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Zur Frage der Entblätterung
heterogener sphäroidischer Gleichgewichtsflguren

von K. Ledersteger, Wien

Zusammenfassung

Nach einer allgemeinen Diskussion der Niveauflächen und der
Gleichgewichtsbedingung wird das Problem der Stokesschen Elemente formuliert

und die Eindeutigkeit des Dichtegesetzes der Gleichgewichtsflguren
bewiesen. Die Berechnung einer Gleichgewichtsfigur aus der Masse, dem
Dichtegesetz und der Gleichgewichtsbedingung wird am Beispiel des Wie-
chertmodells demonstriert. Der Kern des Modells ist eine Gleichgewichtsanordnung,

welche für eine größere Rotationsgeschwindigkeit ein Mac-
Laurinsches Ellipsoid wird, und das Prinzip der Entblätterung gilt im
Falle eines unstetigen Dichtegesetzes nicht. Zum Beweis des Prinzips der
Entblätterung für die einparametrigen Gleichgewichtsflguren mit ihrem
bekannten stetigen Dichtegesetz wird die Figur durch eine innere Niveaufläche

der Abplattung ex < e fiktiv in «Mantel» und «Kern» zerlegt und
gezeigt, daß der Mantel durch eine äquivalente homogene Schale ersetzt
werden kann, die von zwei ähnlichen Ellipsoiden der Abplattung ex

begrenzt ist, also in ihrem «inneren Hohlraum» ein konstantes Potential
besitzt. Der Mantel übt somit auf den Kern keine Anziehungskraft aus,
was besagt, daß der Kern für sich allein ebenfalls eine einparametrige
Gleichgewichtsfigur ist. Diese Argumentation beweist gleichzeitig, daß
nicht jedes beliebige stetige Dichtegesetz eine Gleichgewichtsanordnung
liefert.

Résumé

Après une discussion générale des surfaces de niveau et de la condition
d'équilibre, on introduit le problème des éléments de Stokes et on
démontre l'univocité de la loi de densité des figures d'équilibre. Le calcul
d'une figure d'équilibre à partir de la masse, de la loi de densité et de la
condition d'équilibre est démontré par un exemple sur le modèle de Wie-
chert. Le noyau du modèle a une configuration d'équilibre qui devient un
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ellipsoïde de MacLaurin pour une grande vitesse dé rotation; le principe
de r«effeuillement» ne vaut pas dans le cas d'une loi de densité discontinue.

Pour démontrer le principe de l'«effeuillement» pour une figure
d'équilibre uniparamétrique avec une loi de densité continue, la figure
est décomposée fictivement en «manteau» et «noyau» par une surface de
niveau interne dont l'aplatissement ex est plus petit que e, et on montre
que le manteau peut être remplacé par une enveloppe équivalente homogène

qui est délimitée par deux ellipsoïdes identiques d'aplatissement ex

et dont le «vide intérieur» possède un potentiel constant. Le manteau
exerce ainsi sur le noyau une force d'attraction, ce qui indique que le
noyau est pour lui-même également une figure d'équilibre uniparamétrique.

Cette argumentation démontre en même temps qu'une loi de
densité continue ne fournit pas forcément une configuration d'équilibre.

Es ist ein bekanntes klassisches Ergebnis, daß man jede nullparametrige
Gleichgewichtsfigur, das heißt jedes homogene MacLaurinsche Ellipsoid,
«entblättern» kann, da eine von zwei ähnlichen Ellipsoiden begrenzte
homogene Schale auf die Punkte ihres inneren Hohlraumes keine Kraft
ausübt. Die inneren Niveauflächen eines MacLaurinschen Ellipsoides sind
aber einschließlich der Oberfläche ähnliche Ellipsoide. Hebt man also
Schale für Schale ab, so entsteht eine Reihe kleinerer MacLaurinscher
Ellipsoide derselben Rotationsgeschwindigkeit, wobei die Abnahme der
Dimensionen mit einer entsprechenden Abnahme der Masse verbunden
ist. Somit ist der Gedanke naheliegend, zu prüfen, ob dieses «Prinzip der
Entblätterung» nicht auch auf heterogene Gleichgewichtsflguren ausgedehnt

werden kann. Ganz allgemein ist dies sicherlich nicht der Fall, wie
H. Macke und K.Voss [1] an den Wiechert-Modellen nachgewiesen haben.
Bei diesen Figuren, die aus einem homogenen Mantel mit annähernd
ellipsoidischer Oberfläche und einem streng ellipsoidischen, gleichfalls
homogenen Kern bestehen, ist nämlich die gegenseitige Koppelung der
beiden Schalen nicht bloß auf die Abplattungen e und e/t beschränkt,
sondern das Kernellipsoid ist überhaupt kein MacLaurinsches Ellipsoid. Eine
exakte Berechnung der Zweischalenmodelle und speziell der zweiparametrigen

Gleichgewichtsflguren, das heißt eben der Wiechert-Modelle, ist
gänzlich unabhängig von der Theorie Macke-Voss möglich [2].

