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Graphentheorie, ein Hilfsmittel im Vermessungswesen

Dipl.-Ing. Paul Vetterli, M.Sc.Ph.E. (ITC)

Zusammenfassung
Seit dem Aufkommen der programmierten Rechentechnik in den
verschiedensten Gebieten von Wissenschaft und Technik hat die Graphentheorie

zahlreiche Anwendungen gefunden. Am Beispiel der bedingten
Ausgleichung hybrider Polygonnetze wird gezeigt, daß die Graphentheorie

auch im Vermessungswesen vermehrte Beachtung verdiente.

Résumé

Depuis l'avènement du calcul programmé dans les branches les plus
différentes de la science et de la technique, la théorie des graphes a trouvé
de nombreuses applications. A l'aide d'un exemple emprunté à la
compensation des réseaux de polygones, l'auteur démontre l'utilité de cette
théorie dans le domaine de la mensuration.

Einleitung

Verkehrsnetze, Molekülstrukturen, elektrische Schaltungen, Stammbäume,

militärische Operationspläne usw. sind Graphen. Der Graph ist
das abstrakte Bild, das den genannten und noch unzähligen anderen
Darstellungen des täglichen Lebens zugrunde liegt. Dabei werden die
verschiedensten Objekte durch Punkte bezeichnet und mittels gerichteter
oder ungerichteter Linien miteinander verbunden. Diese Linien sollen
eine bestimmte Beziehung oder Zuordnung ausdrücken.

Es bedarf wohl keiner schärferen Umschreibung des Graphen, um
feststellen zu können, daß Triangulationen, Trilaterationen, Polygonie-
rungen und photogrammetrische Netze Graphen sind. Da nun die
Graphentheorie ein mathematisches Modell errichtet, das auch für weite
Gebiete der Vermessung gilt, so ist zu erwarten, daß für die Vermessung
interessante Ergebnisse abfallen könnten. Besondere Beachtung verdient
dabei die anschauliche Terminologie, die den Vermessungsmann
sozusagen direkt anspricht.

Bei der Aufstellung von Berechnungsplänen spielt das «erfahrene
Auge» des Ingenieurs heute noch meist eine unersetzliche Rolle. Soll nun
aber die Erstellung solcher Pläne dem Rechenautomaten Überbunden
werden, so stellt sich die Aufgabe, dem Computer dieses «erfahrene
Auge» zu verschaffen. Daß bei diesem Vorhaben die Graphentheorie
wirkungsvolle Hilfe bringen kann, soll das nachfolgende Beispiel zeigen.

Wir wollen ein sicheres Rezept aufstellen für die Bestimmung von
Art und Anzahl der Bedingungen bei der bedingten Ausgleichung eines
hybriden Polygonnetzes. Unter einem hybriden Polygonnetz verstehen
wir ein «klassisches» Polygonnetz, in welchem zwischen beliebigen
Polygonpunkten zusätzlich Distanzen oder Richtungen gemessen worden
sind. Bevor wir an die Lösung der gestellten Aufgabe gehen können,
müssen wir jedoch eine Exkursion in die Graphentheorie unternehmen.
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Fundamentalsystem oder Basis unabhängiger Zyklen

In einem Graphen nennt man ungerichtete Verbindungslinien Kanten.
Ein Kantenzug, dessen Anfangs- und Endpunkt zusammenfallen, heißt
Zyklus des Graphen.

Um abstrakte Formulierungen zu vermeiden, wollen wir an einem
Beispiel eine wichtige Eigenschaft der Zyklen eines Graphen vorführen. Der
Graph des Beispiels (siehe Figur) umfaßt a0 2 Komponenten oder
isolierte Teilgraphen, ax 16 Kanten und a2 13 Punkte. Er weist
zyklische und nichtzyklische Formen (Bäume) auf. Die Kanten sind mit b,

c, r bezeichnet; jede besitzt einen willkürlichen Durchlaufsinn, der
mit einem Pfeil markiert ist. Unter der Unzahl von Zyklen der Figur
beschränken wir uns der Einfachheit halber auf die Elementarzyklen, das
heißt auf diejenigen, die einen Punkt höchstens einmal durchlaufen. Diese
Zyklen sind in der zur Figur gehörenden Tabelle in der Kolonne «Zyklen»
durch sukzessive Aufzählung der durchlaufenen Kanten notiert. Durch
diese Aufzählung erhält jeder angeführte Zyklus einen (willkürlichen)
Durchlaufsinn. Jedem Zyklus wird nun in den Kolonnen «Kanten» eine
Zahlenfolge wie folgt zugeordnet: Wird beim Durchlaufen des betreffenden

