinaten desselben Punktes der Hin-1-, Rück-1-
Rechnung besteht keine Korrelation; die Beobachtung des Brechungswinkels

im betrachteten Punkt wird dabei gar nicht verwendet.
Wird der Winkelwiderspruch durch die Korrekturstufe als grober

Fehler beseitigt, so gilt diese Bemerkung auch für die Koordinaten
der Hin-2-, Rück-2-Rechnung.

Wurde jedoch der Widerspruch der Winkelsummenbedingung
proportional zu den Cofaktoren ausgeglichen (analog einer Ausgleichung
in Stufen), so sind die Koordinaten der Hin-2-, Rück-2-Rechnung
korreliert. Dieser Korrelation könnte bei der Mittelbildung Rechnung
getragen werden; sie wird aber aus den in Ziff. 3.47, S. 188, genannten
Gründen vernachlässigt.

Dazu noch eine weitere Erwägung: Wenn der Widerspruch der
Winkelsummenbedingung im fehlertheoretisch zu erwartenden Rahmen

liegt, könnte aus den nachfolgend genannten Gründen ohnehin
auf die fragwürdige Ausgleichung der Brechungswinkel verzichtet
werden. Einerseits ist die Winkelsummenbedingung nach der
Mittelbildung auf jeden Fall erfüllt und andrerseits ergibt die vorgängige
Ausgleichung der Brechungswinkel bei beidseitigem Azimutanschluß
nur eine ganz unbedeutende Gewichtserhöhung der Koordinaten in
Zugsmitte; ihre Vernachlässigung entspricht fehlertheoretisch etwa
der gänzlichen Vernachlässigung des Brechungswinkels in Zugsmitte.

Mit dem vorgeschlagenen Verfahren können alle Arten von Polygonzügen

befriedigend bearbeitet werden, nämlich sowohl freie Züge als
auch gezwängte Züge mit allen denkbaren Kombinationen von
einseitigen oder beidseitigen Koordinaten- und Azimutanschlüssen sowie
Zwischenorientierungen.
Wie im Ausdruck deutlich erkennbar, können auch bekannte oder
geschätzte Cofaktoren der Koordinaten der Anschlußpunkte eingeführt
und damit kann bei der Ausgleichung der unterschiedlichen
Zuverlässigkeit der Fixpunkte Rechnung getragen werden. Dabei bleiben
die Koordinaten der Anschlußpunkte natürlich unverändert; deren
Cofaktoren werden jedoch bei der Berechnung der endgültigen
Koordinaten der Neupunkte und deren Cofaktoren und Fehlerellipsen
berücksichtigt.

(Im Beispiel ist MEI a priori + 6; MEI a posteriori ergibt sich zu
±17. Die Gewichtswahl ist in Ordnung. Der größere Wert für MEI
a posteriori hat seine Ursache in der Unsicherheit der
Anschlußkoordinaten. Es wurden hier keine Cofaktoren QQ Y und QQX für die
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Koordinaten der Anschlußpunkte eingeführt. MEI ± 6 ist dimensionslos;

ein QQD oder QQY oder QQX von l[mm2] ist einer Längenmessung

oder einer Koordinate zugeordnet, deren mittlerer Fehler ± 6 mm
beträgt; ein QQB oder QQAZ von l[cc2] ist einem Winkel oder einer
Richtung zugeordnet, deren Genauigkeit durch einen mittleren
Richtungsfehler von + 4œ gekennzeichnet ist. Im Beispiel ist der mittlere
Fehler der Längenmessung bei D zirka 1000 m ± 6 mm und entspricht
der durch einen mittleren Richtungsfehler von ± 4œ verursachten
Querabweichung bei derselben Distanz. D zirka 1000 m ist die mittlere
Länge der Polygonseiten.)

- Die Formeln für die Berechnung der Cofaktoren (QQY, QQX, QYX)
der gewogen gemittelten Koordinaten aus denjenigen der Hin-Rechnung

(QQY, QQX, QYX) bzw. Rück-Rechnung (QQY, QQX, QYX)
lauten: _> <_ _» «_

QQY-QQY QQX-QQX
QQY

QQY+QQY
QQX

QYX QQY ¦ QQX
QYX

QQY ¦ QQX
+

QQX + QQX

QYX

QQY¦ QQX

(10)

4.4. Polygonnetze

Wenn immer es sinnvoll und möglich ist, soll der in Ziff. 2.23, S. 184,
formulierten Forderung auf Bearbeitung einzelner, in sich geschlossener
Netzteile in einem Guß Rechnung getragen werden. Beim vorgelegten
Verfahren wird deshalb bewußt auf die gänzliche Vorprogrammierung
verzichtet. Hingegen wird der in Ziff. 2.25, S. 185, formulierten Forderung

Rechnung getragen und dem Bearbeiter einerseits die Routinearbeit

abgenommen, ihm andrerseits aber der Einblick in die Zwischenresultate

und die sinnvolle Einflußnahme ermöglicht.

f F2

I F?

