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Nr. 6 - LXIV. Jahrgang Erscheint monatlich 15. Juni 1966

Zur Frage der Entbliitterung
heterogener sphiiroidischer Gleichgewichtsfiguren

von K. Ledersteger, Wien

Zusammenfassung

Nach einer allgemeinen Diskussion der Niveauflichen und der Gleich-
gewichtsbedingung wird das Problem der Stokesschen Elemente formu-
liert und die Eindeutigkeit des Dichtegesetzes der Gleichgewichtsfiguren
bewiesen. Die Berechnung einer Gleichgewichtsfigur aus der Masse, dem
Dichtegesetz und der Gleichgewichtsbedingung wird am Beispiel des Wie-
chertmodells demonstriert. Der Kern des Modells ist eine Gleichgewichts-
anordnung, welche fiir eine groBere Rotationsgeschwindigkeit ein Mac-
Laurinsches Ellipsoid wird, und das Prinzip der Entblitterung gilt im
Falle eines unstetigen Dichtegesetzes nicht. Zum Beweis des Prinzips der
Entblatterung fiir die einparametrigen Gleichgewichtsfiguren mit ihrem
bekannten stetigen Dichtegesetz wird die Figur durch eine innere Niveau-
fliche der Abplattung e; < e fiktiv in «Mantel» und «Kern» zerlegt und
gezeigt, dal der Mantel durch eine dquivalente homogene Schale ersetzt
werden kann, die von zwei dhnlichen Ellipsoiden der Abplattung e, be-
grenzt ist, also in ihrem «inneren Hohlraum» ein konstantes Potential
besitzt. Der Mantel iibt somit auf den Kern keine Anziehungskraft aus,
was besagt, daB der Kern fiir sich allein ebenfalls eine einparametrige
Gleichgewichtsfigur ist. Diese Argumentation beweist gleichzeitig, dai
nicht jedes beliebige stetige Dichtegesetz eine Gleichgewichtsanordnung
liefert.

Résumé

Aprés une discussion générale des surfaces de niveau et de la condition
d’équilibre, on introduit le probleme des éléments de Stokes et on dé-
montre 'univocité de la loi de densité des figures d’équilibre. Le calcul
d’une figure d’équilibre a partir de la masse, de la loi de densité et de la
condition d’équilibre est démontré par un exemple sur le modéle de Wie-
chert. Le noyau du modéle a une configuration d’équilibre qui devient un
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ellipsoide de MacLaurin pour une grande vitesse de rotation; le principe
de I’ceffenillement» ne vaut pas dans le cas d’une loi de densité discon-
tinue. Pour démontrer le principe de 1’ceffeuillement» pour une figure
d’équilibre uniparamétrique avec une loi de densité continue, la figure
est décomposée fictivement en «qmanteau» et «noyau» par une surface de
niveau interne dont ’aplatissement e, est plus petit que e, et on montre
que le manteau peut étre remplacé par une enveloppe équivalente homo-
geéne qui est délimitée par deux éllipsoides identiques d’aplatissement e,
et dont le «vide intérieur» posséde un potentiel constant. L.e manteau
exerce ainsi sur le noyau une force d’attraction, ce qui indique que le
noyau est pour lui-méme également une figure d’équilibre uniparamé-
trique. Cette argumentation démontre en méme temps qu’'une loi de
densité continue ne fournit pas forcément une configuration d’équilibre.