Zyklus eine bestimmte Kante im Sinne ihres Pfeils durchlaufen, so
wird in der entsprechenden Kolonne der Wert +1 und im gegenteiligen
Falle der Wert —1 notiert. Nicht durchlaufene Kanten des Graphen
erhalten den Wert 0. Demnach lautet zum Beispiel die dem Zyklus Nr. 2

(bchgf) zugeordnete Zahlenfolge (1, -1, 0, 0, +1, +1, -1, 0, 0, 0, 0, 0,
0, 0, 0, 0), da die Kanten b, f und g im Sinne der Kantenpfeile und die
Kanten c und h entgegen den Kantenpfeilen durchlaufen werden. Diese
jedem Zyklus zugeteilte, geordnete Zahlenfolge heißt Zyklusvektor. Seine
Dimension entspricht der Anzahl der Kanten des Graphen.

I o-

Man sagt, daß eine Anzahl Zyklen unabhängig sind, wenn die zugehörigen
Zyklusvektoren linear unabhängig sind. In unserem vereinfachten
Beispiel bedeutet dies, daß keiner der Vektoren der betrachteten Zyklen
durch vektorielle Addition oder Subtraktion aus den übrigen hergeleitet
werden kann. Zyklen 2, 3 und 6 sind zum Beispiel nicht unabhängig, da
Zyklusvektor 6 durch Subtraktion des Vektors 2 vom Vektor 3 entsteht.
Hingegen sind die Zyklen 2, 5, 6, 8 und 9 oder 1, 2, 6, 7 und 9 unabhängig.
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Ein Graph besitzt nun immer eine ganz bestimmte maximale Anzahl
unabhängiger Zyklen. Diese Anzahl ist typisch für den Graphen; sie ist
eine topologische Konstante und heißt zyklomalische Zahl (v). Ihr Wert
beträgt v ag + ax — a2, wobei a0 die Anzahl der Komponenten, ax die
Anzahl der Kanten und a2 die Anzahl Punkte des Graphen darstellen.
Die zyklomatische Zahl des Beispiels beträgt somit v 2 + 16 — 13
5. v unabhängige Zyklen eines Graphen nennt man Fundamentalsystem
oder Basis unabhängiger Zyklen oder Zyklenbasis. Ein beliebiger Zyklus
eines Graphen läßt sich stets aus den Zyklen eines seiner Fundamentalsysteme

aufbauen.

Kanten

Nr. Zyklen b cdefghikl m n 0 p q r

Zyklusvektoren

1 bcde + 1 -1+1+1 0 0 0 0 0 0 0 0 0 0 0 0
2 bchgf + 1 -1 0 0+1+1-1 0 0 0 0 0 0 0 0 0
3 bchikf + 1 -1 0 0+1 0-1+1-1 0 0 0 0 0 0 0
4 fghde 0 0+1+1-1-1+1 0 0 0 0 0 0 0 0 0
5 fkihde 0 0+1+1-1 0+1-1+1 0 0 0 0 0 0 0
6 gik 0 0 0 0 0-1 0+1-1 0 0 0 0 0 0 0
7 Inpo 0 00000000+1 0 -1 -1 + 10 0
8 lnm 0 00000000+1 + 1 -1 0 0 0 0
9 mpo 0 ooooooooo -1 0 -1 + 10 0

Ein hübsches Beispiel für die zyklomatische Zahl bietet der Katasterplan:

Die Anzahl Parzellen auf einem Blatt ist v 1 + ax — a2, wenn
das Blatt ax Grenzlinien und a2 Grenzpunkte aufweist.

Bestimmung der Art und Anzahl von Bedingungsgleichungen
bei der Ausgleichung hybrider Polygonnetze

Um die folgende Demonstration möglichst kurz und einfach zu gestalten,
unterwerfen wir das Polygonnetz zwei Einschränkungen:
1. Das Netz sei zusammenhängend; das heißt, zwei beliebige Netzpunkte

können stets durch einen Polygonzug verbunden werden.
2. Die Richtungen der einem Punkt anliegenden Polygonseiten bilden

stets einen Satz.