Jede gegebene sphäroidische Massenanordnung kann durch die
Gesamtmasse E und die Massenmomente K-a charakterisiert werden, und
zwar gänzlich unabhängig von der Rotation. Natürlich ist durch (E,Kìì)
die Massenanordnung nicht eindeutig festgelegt, weil die Massenmomente
oder die zugehörigen Massefunktionen Ja K<n/a%i, unter a den
Äquatorradius einer äußeren Niveaufläche verstanden, Stokessche Konstanten
sind. Hingegen ist mit diesen Daten und bei Wahl einer (beliebigen)
Rotationsgeschwindigkeit das äußere Potentialfeld eindeutig festgelegt, das
heißt, man findet aus (E, a, co, J2Ì) mit den Gleichungen [3]

Ja ga (é, e, hi); ê co2a3k2E (1)

die Abplattung e und sämtliche Formparameter fa der Niveaufläche mit
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dem gewählten Äquatorradius a. Ersetzt man in den Angaben m durch
die Abplattung e, sind also die Daten (E, a, e, J2O gegeben, so liefert
natürlich die erste Gleichung (g2) die Rotationsgeschwindigkeit oder ë. Man
kann dann aus gt mit allen folgenden Gleichungen ga sämtliche
Formparameter eliminieren und erhält so zuerst eine Relation ê ê (e, Ja),
etwa in Näherung 6.0. :

5 21/ \
ê - 3 J2 - — J4 - — J6 + 2 e 1 - 3 J2 - 5 JA

4 8 V / (2)
+ 2 e2 (1 - 6 J2) + 2 e3

und anschließend aus den folgenden Gleichungen ga (i 2, 3,...) alle
Formparameter fa- Diese Art Sonderstellung der ersten Gleichung (1) ist
darin begründet, daß die Zahl der Massefunktionen um eins größer ist als
die Zahl der Formaparameter.

Selbstverständlich gehört zu jeder Massenanordnung (E, Ka) für jeden
Wert von co eine andere Schar äußerer Niveauflächen. Ist neben der
Massenanordnung eine bestimmte äußere Niveaufläche S„ (a, e, J2i)
gegeben, so liefert g2 die zugehörige Rotationsgeschwindigkeit, und alle
folgenden Gleichungen ga sind damit exakt erfüllt. Wichtiger ist aber der
Fall, daß die «Stokesschen Elemente (E, co, Sa) gegeben sind. Dann
liefern die Gleichungen (1) die Massefunktionen Ja, die aber als «Stokessche

Konstanten» Integralinvarianten für unendlich viele Massenanordnungen

sind. Aus diesen Massenanordnungen können wir stets eine als
«wesentlich» herausgreifen, aus der sich alle übrigen durch Verschiebungen

in homogenen konfokalen Ellipsoidschalen oder, als deren Grenzfall,
in homogenen konzentrischen Kugelschalen um den Schwerpunkt ergeben.

Allerdings wäre noch die Frage restlos zu klären, ob es trotz unserer
grundsätzlichen Beschränkung auf sphäroidische Niveauflächen außer
den genannten Verschiebungen noch weitere Möglichkeiten gibt.

Die sphäroidischen Massenanordnungen zerfallen in allgemeine,
rotations- und äquatorsymmetrische Anordnungen und in die
«Gleichgewichtsanordnungen», welche für eine bestimmte Rotationsgeschwindigkeit

zu hydrostatischen Gleichgewichtsflguren werden. Liegt eine
Gleichgewichtsanordnung (E, K2 i) vor und sind überdies Achse und Abplattung
der Oberfläche S gegeben, so wird diese im Gleichgewichtsfalle selbst
Niveaufläche, und die Gleichungen (1) liefern wie oben e oder co und die
Formparameter. Sind aber bloß (E,S) gegeben, so fehlt ein Bestimmungsstück,

und es muß zusätzlich die «Gleichgewichtsbedingung», und zwar
am einfachsten in der Form co co (E, S) oder

ë xe y ye2 + ze3 + (3)

vorliegen, wobei die Koeffizienten x,y,z Funktionen der Massenmomente

der Gleichgewichtsanordnung sind, wie unmittelbar (2) lehrt.
Tatsächlich gilt diese Form für die beiden Grenzfälle des homogenen
Ellipsoides und der Niveauflächen des Massenpunktes. Führt man in (2) die
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Massefunktionen des homogenen Ellipsoides ein, so resultiert die MacLau-
rinsche Bedingung

4 22 2 272
ë —e + -- e2 y - e3 + —— e4 + (3a

5 35 5 1155

während sich mit den Massefunktionen Ja 0 ergibt:

ë 2 e + 2 e2 + 2 e3 + 2 e/(l - e) (3b)