Es ist ein bekanntes klassisches Ergebnis, da3 man jede nullparametrige
Gleichgewichtsfigur, das hei3t jedes homogene MacLaurinsche Ellipsoid,
«entblittern» kann, da eine von zwei dhnlichen Ellipsoiden begrenzte
homogene Schale auf die Punkte ihres inneren Hohlraumes keine Kraft
ausiibt. Die inneren Niveauflichen eines MacLaurinschen Ellipsoides sind
aber einschliefilich der Oberfliche &dhnliche Ellipsoide. Hebt man also
Schale fiir Schale ab, so entsteht eine Reihe kleinerer MacLaurinscher
Ellipsoide derselben Rotationsgeschwindigkeit, wobei die Abnahme der
Dimensionen mit einer entsprechenden Abnahme der Masse verbunden
ist. Somit ist der Gedanke naheliegend, zu priifen, ob dieses «Prinzip der
Entblitterung» nicht auch auf heterogene Gleichgewichtsfiguren ausge-
dehnt werden kann. Ganz allgemein ist dies sicherlich nicht der Fall, wie
H. Macke und K.Voss [1] an den Wiechert-Modellen nachgewiesen haben.
Bei diesen Figuren, die aus einem homogenen Mantel mit annihernd
ellipsoidischer Oberfliche und einem streng ellipsoidischen, gleichfalls ho-
mogenen Kern bestehen, ist nidmlich die gegenseitige Koppelung der
beiden Schalen nicht bloB auf die Abplattungen e und ey beschrinkt, son-
dern das Kernellipsoid ist iiberhaupt kein MacLaurinsches Ellipsoid. Eine
exakte Berechnung der Zweischalenmodelle und speziell der zweipara-
metrigen Gleichgewichtsfiguren, das heiB3t eben der Wiechert-Modelle, ist
ginzlich unabhiingig von der Theorie Macke-Voss mdéglich [2].

Jede gegebene sphiroidische Massenanordnung kann durch die Ge-
samtmasse E und die Massenmomente K3; charakterisiert werden, und
zwar ginzlich unabhingig von der Rotation. Natiirlich ist durch (£, K2;)
die Massenanordnung nicht eindeutig festgelegt, weil die Massenmomente
oder die zugehorigen Massefunktionen Ja; = Kai/a%i, unter a den Aqua-
torradius einer duBeren Niveaufldche verstanden, Stokessche Konstanten
sind. Hingegen ist mit diesen Daten und bei Wahl einer (beliebigen) Ro-
tationsgeschwindigkeit das dullere Potentialfeld eindeutig festgelegt, das
heiflt, man findet aus (F, a, w, J2:) mit den Gleichungen [3]

Joi = ¢2: (&, €, fai); 8 = 0?3 k2 E 1)

die Abplattung e und sdmtliche Formparameter f2; der Niveauflidche mit
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dem gewihlten Aquatorradius a. Ersetzt man in den Angaben w durch
die Abplattung e, sind also die Daten (E, a, e, J2;) gegeben, so liefert na-
tirlich die erste Gleichung (g,) die Rotationsgeschwindigkeit oder &. Man
kann dann aus g, mit allen folgenden Gleichungen g3; sdamtliche Form-
parameter eliminieren und erhilt so zuerst eine Relation & = & (e, J2i),
etwa in Nédherung 6.0.:

5 21
g = —3J2—I)J4—~—8—J6+2e(1—3J2-—5J4)

(2)
+2e2(1—6J,) + 2¢

und anschlieBend aus den folgenden Gleichungen g¢2; (i = 2, 3,...) alle
Formparameter fz;. Diese Art Sonderstellung der ersten Gleichung (1) ist
darin begriindet, da3 die Zahl der Massefunktionen um eins gréfer ist als
die Zahl der Formaparameter.

Selbstverstidndlich gehort zu jeder Massenanordnung (E, K»;) fiir jeden
Wert von @ eine andere Schar dullerer Niveauflichen. Ist neben der
Massenanordnung eine bestimmte duflere Niveaufliche S, (a, e, f2i) ge-
geben, so liefert g, die zugehorige Rotationsgeschwindigkeit, und alle fol-
genden Gleichungen g¢2; sind damit exakt erfiillt. Wichtiger ist aber der
Fall, daB3 die «Stokesschen Elemente (E, w, S;) gegeben sind. Dann lie-
fern die Gleichungen (1) die Massefunktionen J2;, die aber als «Stokes-
sche Konstanten» Integralinvarianten fiir unendlich viele Massenanord-
nungen sind. Aus diesen Massenanordnungen kénnen wir stets eine als
«wesentlich» herausgreifen, aus der sich alle iibrigen durch Verschiebun-
gen in homogenen konfokalen Ellipsoidschalen oder, als deren Grenzfall,
in homogenen konzentrischen Kugelschalen um den Schwerpunkt erge-
ben. Allerdings wire noch die Frage restlos zu kliaren, ob es trotz unserer
grundsitzlichen Beschrinkung auf sphiroidische Niveauflichen auller
den genannten Verschiebungen noch weitere Mdaglichkeiten gibt.