Hybride Meßelemente seien vorläufig noch ausgeschlossen.
Einem derart vereinfachten Polygonnetz, das immerhin beliebig viele

Knotenpunkte in freier Anordnung aufweisen darf, können wir sozusagen
direkt ein Graph unterschieben. Diese Substitution gelingt ohne nennenswerte

Phantasie, indem die Polygonseite (Distanz und Azimut) durch
die Graphenkante und der Polygonpunkt durch den Graphenpunkt
ersetzt wird. Die derart aufgebaute Analogie Graph-Polygonnetz befriedigt
jedoch noch nicht. Ein Graph ist ein in sich geschlossenes, widerspruchloses

mathematisches Wesen, was vom Polygonnetz vorderhand noch
nicht gesagt werden kann, da im letzteren Klaffen oder Abschlußtherme
die vermutete Analogie stören, das heißt zerstören. Diese Schwierigkeit
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rührt natürlich vom verschwommenen Begriff «Polygonnetz» her. Unter
Polygonnetz versteht man landläufig, je nach Bedarf, den Netzplan, das
numerische oder graphische Meßnetz oder das ausgeglichene Netz. Wir
eliminieren die die Analogie störenden Abschlußtherme im Meßnetz,
indem wir den Messungen vorläufig noch unbekannte Verbesserungen
anfügen. Das Netz der Feldmessungen wird dadurch zum Netz der
ausgeglichenen Messungen.

Rückschließend vom Graph auf das Polygonnetz, konstatieren wir
nun die Existenz einer Familie von Fundamentalsystemen unabhängiger
Zyklen im Polygonnetz.

Die Messungen sind offenbar mit Berücksichtigung des kleinstquadra-
tischen Prinzips so zu verbessern, daß alle zyklischen Strukturen des

Polygonnetzes «schließen». Da nun ein ganz beliebiger Zyklus des
Polygonnetzes aus den Zyklen eines seiner Fundamentalsysteme zusammengesetzt

werden kann, genügt es, dafür zu sorgen, daß die Elemente irgendeiner

Zyklusbasis schließen. Es besteht dann auch die volle Gewähr, daß
das mit Hilfe der Basiszyklen aufgestellte System der Bedingungsgleichungen

wirklich unabhängig ist. Es sei bemerkt, daß die Verbesserungen
an den aus den Bichtungsmessungen abgeleiteten Azimuten der Polygonseiten

und nicht an den Polygonwinkeln angebracht werden sollten. Werden

nämlich die Winkel verbessert, so muß für jede Station noch dafür
gesorgt werden, daß die Summe der der Station zugeordneten Polygonwinkel

den Wert 2n hat.
Jeder Polygonzyklus des Fundamentalsystems gibt Anlaß zu zwei

Bedingungsgleichungen, von denen sich die eine auf die Identität des

Beginn- und des Endpunktes (Distanz null), die andere auf die Azimute
des ringförmigen Polygons beziehen. Die erste der genannten Arten von
Bedingungsgleichungen nennen wir A-Gleichungen, die zweite Art B-
Gleichungen. Das Netz weist demnach v A-Gleichungen und v ß-Glei-
chungen auf.

Wir bereichern nun die Netzstruktur, indem wir hybride Messungen,
das heißt zusätzliche Richtungs- und Distanzmessungen zwischen
beliebigen Polygonpunkten, zulassen.

Die durch derartige Messungen verbundenen Netzpunkte können stets
durch einen Polygonzug verbunden werden. Jede hybride Messung gibt
somit Anlaß zu einem Zyklus neuer Art. Er gehört sicher zur Zyklusbasis
des angereicherten Netzes, da er ein Element (Richtung oder Distanz)
enthält, das in keinem andern Zyklus auftritt. Er ist daher unabhängig.
Die durch eine zusätzliche Richtungsmessung verursachte Bedingungsgleichung

sei als C-Gleichung, und die durch eine zusätzliche
Distanzmessung hervorgerufene Bedingungsgleichung als D-Gleichung typisiert.

Wir müssen uns noch kurz mit den Netzzwängen beschäftigen, die
durch Einführung von Festpunkten ins Polygonnetz entstehen.

Es ist zum vornherein klar, daß das im Polygonnetz enthaltene, dem
gegebenen Festpunktnetz entsprechende Partialnetz diesem Festpunktnetz

kongruent sein muß; das heißt, das beschriebene Partialnetz und das

Festpunktnetz müssen zur Deckung gebracht werden können. Diese Kon-
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gruenz kann durch Einführung von Distanzbedingungen erzwungen
werden.

Zwei beliebige im Polygonnetz enthaltene Festpunkte können wie
gewöhnliche Netzpunkte stets durch einen Polygonzug verbunden werden.

Daneben sind sie natürlich durch ihre aus den Festkoordinaten
ableitbare Distanz verbunden. Man stößt sichtlich auch hier wieder auf eine
Zyklusstruktur. Ohne weiter auf Einzelheiten einzutreten, möchten wir
nur als Ergebnis vermelden, daß bei n Festpunkten, die zugleich auch
Polygonpunkte sind, genau (2n — 3) unabhängige Distanzbedingungen
einzuführen sind. Die entsprechenden Bedingungsgleichungen sind vom
Typ der bereits angetroffenen A-Gleichung.

