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Graphentheorie, ein Hilismittel im Vermessungswesen
Dipl.-Ing. Paul Velterli, M.Sc.Ph.E. (ITC)

Zusammenfassung

Seit dem Aufkommen der programmierten Rechentechnik in den ver-
schiedensten Gebieten von Wissenschaft und Technik hat die Graphen-
theorie zahlreiche Anwendungen gefunden. Am Beispiel der bedingten
Ausgleichung hybrider Polygonnetze wird gezeigt, daB die Graphen-
theorie auch im Vermessungswesen vermehrte Beachtung verdiente.

Résumé

Depuis I’avénement du calcul programmé dans les branches les plus dif-
férentes de la science et de la technique, la théorie des graphes a trouvé
de nombreuses applications. A I’'aide d’'un exemple emprunté a la com-
pensation des réseaux de polygones, ’auteur démontre 'utilité de cette
théorie dans le domaine de la mensuration.

Einleitung

Verkehrsnetze, Molekiilstrukturen, elektrische Schaltungen, Stamm-
biume, militdrische Operationsplidne usw. sind Graphen. Der Graph ist
das abstrakte Bild, das den genannten und noch unzidhligen anderen
Darstellungen des tidglichen Lebens zugrunde liegt. Dabei werden die
verschiedensten Objekte durch Punkte bezeichnet und mittels gerichteter
oder ungerichteter Linien miteinander verbunden. Diese Linien sollen
eine bestimmte Beziehung oder Zuordnung ausdriicken.

Es bedarf wohl keiner schirferen Umschreibung des Graphen, um
feststellen zu kénnen, dal Triangulationen, Trilaterationen, Polygonie-
rungen und photogrammetrische Netze Graphen sind. Da nun die Gra-
phentheorie ein mathematisches Modell errichtet, das auch fiir weite
Gebiete der Vermessung gilt, so ist zu erwarten, dag fiir die Vermessung
interessante Ergebnisse abfallen kénnten. Besondere Beachtung verdient
dabei die anschauliche Terminologie, die den Vermessungsmann sozu-
sagen direkt anspricht.

Bei der Aufstellung von Berechnungsplidnen spielt das «erfahrene
Auge» des Ingenieurs heute noch meist eine unersetzliche Rolle. Soll nun
aber die Erstellung solcher Pline dem Rechenautomaten iiberbunden
werden, so stellt sich die Aufgabe, dem Computer dieses «erfahrene
Auge» zu verschaffen. Dall bei diesem Vorhaben die Graphentheorie
wirkungsvolle Hilfe bringen kann, soll das nachfolgende Beispiel zeigen.

Wir wollen ein sicheres Rezept aufstellen fiir die Bestimmung von
Art und Anzahl der Bedingungen bei der bedingten Ausgleichung eines
hybriden Polygonnetzes. Unter einem hybriden Polygonnetz verstehen
wir ein «klassisches» Polygonnetz, in welchem zwischen beliebigen
Polygonpunkten zusitzlich Distanzen oder Richtungen gemessen worden
sind. Bevor wir an die Losung der gestellten Aufgabe gehen koénnen,
miissen wir jedoch eine Exkursion in die Graphentheorie unternehmen.
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Fundamentalsystem oder Basis unabhdngiger Zyklen

In einem Graphen nennt man ungerichtete Verbindungslinien Kanten.
Ein Kantenzug, dessen Anfangs- und Endpunkt zusammenfallen, heifit
Zyklus des Graphen.