Die sphiroidischen Massenanordnungen zerfallen in allgemeine, rota-
tions- und dquatorsymmetrische Anordnungen und in die «Gleichge-
wichtsanordnungen», welche fiir eine bestimmte Rotationsgeschwindig-
keit zu hydrostatischen Gleichgewichtsfiguren werden. Liegt eine Gleich-
gewichtsanordnung (E, K2;) vor und sind iiberdies Achse und Abplattung
der Oberfliche S gegeben, so wird diese im Gleichgewichtsfalle selbst
Niveauflache, und die Gleichungen (1) liefern wie oben & oder w und die
Formparameter. Sind aber bloB (E, S) gegeben, so fehlt ein Bestimmungs-
stiick, und es mulBl zusitzlich die «Gleichgewichtsbedingung», und zwar
am einfachsten in der Form w = w (E, S) oder

& = xe + ye* + zed + ... 3)

vorliegen, wobei die Koeffizienten z,y,z ... Funktionen der Massenmo-
mente der Gleichgewichtsanordnung sind, wie unmittelbar (2) lehrt. Tat-
sdchlich gilt diese Form fiir die beiden Grenzfille des homogenen Ellip-
soides und der Niveauflichen des Massenpunktes. Fiihrt man in (2) die
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Massefunktionen des homogenen Ellipsoides ein, so resultiert die MacLau-
rinsche Bedingung

4 22 2 272
B= b Bk et et + ..., (3a)

5 5 1155
wihrend sich mit den Massefunktionen J2; = 0 ergibt:
E=2e +2e% 4 2% 4+ ... =2¢/(1 — ¢ (3b)

Die Bedingung (3) bestimmt jene Rotationsgeschwindigkeit, fiir wel-
che die Oberflache zur Niveaufliche wird, was bekanntlich bei Homo-
genitit fir das Gleichgewicht hinreicht. Im heterogenen Falle ist dies fiir
das Gleichgewicht wohl notwendig, aber nicht hinreichend; vielmehr er-
fordert das Gleichgewicht, daB3 simtliche Flichen gleicher Dichte Niveau-
flichen sind. Tatséchlich gehdren zu den Stokesschen Elementen (E, w, S)
einer Gleichgewichtsfigur neben der wesentlichen Gleichgewichtsanord-
nung zahllose andere, aus den oben genannten Verschiebungen resultie-
rende Massenanordnungen, bei denen das Gleichgewicht verlorengeht,
ohne dal} die Niveaufldche ihren Charakter als Niveaufliache verliert. Ab-
strahiert man wvon diesen «unwesentlichen» Massenanordnungen des
Satzes von Stokes-Poincaré, dann ist jede Gleichgewichtsfigur eindeutig
durch ihre Stokesschen Elemente oder wegen der Form (3) der Gleich-
gewichtsbedingung scheinbar durch (E, S) allein gegeben, und es geniigt
scheinbar ganz allgemein dabei, dall die Oberfliche Niveauflache ist. In
Wahrheit aber erfordert die Aufstellung der Gleichgewichtsbedingung die
Kenntnis der Massenmomente der Gleichgewichtsanordnung, gleichgiiltig,
ob es sich um homogene oder heterogene Gleichgewichtsanordnungen
handelt. Letzten Endes miissen immer die Elemente (E, a, e, J2i) oder
(E, w, a, J,;) gegeben sein, und die Gleichgewichtsbedingung (3) hat nur
in den beiden Fillen des homogenen Ellipsoides und der Niveauflichen
des Massenpunktes praktischen Wert. Dabei sind die Niveauflichen des
Massenpunktes als absolute Sphiroide der grofiten Massenkonzentration
fiktive Grenzfille von Gleichgewichtsfiguren.