Die Bedingung (3) bestimmt jene Rotationsgeschwindigkeit, für welche

die Oberfläche zur Niveaufläche wird, was bekanntlich bei
Homogenität für das Gleichgewicht hinreicht. Im heterogenen Falle ist dies für
das Gleichgewicht wohl notwendig, aber nicht hinreichend; vielmehr
erfordert das Gleichgewicht, daß sämtliche Flächen gleicher Dichte Niveauflächen

sind. Tatsächlich gehören zu den Stokesschen Elementen (E, co, S)
einer Gleichgewichtsflgur neben der wesentlichen Gleichgewichtsanordnung

zahllose andere, aus den oben genannten Verschiebungen resultierende

Massenanordnungen, bei denen das Gleichgewicht verlorengeht,
ohne daß die Niveaufläche ihren Charakter als Niveaufläche verliert.
Abstrahiert man von diesen «unwesentlichen» Massenanordnungen des
Satzes von Stokes-Poincaré, dann ist jede Gleichgewichtsflgur eindeutig
durch ihre Stokesschen Elemente oder wegen der Form (3) der
Gleichgewichtsbedingung scheinbar durch (E,S) allein gegeben, und es genügt
scheinbar ganz allgemein dabei, daß die Oberfläche Niveaufläche ist. In
Wahrheit aber erfordert die Aufstellung der Gleichgewichtsbedingung die
Kenntnis der Massenmomente der Gleichgewichtsanordnung, gleichgültig,
ob es sich um homogene oder heterogene Gleichgewichtsanordnungen
handelt. Letzten Endes müssen immer die Elemente (E, a, e, J2Ì) oder
(E, co, a, J2i) gegeben sein, und die Gleichgewichtsbedingung (3) hat nur
in den beiden Fällen des homogenen Ellipsoides und der Niveauflächen
des Massenpunktes praktischen Wert. Dabei sind die Niveauflächen des

Massenpunktes als absolute Sphäroide der größten Massenkonzentration
fiktive Grenzfälle von Gleichgewichtsflguren.

Wir betrachten die Oberflächen S beliebiger, rotations- und
äquatorsymmetrischer Massenanordnungen. Sicherlich gibt es zahllose derartige
Massenanordnungen, deren Oberflächen für keinen Wert von to Niveauflächen

sind. Ein charakteristisches Beispiel stellen homogene Körper dar,
deren Oberflächen wenigstens einen, von Null verschiedenen Formparameter

besitzen. Könnte nämlich eine solche Oberfläche für ein bestimmtes

co Niveaufläche sein, so wäre damit bereits eine Gleichgewichtsflgur
gegeben, während andererseits die klassische Theorie beweist, daß es in
der Nachbarschaft der Kugel nur eine einzige Reihe reeller homogener
Gleichgewichtsflguren gibt, nämlich die MacLaurinschen Ellipsoide (vgl.
Lichtenstein [4], Seite 81). Umgekehrt können wir aber nicht a priori
behaupten, daß die Oberfläche nur im Gleichgewichtsfalle Niveaufläche sein
kann. Die Gleichung (2), die für alle überhaupt denkbaren Niveausphä-
roide gilt, wird sicherlich auch für die Oberflächen zahlloser Massen-
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anordnungen (E, Ja) gelten, ohne daß damit bereits notwendigerweise
das Gleichgewicht verknüpft ist. Auch in diesen Fällen kann (2) in (3)
transformiert werden. Das Koeffizientensystem (x,y,z...) ist stets eine
Funktion der J21 und repräsentiert nur für die Massefunktionen einer
Gleichgewichtsanordnung die Gleichgewichtsbedingung, wenn überdies a
und e Achse und Abplattung der Oberfläche sind.

Jede beliebige sphäroidische Fläche kann Oberfläche von zahllosen
rotations- und äquatorsymmetrischen Massenanordnungen sein. Hingegen

sind bei weitem nicht alle sphäroidischen Flächen mögliche Niveau-
sphäroide, zum Beispiel alle Flächen, für welche der Formparameter /4 >
3,5 e2 ist. Andere Flächen können nur mit einem einzigen o>-Wert gekoppelt

werden; zum Beispiel ist die Kugel nur für den Ruhefall eine mögliche

Niveaufläche. Das Ellipsoid (x 4/5) ist Oberfläche einer nullpara-
metrigen Gleichgewichtsflgur, gleichzeitig aber auch äußere Niveaufläche
zahlloser kleinerer konfokaler homogener Ellipsoide derselben
Rotationsgeschwindigkeit, die somit selbst gar nicht im Gleichgewicht sind. Im
Bereiche x > 0,8 sind Ellipsoide als Niveauflächen undenkbar. Soweit
mithin ein System Stokesscher Elemente (E, co, S) überhaupt physikalisch

sinnvoll ist [5], entspricht ihm nur ein einziges System von
Massefunktionen J2i. Im allgemeinen wird dieselbe Niveaufläche für eine andere
Rotationsgeschwindigkeit Niveaufläche einer anderen wesentlichen
Massenanordnung mit einem anderen System von Massefunktionen sein. Dabei

ist grundsätzlich zu beachten, daß alle äquator- und rotationssymmetrischen

Massenanordnungen durch Verschiebungen in homogenen,
äquatorparallelen und -symmetrischen Kreisringen mit den Mittelpunkten in
der Rotationsachse ineinander übergeführt werden können. Dazu gehören
natürlich auch Verschiebungen in derartigen Kreisscheiben oder auch in
Kreiszylindern, deren Achse mit der Rotationsachse zusammenfällt. Bei
diesen Verschiebungen werden sich natürlich im allgemeinen alle
Massefunktionen J2i ändern: sie sind dann «wesentlich» im Gegensatz zu den
obigen unwesentlichen Verschiebungen, bei denen die Massefunktionen
unverändert bleiben.