Um abstrakte Formulierungen zu vermeiden, wollen wir an einem Bei-
spiel eine wichtige Eigenschaft der Zyklen eines Graphen vorfithren. Der
Graph des Beispiels (siehe Figur) umfat a, = 2 Komponenten oder iso-
lierte Teilgraphen, a, = 16 Kanten und a, = 13 Punkte. Er weist zy-
klische und nichtzyklische Formen (Bidume) auf. Die Kanten sind mit b,
¢, ..., r bezeichnet; jede besitzt einen willkiirlichen Durchlaufsinn, der
mit einem Pfeil markiert ist. Unter der Unzahl von Zyklen der Figur
beschrianken wir uns der Einfachheit halber auf die Elementarzyklen, das
heil3t auf diejenigen, die einen Punkt héchstens einmal durchlaufen. Diese
ZyKklen sind in der zur Figur gehorenden Tabelle in der Kolonne «Zyklen»
durch sukzessive Aufzidhlung der durchlaufenen Kanten notiert. Durch
diese Aufzidhlung erhiilt jeder angefithrte Zyklus einen (willkiirlichen)
Durchlaufsinn. Jedem Zyklus wird nun in den Kolonnen «Kanten» eine
Zahlenfolge wie folgt zugeordnet: Wird beim Durchlaufen des betreffen-
den Zyklus eine bestimmte Kante im Sinne ihres Pfeils durchlaufen, so
wird in der entsprechenden Kolonne der Wert 41 und im gegenteiligen
Falle der Wert —1 notiert. Nicht durchlaufene Kanten des Graphen
erhalten den Wert 0. Demnach lautet zum Beispiel die dem Zyklus Nr. 2
(bchgf) zugeordnete Zahlenfolge (1, —1, 0, 0, +1, +1, —1, 0,0, 0, 0, O,
0, 0, 0, 0), da die Kanten b, f und g im Sinne der Kantenpfeile und die
Kanten ¢ und h entgegen den Kantenpfeilen durchlaufen werden. Diese
jedem Zyklus zugeteilte, geordnete Zahlenfolge heillt Zyklusvektor. Seine
Dimension entspricht der Anzahl der Kanten des Graphen.

Man sagt, da3 eine Anzahl Zyklen unabhéngig sind, wenn die zugehorigen
Zyklusvektoren linear unabhingig sind. In unserem vereinfachten Bei-
spiel bedeutet dies, da3 keiner der Vektoren der betrachteten Zyklen
durch vektorielle Addition oder Subtraktion aus den iibrigen hergeleitet
werden kann. Zyklen 2, 3 und 6 sind zum Beispiel nicht unabhingig, da
Zyklusvektor 6 durch Subtraktion des Vektors 2 vom Vektor 3 entsteht.
Hingegen sind die Zyklen 2, 5, 6, 8 und 9 oder 1, 2, 6, 7 und 9 unabhingig.
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Ein Graph besitzt nun immer eine ganz bestimmte maximale Anzahl
unabhiingiger Zyklen. Diese Anzahl ist typisch fiir den Graphen; sie ist
eine topologische Konstante und heit zyklomatische Zahl (v). Thr Wert
betrigt » = ay + a, — a,, wobei a, die Anzahl der Komponenten, a, die
Anzahl der Kanten und a, die Anzahl Punkte des Graphen darstellen.
Die zyklomatische Zahl des Beispiels betrigt somit » =2 4 16 — 13 =
5. » unabhingige Zyklen eines Graphen nennt man Fundamentalsystem
oder Basis unabhdngiger Zyklen oder Zyklenbasis. Ein beliebiger Zyklus
eines Graphen 146t sich stets aus den Zyklen eines seiner Fundamental-
systeme aufbauen.