Wir betrachten die Oberflichen S beliebiger, rotations- und dquator-
symmetrischer Massenanordnungen. Sicherlich gibt es zahllose derartige
Massenanordnungen, deren Oberflichen fiir keinen Wert von o Niveau-
flichen sind. Ein charakteristisches Beispiel stellen homogene Kérper dar,
deren Oberflichen wenigstens einen, von Null verschiedenen Formpara-
meter besitzen. Kénnte nidmlich eine solche Oberfliche fiir ein bestimm-
tes w Niveaufliche sein, so wire damit bereits eine Gleichgewichtsfigur
gegeben, wihrend andererseits die klassische Theorie beweist, dal} es in
der Nachbarschaft der Kugel nur eine einzige Reihe reeller homogener
Gleichgewichtsfiguren gibt, namlich die MacLaurinschen Ellipsoide (vgl.
Lichtenstein [4], Seite 81). Umgekehrt kénnen wir aber nicht a priori be-
haupten, da3 die Oberflidche nur im Gleichgewichtsfalle Niveauflidche sein
kann. Die Gleichung (2), die fiir alle iiberhaupt denkbaren Niveausphi-
roide gilt, wird sicherlich auch fiir die Oberflichen zahlloser Massen-
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anordnungen (E, J2;) gelten, ohne dafl damit bereits notwendigerweise
das Gleichgewicht verkniipft ist. Auch in diesen Fillen kann (2) in (3)
transformiert werden. Das Koeflizientensystem (x,y,z...) ist stets eine
Funktion der Jz; und reprisentiert nur fiir die Massefunktionen einer
Gleichgewichtsanordnung die Gleichgewichtsbedingung, wenn iiberdies a
und e Achse und Abplattung der Oberfliche sind. ’

Jede beliebige sphiroidische Fliche kann Oberfliche von zahllosen
rotations- und dquatorsymmetrischen Massenanordnungen sein. Hinge-
gen sind bei weitem nicht alle sphéroidischen Fldchen moégliche Niveau-
sphiroide, zum Beispiel alle Flidchen, fiir welche der Formparameter f, >
3,5 e? ist. Andere Flichen kénnen nur mit einem einzigen w-Wert gekop-
pelt werden; zum Beispiel ist die Kugel nur fiir den Ruhefall eine még-
liche Niveaufliche. Das Ellipsoid (x = 4/5) ist Oberfliche einer nullpara-
metrigen Gleichgewichtsfigur, gleichzeitig aber auch duBere Niveaufliche
zahlloser kleinerer konfokaler homogener Ellipsoide derselben Rotations-
geschwindigkeit, die somit selbst gar nicht im Gleichgewicht sind. Im
Bereiche r > 0,8 sind Ellipsoide als Niveauflichen undenkbar. Soweit
mithin ein System Stokesscher Elemente (E, w, S) iiberhaupt physika-
lisch sinnvoll ist [5], entspricht ihm nur ein einziges System von Masse-
funktionen J,;. Im allgemeinen wird dieselbe Niveaufliche fiir eine andere
Rotationsgeschwindigkeit Niveaufldche einer anderen wesentlichen Mas-
senanordnung mit einem anderen System von Massefunktionen sein. Da-
bei ist grundsitzlich zu beachten, dal alle dquator- und rotationssymme-
trischen Massenanordnungen durch Verschiebungen in homogenen, dqua-
torparallelen und -symmetrischen Kreisringen mit den Mittelpunkten in
der Rotationsachse ineinander tibergefiihrt werden kénnen. Dazu gehoren
natiirlich auch Verschiebungen in derartigen Kreisscheiben oder auch in
Kreiszylindern, deren Achse mit der Rotationsachse zusammenfillt. Bei
diesen Verschiebungen werden sich natiirlich im allgemeinen alle Masse-
funktionen J,; dndern: sie sind dann «wesentlich» im Gegensatz zu den
obigen unwesentlichen Verschiebungen, bei denen die Massefunktionen
unverdndert bleiben.