Hält man eine gegebene Niveaufläche S(a,e,fìì) einer bestimmten
Massenanordnung fest, so folgt aus dieser bei der Wahl einer anderen
Rotationsgeschwindigkeit, die natürlich innerhalb der physikalisch
möglichen Grenzen erfolgen muß, eine andere, wesentlich verschiedene
Massenanordnung, für welche sich die zugehörigen Änderungen AJ2i aus den
Gleichungen (1) in der Form:

(J + AJ)2i gîi(ê + Aë, e, fa) (la)

ergeben, wobei (2) in der Gestalt

Aê - 3AJ2 - — AJi —- AJt - 2 e (3 AJ2 + 5AJ4) - 12 e2AJ2 -4 8
(2a)

als Kontrollgleichung dienen kann. Auf diese Weise kann eine
vorgegebene Fläche S sein:
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a) Oberfläche oder äußere Niveaufläche einer Gleichgewichtsflgur. Letztere

können ja selbst fiktiv als Gleichgewichtsflguren mit einem
zusätzlichen Mantel der Dichte Null gedeutet werden.

b) Äußere Niveaufläche (aber nicht Oberfläche einer Gleichgewichtsanordnung.

c/d) Äußere Niveaufläche oder Oberfläche einer allgemeinen rotations-
und äquatorsymmetrischen Massenanordnung.

Wir setzen S als Oberfläche und gleichzeitig Niveaufläche einer
Massenanordnung (E, J2Ì) voraus. Selbstverständlich lassen sich noch zahllose
andere wesentliche Massenanordnungen mit derselben Oberfläche
konstruieren. Soll jedoch dabei S auch Niveaufläche bleiben, so müßten
wegen

J2i m2i + U2i-2 ë; AJ2Ì «2;-2 Aë (lb)
die gänzlich unabhängig von der Rotation bestimmten z!J2i sämtlich auf
dieselbe Änderung von co führen, was zumindest äußerst unwahrscheinlich

ist. Die Frage, welche der vier obigen Möglichkeiten a)-d)
nebeneinander bestehen können, und die Frage nach den zugehörigen Grenzen
der Rotationsgeschwindigkeit bezeichnen wir als das Problem der Stokesschen

Elemente. Ließe sich exakt zeigen, daß eine Fläche S wenn
überhaupt, so nur für eine einzige Rotationsgeschwindigkeit und damit nur
für ein einziges System (E, J2Ì) gleichzeitig Oberfläche und Niveaufläche
sein kann, so wäre damit die «Eindeutigkeit der Oberfläche» bewiesen.
Noch enger ist die Frage, ob zu denselben Stokesschen Elementen (E, co,

S) zwei verschiedene Gleichgewichtsflguren gehören können, die sich dann
im Sinne der früheren Definition gar nicht wesentlich unterscheiden würden.

Diese beiden Figuren müßten trotz der gemeinsamen Oberfläche
verschiedene Abplattungsfunktionen besitzen. Weil sich ferner beide Male
die Dichte- oder Niveauflächen schalenartig umschließen und die
Abplattung der Niveauflächen auch bei abschnittsweise konstanter Dichte
nach innen systematisch abnimmt, müßten beide Figuren wegen der
notwendigen Erhaltung der Gesamtmasse auch verschiedene Dichtegesetze
haben. Denn dasselbe Dichtegesetz bedingt bei verschiedener
Abplattungsfunktion notwendigerweise eine Änderung der Gesamtmasse. Bei
geänderter Abplattungsfunktion und geändertem Dichtegesetz können
aber unmöglich sämtliche Massefunktionen der Figur ungeändert gleiben.
Sollten demnach zu den Stokesschen Elementen einer Gleichgewichtsflgur

neben den Verschiebungen in homogenen konfokalen Ellipsoid-
schalen noch weitere unwesentliche Verschiebungen möglich sein, so geht
auch bei diesen das Gleichgewicht verloren. Damit aber ist die
«Eindeutigkeit des Dichtegesetzes» der Gleichgewichtsflguren bewiesen.

Somit kann jede Gleichgewichtsflgur durch die Gesamtmasse und das
Dichtegesetz oder durch die Gesamtmasse und die Oberfläche eindeutig
definiert werden, wenn noch in irgendeiner Form die Gleichgewichtsbedingung

bekannt ist. Zur Illustration betrachten wir die Wiechert-
Modelle, aber unter etwas anderem Gesichtspunkt als in [2], Die Wie-
chert-Modelle sind bekanntlich die Gleichgewichtslösungen des allgemei-
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lien Zweischalenmodelles, bestehend aus einem homogenen Mantel der
Dichte Qm und einem homogenen Kern der Dichte Qk. Sie sind also mit
(E, a, Qm, au, Qk) durch Masse und Dichtegesetz definiert, welch letzteres
vier Konstanten besitzt, so daß es bei gegebener Masse oo4 derartige
Gleichgewichtsflguren gibt. Bei der grundsätzlich möglichen Definition
durch Masse und Oberfläche genügt zur Eindeutigkeit also die Näherung
6.O., das heißt (E, a, e, f-, /6), weshalb wir diese Figuren als «zweipara-
metrig» bezeichnen dürfen. Die Definition durch das Dichtegesetz hat den
Vorteil, daß bei den Bestimmungsstücken kleine Größen 4. und 6.0.
vermieden sind und daß sie auch bereits in Näherung 4.0. eine eindeutige
Lösung zuläßt.