Weiterhin führt jede Anschlußrichtung zu einem Zwang, dem mit
Hilfe einer Zyklusstruktur, die der Bedingungsgleichung vom Typ C

entspricht, Rechnung getragen werden kann.
Abschließend betrachten wir nun ein Polygonnetz in dem durch

Abzählen folgende Elemente festgestellt sind:

Anzahl der Polygonseiten ax
Anzahl der Polygonpunkte (inklusive polygonare Festpunkte) a2
Anzahl der Festpunkte, die in a2 enthalten sind o3
Anzahl der Anschlußazimute a4
Anzahl der zusätzlichen Richtungen (hybride Messung) a5
Anzahl der zusätzlichen Distanzen (hybride Messung) a„

Wir sind gegenwärtig imstande, in einem derart charakterisierten Netz
Art und Anzahl der notwendigen und hinreichenden Bedingungsgleichungen

genau anzugeben.

Art Anzahl
A -Gleichungen ax — a, + 2a3 — 2

ß-Gleichungen ax — a2+ 1

C-Gleichungen a4 + a6
D-Gleichungen a6

Die zyklomatische Zahl beträgt: v ax — a%+ 2a3 + o4 + a5 + a6 — 2.

Schlußbemerkungen

Wie bereits angedeutet, ist es nicht Ziel der vorgehenden Ausführungen,
die bedingte Ausgleichung von Polygonnetzen anzupreisen, sondern die
Nützlichkeit der Graphentheorie in der Vermessung zu betonen.

Im vermessungstechnischen Programmrechnen herrscht ohne Zweifel
die Tendenz, immer allgemeinere und größere Meßnetze immer automatischer

und kleinstquadratischer mit immer komplizierteren Programmen
zu bearbeiten. Der mit solchen Problemen geplagte Fachmann, der nach
Hilfsmitteln Ausschau hält, wird in der Graphentheorie eine wertvolle
Stütze und eine Fundgrube prächtiger Ideen entdecken. Die Graphentheorie

wird ihm in vielen Belangen erlauben, zielbewußter und
systematischer vorzugehen. Sicher wird er einverstanden sein mit König, der
treffend sagte: «... Diese graphentheoretische Terminologie hat einen
großen heuristischen Wert: sie liefert 'natürliche' Probleme und verbindet
recht abstrakte Dinge mit klaren Vorstellungen, wodurch oft neue Zu-
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sammenhänge zwischen voneinander scheinbar entfernt liegenden
Begriffen und Problemen zutage treten ...»
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Die Generalversammlung der
Internationalen Union für Geodäsie und Geophysik (UGGÌ)

in der Sehweiz im Jahre 1967

Von F. Kobold

(Schluß)

Als anläßlich der letzten Generalversammlung der UGGÌ, die im Herbst
1963 in Berkeley, Kalifornien, stattfand, kein Land eine Einladung für
die nächste Generalversammlung vorlegte, wurden die Schweizer
Delegierten von mehreren Stellen angefragt, ob nicht unser Land die
Veranstaltung durchführen könnte. Für die Delegierten war es selbstverständlich

unmöglich, zuzusagen, da viele Fragen vorher im eigenen Land
abgeklärt sein mußten. Zu diesen Fragen gehörte in erster Linie die
finanzielle Unterstützung durch den einladenden Staat; ist es doch
Tradition, daß das Gastland wegen des halbstaatlichen Charakters der
wissenschaftlichen Unionen an die Kosten von derartigen Kongressen
namhafte Beiträge leistet.

Im Frühjahr 1964 richtete der derzeitige Präsident der UGGÌ, Prof.
Kaplan, Dozent für Physik an der kalifornischen Universität von Los
Angeles, ein offizielles Schreiben an das Eidgenössische Politische
Departement, in dem er die Frage stellte, ob die Schweiz die nächste
Generalversammlung übernehmen könnte. Das Departement ersuchte die
Schweizerische Naturforschende Gesellschaft um Stellungnahme, und
diese überwies die Anfrage zur näheren Abklärung an das Schweizerische
Landeskomitee für die UGGÌ. Ihm fiel die Aufgabe zu, zu prüfen, in
welcher Stadt oder in welchen Städten und in welchem Zeitpunkt der
Kongreß durchgeführt werden könnte, und es hatte zudem den ersten
Finanzplan aufzustellen. Es konnte sich dabei auf die Erfahrungen der
beiden früheren Generalversammlungen von Berkeley und von Helsinki
stützen. Erste Schätzungen führten zum Schluß, daß mit etwa 2500
Teilnehmern gerechnet werden müsse und daß die Gesamtkosten mindestens
Fr. 400000.- betragen würden, wobei damals vorausgesetzt werden
durfte, daß ein großer Teil der administrativen Arbeiten von amtlichen
Stellen kostenlos übernommen würde.
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