Kanten
Nr.ZykIenb c d e f g kR ¢ k I m n o p gqr
Zyklusvektoren
1|bede |+1 —-14+14+1 0 O O O 0 O O O O 00O
2 |bchgf {+1 -1 O O+141 -1 -0 O O O O©0 O O0O0O
3 |bchikf |+1 -1 O O+1 O0-—-14+1-1 O 0 O O 00O
4 | fghde o 04141 -1 -14+1 0 0 O 0 0 0 O0O0O
5 |fkthde | 0 0+1+1 -1 O0+1-141 O0 0 O O 00O
6 | gik o 0 0 o 0-1 O0+41-1 O 0 0 O O0O00O
7 |Inpo o 0o 0 o o0 o O O O+1 O0-1-1+100
8 |lnm o o o o o 0 O O O+141 -1 O O0O0OO
9 [ mpo o 0 o o0 o0 o0 O O o0 O0-1 0-14100

Ein hiibsches Beispiel fiir die zyklomatische Zahl bietet der Kataster-
plan: Die Anzahl Parzellen auf einem Blatt ist » =1 + a; — a,;, wenn
das Blatt a, Grenzlinien und a, Grenzpunkte aufweist.

Bestimmung der Art und Anzahl von Bedingungsgleichungen
bei der Ausgleichung hybrider Polygonnelze

Um die folgende Demonstration moéglichst kurz und einfach zu gestalten,
unterwerfen wir das Polygonnetz zwei Einschrinkungen:

1. Das Netz sei zusammenhéingend; das heilit, zwei beliebige Netzpunkte
konnen stets durch einen Polygonzug verbunden werden.

2. Die Richtungen der einem Punkt anliegenden Polygonseiten bilden
stets einen Satz.

Hybride MeBelemente seien vorlidufig noch ausgeschlossen.

Einem derart vereinfachten Polygonnetz, das immerhin beliebig viele
Knotenpunkte in freier Anordnung aufweisen darf, kénnen wir sozusagen
direkt ein Graph unterschieben. Diese Substitution gelingt ohne nennens-
werte Phantasie, indem die Polygonseite (Distanz und Azimut) durch
die Graphenkante und der Polygonpunkt durch den Graphenpunkt er-
setzt wird. Die derart aufgebaute Analogie Graph—Polygonnetz befriedigt
" jedoch noch nicht. Ein Graph ist ein in sich geschlossenes, widerspruch-
loses mathematisches Wesen, was vom Polygonnetz vorderhand noch
nicht gesagt werden kann, da im letzteren Klaffen oder Abschluf3therme
die vermutete Analogie storen, das heif3t zerstéren. Diese Schwierigkeit
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rithrt natiirlich vom verschwommenen Begriff «Polygonnetz» her. Unter
Polygonnetz versteht man landliufig, je nach Bedarf, den Netzplan, das
numerische oder graphische MeBnetz oder das ausgeglichene Netz. Wir
eliminieren die die Analogie stérenden Abschluitherme im MeBnetz, in-
dem wir den Messungen vorldufig noch unbekannte Verbesserungen an-
fiigen. Das Netz der Feldmessungen wird dadurch zum Netz der aus-
geglichenen Messungen.

RiickschlieBend vom Graph auf das Polygonnetz, konstatieren wir
nun die Existenz einer Familie von Fundamentalsystemen unabhéngiger
Zyklen im Polygonnetz. '

Die Messungen sind offenbar mit Beriicksichtigung des kleinstquadra-
tischen Prinzips so zu verbessern, dafl alle zyklischen Strukturen des
Polygonnetzes «schlieBen». Da nun ein ganz beliebiger Zyklus des Poly-
gonnetzes aus den Zyklen eines seiner Fundamentalsysteme zusammen-
gesetzt werden kann, geniigt es, dafiir zu sorgen, dall die Elemente irgend-
einer Zyklusbasis schlieen. Es besteht dann auch die volle Gewihr, dafl
das mit Hilfe der Basiszyklen aufgestellte System der Bedingungsglei-
chungen wirklich unabhingig ist. Es sei bemerkt, daB3 die Verbesserungen
an den aus den Richtungsmessungen abgeleiteten Azimuten der Polygon-
seiten und nicht an den Polygonwinkeln angebracht werden sollten. Wer-
den nidmlich die Winkel verbessert, so muB} fiir jede Station noch dafiir
gesorgt werden, daB3 die Summe der der Station zugeordneten Polygon-
winkel den Wert 2z hat.