Man wählt einen Näherungswert für die Oberflächenabplattung e und
findet zusammen mit der Manteldichte Qm sofort die Teilmasse Ex für die
als homogenes Ellipsoid definierte «Mantelfigur» und damit:

Ex — n a3 1 - e j Qm; E Ex + E2; Ek Ex' + E2 (4)

Hierin bedeuten Ek die Kernmasse und Ex den Teil von Ex innerhalb des

Kernes, so daß die zugehörige Kernabplattung ek vermöge

Ek - n ak311 — ek j Qk; Ex : Ek Qm : Qk (5)

eindeutig resultiert. Sodann liefern die beiden Gleichungen

J2 \-he- e2] (ex : E J + i- ^2 ek - eÄ (cg.
: a\ (e2 : E

'*--£*(*--*)--£*(«••*)'lE'--E
(6)

die beiden Massefunktionen und anschließend Gleichung (2) die
Rotationsgeschwindigkeit co oder ë. Damit wird die durch die gegebene Achse a
und die willkürlich gewählte Abplattung e bloß unvollständig definierte
Oberfläche in Näherung 4.0. zur Niveaufläche, wobei der Formparameter /4

aus der zweiten Gleichung (1) hervorgeht:

7 5 35
n ~e2--eêy--Ji, (7)

während gemäß (6) die Massefunktionen so berechnet sind, als ob die
Oberfläche (a, e) streng ellipsoidisch wäre. Man gewinnt daher auf diese
Weise zu den Daten (E, a, Qm, ak, Qk) eine unendliche Reihe von
Zweischalenmodellen (e, ek) mit verschiedenen Rotationsgeschwindigkeiten,
die bis auf ein einziges überhaupt keine Gleichgewichtsanordnungen
darstellen. Die eigentliche Gleichgewichtsbedingung für das gesuchte Wie-
chert-Modell liegt dann in der Forderung, daß auch die streng ellipsoidi-
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sehe Kernoberfläche eine Niveaufläche sein muß. Man findet dieses Modell

nach dem in [2] angegebenen Verfahren. Dabei ist aber das Kern-
ellipsoid gar kein MacLaurinsches Ellipsoid, wie bereits eingangs betont
wurde, und das Prinzip der Entblätterung gilt in diesem Falle und allgemein

bei unstetigem Dichtegesetz nicht.
Daraus darf aber nicht der Schluß gezogen werden, daß die Entblätterung

auf die beiden, schon der klassischen Theorie bekannten Fälle der
geschichteten Kugel und des MacLaurinschen Ellipsoides beschränkt ist.
Wir erheben also die Frage nach der Möglichkeit der Entblätterung bei
den weitaus wichtigsten sogenannten einparametrigen Gleichgewichts-
figuren oder den Gleichgewichtsflguren mit dem stetigen Dichtegesetz

-ffl2~i 2

Q(X). (8)

Hierin bedeutet £>max die maximale Dichte im Schwerpunkt, v eine
Konstante, die für die MacLaurinschen Ellipsoide Null ist, mit wachsender
Massenkonzentration zunimmt und für die einparametrigen Sphäroide der
größten Massenkonzentration knapp unter 1 liegt, und schließlich x den
Äquatorradius der laufenden, inneren Flächen gleicher Dichte, die wegen
des Gleichgewichtes mit den Niveauflächen und mit den Flächen gleichen
Druckes zusammenfallen. Wie eine eingehende Analyse gezeigt hat, ist
dies die einzig mögliche Form der Legendre-Laplaceschen Dichtefunktion
einer kompressiblen Flüssigkeit, bei der die Zunahme der Dichte nach
innen nur eine Folge der Gravitation der Masse ist und bei der die allein
durch die Gravitation verursachte Druckzunahme proportional der Dichte
erfolgt.

Das Dichtegesetz hat drei Konstanten «max, v und a, so daß es bei
gegebener Masse E stets oo3 einparametrige Gleichgewichtsflguren gibt.
Bei Definition durch die Oberfläche genügt hier bereits die Näherung 4.O.,
also (E, a, e, /4). Zur Festlegung in Näherung 6.0. ist grundsätzlich noch
die Kenntnis des zweiten Formparameters /6 erforderlich. Den oo4

Gleichgewichtsflguren (E, gmax, v, a) stehen nur oo3 Dichtegesetze gegenüber;
tatsächlich ändert sich bei gleichem Dichtegesetz mit der Abplattungsfunktion

auch die Masse. Ist e die Abplattung der Oberfläche und nm die
mittlere Dichte, so gilt:

E --3ia3(l -e)ßm oder: 1 - e J Qm 3 Ef4 a3 n (9)

Unabhängig von Gleichgewicht und Rotation folgt aus der ersten
Gleichung (36) und (36a) in [6], Seite 68 und 70:

f 1 - e Um : 1 - êA nmax M - — v + — v2\ cx

oder: ê2 1 — 3 E/4, na3cx;
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mithin ist durch die Daten (E, Qmax, v, d) bereits ein bestimmter
Durchschnittswert ë2 der Abplattungen gegeben, also ein wichtiges
Bestimmungselement der Abplattungsfunktion. Aber selbstverständlich ist
damit erst die Gleichgewichtsanordnung definiert; zur Gleichgewichtsflgur
muß ganz im Sinne der obigen Festlegung durch (E, a, e, J2Ì) oder durch
(E, a, co, J2Ì) noch entweder die Abplattung der Oberfläche oder die
Rotationsgeschwindigkeit oder schließlich die Gleichgewichtsbedingung
co co (E, S) zusätzlich vorliegen.