Héilt man eine gegebene Niveaufldche S (a, e, f2;) einer bestimmten
Massenanordnung fest, so folgt aus dieser bei der Wahl einer anderen
Rotationsgeschwindigkeit, die natiirlich innerhalb der physikalisch mog-
lichen Grenzen erfolgen mull, eine andere, wesentlich verschiedene Mas-
senanordnung, fiir welche sich die zugehorigen Anderungen A.J,; aus den
Gleichungen (1) in der Form:

(J + AJ)2i = 92: (€ + 48, ¢, f2i) (1a)
ergeben, wobei (2) in der Gestalt

Az = — 347, — g Ad, — 281AJ“ 9 e(3 AT, +5AT) — 12 AT, — ...

(2a)
als Kontrollgleichung dienen kann. Auf diese Weise kann eine vorge-
gebene Fliche S sein:
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a) Oberfliche oder duBlere Niveaufliche einer Gleichgewichtsfigur. Letz-
tere kénnen ja selbst fiktiv als Gleichgewichtsfiguren mit einem zu-
sidtzlichen Mantel der Dichte Null gedeutet werden.

b) AuBere Niveaufliche (aber nicht Oberfliche!) einer Gleichgewichts-
anordnung.

c/d) AuBere Niveaufliche oder Oberfliche einer allgemeinen rotations-
und aquatorsymmetrischen Massenanordnung.

Wir setzen S als Oberflache und gleichzeitig Niveaufliche einer Massen-
anordnung (E, Jz;) voraus. Selbstverstindlich lassen sich noch zahllose
andere wesentliche Massenanordnungen mit derselben Oberfliche kon-
struieren. Soll jedoch dabei S auch Niveaufliche bleiben, so miilten
wegen

Joi = mgi + n2i_2&; AJ2; = na2;_2 AE (1b)

die gidnzlich unabhéingig von der Rotation bestimmten A.J2; simtlich auf
dieselbe Anderung von o fithren, was zumindest dullerst unwahrschein-
lich ist. Die Frage, welche der vier obigen Mdoglichkeiten a)-d) neben-
einander bestehen kénnen, und die Frage nach den zugehérigen Grenzen
der Rotationsgeschwindigkeit bezeichnen wir als das Problem der Stokes-
schen Elemente. Liefle sich exakt zeigen, daB3 eine Flidche S wenn iiber-
haupt, so nur fiir eine einzige Rotationsgeschwindigkeit und damit nur
fiir ein einziges System (E, Jz2;) gleichzeitig Oberfliche und Niveaufliche
sein kann, so wire damit die «Eindeutigkeit der Oberfliche» bewiesen.
Noch enger ist die Frage, ob zu denselben Stokesschen Elementen (E, w,
S) zwei verschiedene Gleichgewichtsfiguren gehéren kénnen, die sich dann
im Sinne der friiheren Definition gar nicht wesentlich unterscheiden wiir-
den. Diese beiden Figuren mii3ten trotz der gemeinsamen Oberfliche ver-
schiedene Abplattungsfunktionen besitzen. Weil sich ferner beide Male
die Dichte- oder Niveaufldchen schalenartig umschlieBen und die Ab-
plattung der Niveauflichen auch bei abschnittsweise konstanter Dichte
nach innen systematisch abnimmt, miiten beide Figuren wegen der not-
wendigen Erhaltung der Gesamtmasse auch verschiedene Dichtegesetze
haben. Denn dasselbe Dichtegesetz bedingt bei verschiedener Abplat-
tungsfunktion notwendigerweise eine Anderung der Gesamtmasse. Bei
gednderter Abplattungsfunktion und geidndertem Dichtegesetz kénnen
aber unmoglich sdmtliche Massefunktionen der Figur ungeidndert gleiben.
Sollten demnach zu den Stokesschen Elementen einer Gleichgewichts-
figur neben den Verschiebungen in homogenen konfokalen Ellipsoid-
schalen noch weitere unwesentliche Verschiebungen maéglich sein, so geht
auch bei diesen das Gleichgewicht verloren. Damit aber ist die «Ein-
deutigkeit des Dichtegesetzes» der Gleichgewichtsfiguren bewiesen.
Somit kann jede Gleichgewichtsfigur durch die Gesamtmasse und das
Dichtegesetz oder durch die Gesamtmasse und die Oberfliche eindeutig
definiert werden, wenn noch in irgendeiner Form die Gleichgewichts-
bedingung bekannt ist. Zur Illustration betrachten wir die Wiechert-
Modelle, aber unter etwas anderem Gesichtspunkt als in [2]. Die Wie-
chert-Modelle sind bekanntlich die Gleichgewichtslésungen des allgemei-
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nen Zweischalenmodelles, bestehend aus einem homogenen Mantel der
Dichte gom und einem homogenen Kern der Dichte gk. Sie sind also mit
(E, a, om, ak, o) durch Masse und Dichtegesetz definiert, welch letzteres
vier Konstanten besitzt, so dal es bei gegebener Masse oo% derartige
Gleichgewichtsfiguren gibt. Bei der grundsitzlich moglichen Definition
durch Masse und Oberfliche geniigt zur Eindeutigkeit also die Naherung
6.0., das heil3t (E, a, e, f,, f¢), weshalb wir diese Figuren als «zweipara-
metrig » bezeichnen diirfen. Die Definition durch das Dichtegesetz hat den
Vorteil, daf3 bei den Bestimmungsstiicken kleine Groflen 4. und 6.0. ver-
mieden sind und daBl sie auch bereits in Niherung 4.0. eine eindeutige
Losung zulaBt.