Jeder Polygonzyklus des Fundamentalsystems gibt AnlaB zu zwei
Bedingungsgleichungen, von denen sich die eine auf die Identitit des
Beginn- und des Endpunktes (Distanz null), die andere auf die Azimute
des ringformigen Polygons beziehen. Die erste der genannten Arten von
Bedingungsgleichungen nennen wir A-Gleichungen, die zweite Art B-
Gleichungen. Das Netz weist demnach » A-Gleichungen und » B-Glei-
chungen auf.

Wir bereichern nun die Netzstruktur, indem wir hybride Messungen,
das heiB3t zusitzliche Richtungs- und Distanzmessungen zwischen belie-
bigen Polygonpunkten, zulassen.

Die durch derartige Messungen verbundenen Netzpunkte kénnen stets
durch einen Polygonzug verbunden werden. Jede hybride Messung gibt
somit AnlaB3 zu einem Zyklus neuer Art. Er gehort sicher zur Zyklusbasis
des angereicherten Netzes, da er ein Element (Richtung oder Distanz)
enthilt, das in keinem andern Zyklus auftritt. Er ist daher unabhiingig.
Die durch eine zusitzliche Richtungsmessung verursachte Bedingungs-
gleichung sei als C-Gleichung, und die durch eine zusitzliche Distanz-
messung hervorgerufene Bedingungsgleichung als D-Gleichung typisiert.

Wir miissen uns noch kurz mit den Netzzwingen beschiftigen, die
durch Einfiihrung von Festpunkten ins Polygonnetz entstehen.

Es ist zum vornherein klar, daB das im Polygonnetz enthaltene, dem
gegebenen Festpunktnetz entsprechende Partialnetz diesem Festpunkt-
netz kongruent sein muB}; das hei3t, das beschriebene Partialnetz und das
Festpunktnetz miissen zur Deckung gebracht werden kénnen. Diese Kon-
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gruenz kann durch Einfiihrung von Distanzbedingungen erzwungen
werden.

Zwei beliebige im Polygonnetz enthaltene Festpunkte kénnen wie
gewohnliche Netzpunkte stets durch einen Polygonzug verbunden wer-
den. Daneben sind sie natiirlich durch ihre aus den Festkoordinaten ab-
leitbare Distanz verbunden. Man stof3t sichtlich auch hier wieder auf eine
Zyklusstruktur. Ohne weiter auf Einzelheiten einzutreten, méchten wir
nur als Ergebnis vermelden, dal bei n Festpunkten, die zugleich auch
Polygonpunkte sind, genau (2n — 3) unabhingige Distanzbedingungen
einzufithren sind. Die entsprechenden Bedingungsgleichungen sind vom
Typ der bereits angetrofienen A-Gleichung.

Weiterhin fithrt jede AnschluBirichtung zu einem Zwang, dem mit
Hilfe einer Zyklusstruktur, die der Bedingungsgleichung vom Typ C
entspricht, Rechnung getragen werden kann.

Abschlieend betrachten wir nun ein Polygonnetz in dem durch Ab-
zéhlen folgende Elemente festgestellt sind:

Anzahl der Polygonseiten a,
Anzahl der Polygonpunkte (inklusive polygonare Festpunkte) ay
Anzahl der Festpunkte, die in a, enthalten sind ay
Anzahl der AnschluBazimute a,
Anzahl der zusatzlichen Richtungen (hybride Messung) ds
Anzahl der zusatzlichen Distanzen (hybride Messung) ag

Wir sind gegenwirtig imstande, in einem derart charakterisierten Netz
Art und Anzahl der notwendigen und hinreichenden Bedingungsglei-
chungen genau anzugeben.

Art Anzahl
A-Gleichungen a, — a, + 2a; — 2
B-Gleichungen a; — ay+ 1
C-Gleichungen ay+ a;
D-Gleichungen ag

Die zyklomatische Zahl betragt: v = a; — a, + 2a; + a, + a; + ag — 2.