Gleichung (10) ergab sich aus dem Integral für die Gesamtmasse. Eine
weitere Beziehung liefern die Integrale für die Trägheitsmomente C und
(C — A), wobei im Hinblick auf das gesuchte Gleichgewicht bereits die
einparametrige Figurenreihe (co, C) (co, K2) herangezogen wurde. Die
zweiten Gleichungen (36) und (36a) in [6] ergeben

le 10 5
gmax 11 -yf + l»'

und (ah : a)2 ca (1 — eh) : cx (1 - e2), (11)

worin a/, und e/, Achse und Abplattung des homogenen Ellipsoides der
genannten Reihe (eu, C) bedeuten. Mit einer Wahl für e* > ê2 findet man
aus dem MacLaurinschen Ellipsoid (E, cg,, en) die zugehörige
Rotationsgeschwindigkeit und den Parameter ë einer mehr oder minder guten
Näherungslösung :

4 22 / V
sn co2 ah3/k2 E-=jeh+-- eh2; ë ëh a : ah j (12)

Ähnlich ergibt sich für die statische Abplattung:

1 / \ ¦ / V
J2,h — I 2 eh — eh2 I ; Ja Ja,* I a* : a I (13)

da ja das Massenmoment K2 (C — A) : E in der ganzen Reihe
konstant ist. Schließlich kann man zur Berechnung der Abplattung e der
als Niveaufläche vorausgesetzten Oberfläche in Näherung 4.0. die 3.
Gleichung (23) in [6], Seite 65, verwenden, in der die Gleichgewichtsbedingung
bereits mitberücksichtigt ist:

13 25
2e 3J2 + e+e2-~r-ee--—e2 (14)

14 56

Ist die Rotationsgeschwindigkeit gegeben, dann kann man bereits aus
(11) und (12) in sukzessiver Approximation die richtigen Werte cg, und
en und anschließend über (13 und 14) die richtige Abplattung e finden.
Ist e gegeben, so wird Gleichung (14) einen Widerspruch aufweisen, der
abermals in sukzessiver Approximation ab (11) beseitigt werden kann.
Ist die Gleichgewichtsbedingung in der Form (3) gegeben, so findet man
mit dem e-Wert (14) einen verbesserten Wert für die Rotationsgeschwin-
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digkeit. Die richtige Abplattungsfunktion der Gleichgewichtsflgur (E,
Qmax, v, a) ist dann bereits durch die drei Werte e, eh und ê2 festgelegt,
wobei e > eh > ê2 sein muß.

Nach diesen Vorbemerkungen gehen wir auf unser eigentliches
Problem ein. Die freie Oberfläche einer einparametrigen Gleichgewichtsflgur
sei durch den Index 0, eine beliebig innere Dichte- und gleichzeitig
Niveaufläche durch den Index 1 gekennzeichnet. Die zwischen den Niveauflächen

0 und 1 gelegene Masse bildet den «Mantel», den wir abheben wollen.

Das Potential Yo.i der Gesamtmasse auf der Niveaufläche 1 kann
in (Vi,i + Vm,i) zerlegt werden, wobei Vm das Potential des Mantels
und Vx das Potential der innerhalb der Niveaufläche 1 gelegenen Masse
bezeichnet. Ist co die Rotationsgeschwindigkeit der gegebenen
Gleichgewichtsflgur und bezeichnet P den Pol der Niveaufläche 1, so gilt in
dieser Niveaufläche:

Vm.i + Vi,i + ~ co2 (x2 + y2 j Vo.p (15)

Nach Abhebung des Mantels verbleibt die von der Dichtefläche 1

begrenzte Restfigur mit dem Äquatorradius ai und mit dem Dichtegesetz:

Q Qxt

2 I \2
mit vx v { ax/a (16)

Dies ist aber wieder das Dichtegesetz der einparametrigen Gleichgewichtsflguren,

und es gibt unbedingt eine einparametrige Gleichgewichtsflgur,
die mit unserer Restfigur, die wir als «Kern» bezeichnen wollen, die Daten
(Ek, cw*, vx, ax) gemeinsam hat. Damit stehen drei Möglichkeiten zur
Diskussion:

a) Die Kernfigur ist unmittelbar die einparametrige Gleichgewichtsflgur;
das heißt, diese Gleichgewichtsflgur hat dieselbe Rotationsgeschwindigkeit

wie die ursprüngliche Figur, und das Prinzip der Entblätterung
ist gültig.

b) Sie ist eine starr gedachte Gleichgewichtsanordnung, welche für eine
andere Rotationsgeschwindigkeit zur einparametrigen Gleichgewichtsflgur

wird. Läßt sich dann zeigen, daß diese Rotationsgeschwindigkeit
cox mit der Rotationsgeschwindigkeit der Gesamtflgur zusammenfällt,
so sind wir auf den Fall a) zurückgekommen, und das Prinzip der
Entblätterung ist bewiesen.

c) Sie ist überhaupt keine Gleichgewichtsanordnung.