\ZS
z?

^KNf.J KN2ZI KN3

Z3

.Tt Z4

Af4
Z6

^Fig. 3 ^FS
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Der Ablauf wird an einem schematischen Beispiel stichwortartig
erläutert:

- Hin-1, Rück-1, Kontrolle, evtl. Hin-1', Rück-1', Hin-2, Rück-2, Mittel

für(Zl,Z2) ergibt KN1 prov.
für(Z6, Z7) ergibt KN3 prov.

- Hin-1, Kontrolle, evtl. Hin-1'

von KN1 prov. über Z3 nach KN2
von F 4 über Z4 nach KN2
von KN3 prov. über Z5 nach KN2

- Mittelbildung für KN2

[Koordinaten, Orientierung, Cofaktoren in Erweiterung von Formel
(10, S. 198), Elemente der mittleren Fehlerellipse.]

- Hin-1

von KN2 über Z3 nach KN1
von KN2 über Z5 nach KN3

- Mittelbildung (Koordinaten, Orientierung, Cofaktoren)

von Fl über Zl nach KN1
von F 2 über Z2 nach KN1
von KN2 über Z3 nach KN1

von F 6 über Z6 nach KN3
von F 7 über Z 7 nach KN 3

von KN2 über Z5 nach KN3

Hin-1, Rück-1, Hin-2, Rück-2, Mittel

für Zl zwischen Fl und KN1
für Z2 zwischen F 2 und KN1
für Z3 zwischen KN1 und KN2
für Z4 zwischen F 4 und KN2
für Z5 zwischen KN2 und KN3
für Z6 zwischen F 6 und KN3
für Z7 zwischen F 7 und KN3
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für KN1 aus Hin-1
Rück-1

Hin-1

für KN3 aus Hin-1
Rück-1

Hin-1



Mitteilung der Redaktion

Damit die Zeitschrift in Zukunft wieder pünktlich am 15. jeden Monats
erscheinen kann, sieht sich die Redaktion gezwungen, den folgenden
Terminplan einzuführen:

Größere Manuskripte
(Formelartikel, Artikel mit vielen Abbildungen,
umfangreiche Protokolle) : beim Fachredaktor am 5. des Vormonats
(ohne Gewähr für Erscheinen in der folgenden
Nummer)

Kleinere Manuskripte
(Einladungen, Nekrologe, Buchbesprechungen,
kleinere Protokolle): beim Chefredaktor am 17. des Vormonats

Rücktritt von Prof. Dr. Karl Hofacker

Auf Ende Wintersemester 1967 ist Prof. Hofacker von seinem Amte
zurückgetreten. Er war seit Abschluß seiner Studien 40 Jahre am Poly
tätig: zuerst als Assistent bei Prof. Rohn, nach mehrjähriger praktischer
Arbeit in einem Ingenieurbüro dann wissenschaftlicher Mitarbeiter von
Prof. Ritter, bei welchem er auch doktorierte. 1941 wurden ihm
Lehraufträge an den Abteilungen I und VIII übertragen. 1942 zum
Ordinarius gewählt, hat Prof. Hofacker seither die Baustatik, den Massiv-
und den Brückenbau für beide Abteilungen betreut; von 1948 bis 1952

war er Vorstand der Abteilung I. Es verdient festgehalten zu werden, daß
zeitweise die Lehrverpflichtung bis zu 28 Wochenstunden Vorlesungen
und Übungen umfaßte. 1961 ermöglichte Präsident Pallmann die
erbetene Entlastung von den Pflichten an der Abteilung I.

Für unsere Abteilung VIII erwies sich das in der Folge geradezu als ein
Glücksfall, ergab sich doch daraus eine eigene Professur für Statik und die
Baufächer und für Prof. Hofacker die Möglichkeit, nun in seinen
Vorlesungen und Übungen ganz auf die Bedürfnisse der Kulturtechnik
eingehen zu können. Der Erfolg dieser Lösung und seiner Bemühungen war
eindeutig. Für die Jahre 1964-1966 wurde Prof. Hofacker zum
Abteilungsvorstand gewählt.

Am 22. Februar 1967 hielt der Genannte seine Abschiedsvorlesung
über «Massive Brücken, ihre Geschichte und Entwicklung», zu welcher
sich zahlreiche Kollegen aus der Dozentenschaft, viele Studenten und
Ehemalige eingefunden hatten. Kräftig und langanhaltend akklamiert,
beendete der Jubilar seine Vorlesung und seine Verpflichtung als
akademischer Lehrer.

Das anschließende Abschiedsessen im Kreise einer zahlreichen Kollegenschar

brachte die Würdigung des Geleisteten, den verdienten Dank für
die Kollegialität Karl Hofackers und mit frohen und guten Wünschen
den Übergang in den Ruhestand. Ad multos annos H. Grubinger
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