SchlupBbemerkungen

Wie bereits angedeutet, ist es nicht Ziel der vorgehenden Ausfiihrungen,
die bedingte Ausgleichung von Polygonnetzen anzupreisen, sondern die
Niitzlichkeit der Graphentheorie in der Vermessung zu betonen.

Im vermessungstechnischen Programmrechnen herrscht ohne Zweifel
die Tendenz, immer allgemeinere und gréere MeBnetze immer automa-
tischer und kleinstquadratischer mit immer komplizierteren Programmen
zu bearbeiten. Der mit solchen Problemen geplagte Fachmann, der nach
Hilfsmitteln Ausschau hélt, wird in der Graphentheorie eine wertvolle
Stiitze und eine Fundgrube prachtiger Ideen entdecken. Die Graphen-
theorie wird ihm in vielen Belangen erlauben, zielbewullter und syste-
matischer vorzugehen. Sicher wird er einverstanden sein mit Koénig, der
treffend sagte: «... Diese graphentheoretische Terminologie hat einen
groflen heuristischen Wert.: sie liefert ‘natiirliche’ Probleme und verbindet
recht abstrakte Dinge mit klaren Vorstellungen, wodurch oft neue Zu-
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sammenhinge zwischen voneinander scheinbar entfernt liegenden Be-
griffien und Problemen zutage treten ...»
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Die Generalversammlung der
Internationalen Union fiir Geodiisie und Geophysik (UGGI)
in der Schweiz im Jahre 1967

Von F. Kobold

(SchluB)

Als anlédfllich der letzten Generalversammlung der UGGI, die im Herbst
1963 in Berkeley, Kalifornien, stattfand, kein Land eine Einladung fiir
die néichste Generalversammlung vorlegte, wurden die Schweizer Dele-
gierten von mehreren Stellen angefragt, ob nicht unser Land die Veran-
staltung durchfiihren konnte. Fiir die Delegierten war es selbstverstind-
lich unmdéglich, zuzusagen, da viele Fragen vorher im eigenen Land
abgeklart sein muliten. Zu diesen Fragen gehérte in erster Linie die
finanzielle Unterstiitzung durch den einladenden Staat; ist es doch Tra-
dition, dal das Gastland wegen des halbstaatlichen Charakters der wis-
senschaftlichen Unionen an die Kosten von derartigen Kongressen nam-
hafte Beitrige leistet.

Im Frihjahr 1964 richtete der derzeitige Prisident der UGGI, Prof.
Kaplan, Dozent fiir Physik an der kalifornischen Universitit von Los
Angeles, ein offizielles Schreiben an das Eidgenéssische Politische De-
partement, in dem er die Frage stellte, ob die Schweiz die nichste Ge-
neralversammlung iibernehmen kénnte. Das Departement ersuchte die
Schweizerische Naturforschende Gesellschaft um Stellungnahme, und
diese liberwies die Anfrage zur ndheren Abkliarung an das Schweizerische
Landeskomitee fiir die UGGI. Thm fiel die Aufgabe zu, zu priifen, in
welcher Stadt oder in welchen Stiddten und in welchem Zeitpunkt der
Kongrel3 durchgefiihrt werden konnte, und es hatte zudem den ersten
Finanzplan aufzustellen. Es konnte sich dabei auf die Erfahrungen der
beiden fritheren Generalversammlungen von Berkeley und von Helsinki
stiitzen. Erste Schiatzungen fithrten zum Schluf3, daB3 mit etwa 2500 Teil-
nehmern gerechnet werden miisse und dafl die Gesamtkosten mindestens
Fr. 400000.— betragen wiirden, wobei damals vorausgesetzt werden
durfte, da3 ein groBer Teil der administrativen Arbeiten von amtlichen
Stellen kostenlos iibernommen wiirde.
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