Wir prüfen zuerst den Fall c). Als Teil der ursprünglichen
Gleichgewichtsflgur hat der Kern dasselbe Dichtegesetz, und die Flächen gleicher
Dichte umschließen sich schalenartig. Unabhängig vom Gleichgewicht
und von der Rotation kann für die Abplattung des Kernes ebenso wie in
(10) ein Durchschnittswert ë2,k bestimmt werden, der auch für die
Gleichgewichtsflgur mit den Daten (Ek, Qmttx, vx, ax) gilt. Dann aber erfordert
die gleichzeitige Erhaltung der Masse Ek und des Durchschnittswertes
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ê2, fc, daß es in dieser Gleichgewichtsflgur eine Niveaufläche oder Dichtefläche

ax mit derselben Abplattung gibt, während oberhalb die Abplattungen

der Dichteflächen größer (kleiner) und unterhalb kleiner (größer)
sind als im Kern. Dies ist aber ohne Änderung der räumlichen Dichte, also
des Dichtegesetzes, unmöglich, womit bereits der Widerspruch aufgedeckt

ist.
Mithin muß der Kern zumindest eine Gleichgewichtsanordnung sein.

Nun bewirke die Abhebung des Mantels in den Dichteflächen des Kernes
eine Potentialverminderung, die im Äquator jeweils größer als im Pol
sein müßte, wobei diese Differenz mit abnehmendem Äquatorradius der
inneren Dichteflächen gegen Null konvergiert. Demnach müßte der Kern
als Gleichgewichtsflgur eine größere Rotationsgeschwindigkeit cox besitzen
und zur Widerlegung der Annahme b) wäre zu zeigen, daß cox co sein
muß. Zunächst gilt:

Vi,i+ 4 <V | x2 + ya =Vi,p, (17)

woraus sich gegenüber (15) die Differenz ergibt:

1
Vm, x2 + y Vo,p — Vi, p Vm, p (18)

Wir wählen innerhalb des «Kernes» eine weitere Dichtefläche mit dem
Äquatorradius a2 und mit dem Index 2, welche gleichzeitig Niveaufläche
der ursprünglichen Gleichgewichtsflgur ist. Dann gilt analog (18) sofort:

Vm,2 + — (co2 -coA(x2yy2\ =Vo,q-Vi,q=Vm,q, (19)
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wenn Q den Pol dieser Fläche bezeichnet. Für zwei beliebige Punkte A
und B, die in Richtung der Rotationsachse übereinander liegen,
verschwindet in der Differenz der Einfluß der Fliehkraftpotentiale, und es

folgt aus (18) und (19):

Vm,a — Vm.b Vm,p — Vm,q Vm,a — Vm.p Vm,b — Vm,q (20)

Setzt man schließlich (ax : a2) n > 1, so gilt wegen:

Vm.f + — I co2

Vm.c y — (co2 - cox2\ a2 Vm,p

Vm.d y -(co2 - coA a22 Vm.q

sofort:

Vm.f - Vm.p n2 (Vm.c - Vm.p) n2 (Vm.d - Vm.q) S 0 (21)

Zieht man den konstanten Hauptteil des Mantelpotentials ab, so kann
man (21) in der Form

AVm,f n2AVm.d AVm.p - n2 AVm,q (21a)

für die kleinen Restbeträge A V ansetzen. Der Mantel ist nun zwar heterogen.

Aber in Analogie zu den Wiechert-Modellen müßte er durch eine
äquivalente, homogene Schale ersetzt werden können, deren
Begrenzungsflächen Ellipsoide der Abplattungen e* und ex < e* sein mögen und
deren Dichte q* wir gar nicht zu kennen brauchen. Der Mantel wird also
durch die Differenz zweier homogener Ellipsoide der Dichte q* ersetzt,
und zwar eines Ellipsoides der Masse E* mit den Achsen a* und c* a*
(1 — e*) sowie des mit der Dichtefläche 1 achsengleichen Ellipsoides ax

und cx ax (1 — ex), das den Teil E*' der Masse E* einschließt. Dann gilt
für das Potential des Mantels in einem Punkt (x, y, z) an der Oberfläche
oder im Innenraum des «Kernes» gemäß der Formel (15) in [2]:

AVm=-3-\™-(±-
2 l c*3 \3

4 18 \ k2E*' /14 18
— e* H e*2 e, H e,
5 35 I cx3 \3 5 l 35 1

3 [~k2E* /12 1 \ k2E*' /12 1
e*2\ — — - —e,- —e,2 I c*3 \ 3 5 35 / cx3 \ 3 5 35

Daraus folgt unmittelbar für die beiden Äquatorpunkte F und D wegen
ax na2:

AVm,f= n2AVM,D (23)
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und ebenso für den Pol Q* des zur Kernoberfläche ähnlichen Ellipsoides
(Oj, e2 ex):

AVm.p n2AVM.Q* (23a)

Andererseits folgt aus (23) und (21a) dieselbe Gleichung für den Pol der
Dichtefläche 2:

AVM,p n2AVM,Q, (23b)

obwohl wegen et < ex der Punkt Q näher an P liegt als der Punkt Q*.
Dieser Widerspruch verschwindet nur, wenn alle A V 0 sind oder wenn
cox co gilt. Dies besagt aber, daß der Mantel durch eine von zwei
ähnlichen Ellipsoiden der Abplattung ex e* ersetzt werden kann. Tatsächlich

ist dann wegen

E*/c*3 =~n q*/(1 - e*)2 E*'/cx3 (24)
ö

das Potential des Mantels an der Oberfläche und im Innenraum des
Kernes konstant: A Vm 0, und die Restfigur ist selbst eine einparametrige

Gleichgewichtsflgur derselben Rotationsgeschwindigkeit. Damit
ist aber das Prinzip der Entblätterung für den Fall des stetigen
Dichtegesetzes (8) verifiziert.

Bei der vorstehenden Beweisführung war nicht wesentlich das Dichtegesetz

(8) und (16) vorausgesetzt, sondern allgemein ein stetiges Dichtegesetz

und Gleichgewicht. Bei einem beliebigen stetigen Dichtegesetz
kann aber sicherlich das Gravitationspotential eines von der freien
Oberfläche und einer beliebigen inneren Dichtefläche begrenzten «Mantels»
im allgemeinen nur durch eine äquivalente homogene Ellipsoidschale
ersetzt werden, für welche e* > ex ist. Dann aber bliebe der Widerspruch
zwischen (23a) und (23b) bestehen, und das Gleichgewicht wäre unmöglich.

Diese Überlegung zeigt jedenfalls, daß es, mit Ausnahme der Kugel,
nicht einparametrige Gleichgewichtsflguren mit beliebigem stetigen
Dichtegesetz gibt. Damit ist freilich noch nicht gesagt, daß diese Argumentation

gleichfalls das Dichtegesetz (8) als die einzig mögliche Dichtefunktion

bestätigt.
Bei fortgesetzter Entblätterung wird der Kern oder die Restflgur

einem homogenen Ellipsoid immer ähnlicher. Denn die Formparameter
der Dichteflächen konvergieren gegen Null, während ihre Abplattung
einem Minimum e„ zustrebt. Um diese Grenzabplattung zu finden, gehen
wir von dem Grenzwert für ê aus:

/ \ co2 a3 3 co2
lim co2 a3/k* E lim — — -——— (24)
.-o\ / .-o 4 / \ 4 7rfc2(l-e0)<w' — n k2 a311 — e I q

und finden die Grenzabplattung aus der MacLaurinschen Gleichgewichtsbedingung

in der Form:
5 3 co2 11

c° 4 4jrÄ:2(l - e0) t>ax 14
e°
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oder nach Multiplikation mit (1 — e0), gleichfalls in Näherung 4.0. :

15 co2 3

16 Tl k2 Qmax 14
en (25)

Die Methode der Entblätterung ist also im Falle der einparametrigen
Gleichgewichtsflguren gerechtfertigt, während sich bei den Wiechert-
Modellen die stärksten Abweichungen ergeben. Besteht nämlich eine
Gleichgewichtsflgur aus mehreren (N) homogenen Schalen, so kann mit
wachsendem N natürlich eine fortschreitende Annäherung an den Fall
der einparametrigen Figuren erfolgen, noch mehr natürlich, wenn alle
oder zumindest ein Teil der Schalen heterogen sind. Aber selbst beim
Wiechert-Modell werden trotz einer relativ starken Änderung der
Kernabplattung, wenn man fiktiv das Entblätterungsprinzip zugrunde legt,
die Größen, auf die es eigentlich ankommt, kaum nennenswert beeinflußt.
So ergeben sich zum Beispiel für die Verhältnisse der Erde (Kerntiefe
2900 km) die Größen 4.0. J- und /4 nur um kaum 3 • IO"8 respektive
8 • IO-8, also bloß um Größen 6.0. verfälscht, die bei der üblichen Näherung

4.0. ohnedies zu vernachlässigen sind. Hingegen kann im Trägheitsmoment

C der Unterschied bereits an die Größenordnung von 1 %
heranreichen, während der Fehler in der Kernabplattung 20% betragen kann.

Abschließend sei noch eine Bemerkung gemacht. Man kann ohne
weiteres eine einparametrige Gleichgewichtsflgur mit dem stetigen Dichtegesetz

(8) durch différentielle, von Niveauflächen begrenzte homogene
Schalen approximieren. Hingegen dürfte der umgekehrte Vorgang nicht
statthaft sein. Aus noch so vielen Schalen homogener, inkompressibler
Flüssigkeiten (N —> oo) kann niemals das stetige Dichtegesetz einer kom-
pressiblen, bloß der Eigengravitation unterworfenen Flüssigkeit hergeleitet

werden. Tatsächlich müßte man sonst ja beim Grenzübergang
N—>¦ °° jedes beliebige stetige Dichtegesetz gewinnen können, während
sich unschwer stetige Dichtefunktionen angeben lassen, die niemals eine
Gleichgewichtsflgur liefern.
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