Man wihlt einen Niherungswert fiir die Oberflichenabplattung e und
findet zusammen mit der Manteldichte g, sofort die Teilmasse E; fur die
als homogenes Ellipsoid definierte «Mantelfigur» und damit:

4
E1=§~3ra3<1—B>Qm;E=E1+Ez;Ek=E1I+E2 (4)

Hierin bedeuten Ei die Kernmasse und E,’ den Teil von E, innerhalb des
Kernes, so dal3 die zugehorige Kernabplattung ex vermoge

4
E, = 3 T ag® (1 — ek) ok; By 1 Ex = Om ¢ Qk ®)

eindeutig resultiert. Sodann liefern die beiden Gleichungen

1 1 ¥
J, = " (2e — eg) (E1 : E) + 3(261:— ekz) (C!k : a) (Ez : E)
12 12 4
J4=H3?€2(E12E)—3?ek2(ak:a> (E2:E)

die beiden Massefunktionen und anschliefend Gleichung (2) die Rota-
tionsgeschwindigkeit w oder & Damit wird die durch die gegebene Achse a
und die willkiirlich gewahlte Abplattung e blo3 unvollstiandig definierte
Oberflidche in Ndherung 4.0. zur Niveaufliche, wobei der Formparameter f,
aus der zweiten Gleichung (1) hervorgeht:

(6)

7 5 35
f4=‘2‘32—“2?35‘+"8“‘j4, (7)

wihrend gemilB (6) die Massefunktionen so berechnet sind, als ob die
Oberfliche (a, e) streng ellipsoidisch wire. Man gewinnt daher auf diese
Weise zu den Daten (E, a, gm, ax, gr) eine unendliche Reihe von Zwei-
schalenmodellen (e, ex) mit verschiedenen Rotationsgeschwindigkeiten,
die bis auf ein einziges iiberhaupt keine Gleichgewichtsanordnungen dar-
stellen. Die eigentliche Gleichgewichtsbedingung fiir das gesuchte Wie-
chert-Modell liegt dann in der Forderung, daf3 auch die streng ellipsoidi-
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sche Kernoberfliche eine Niveaufliche sein mufl. Man findet dieses Mo-
dell nach dem in [2] angegebenen Verfahren. Dabei ist aber das Kern-
ellipsoid gar kein MacLaurinsches Ellipsoid, wie bereits eingangs betont
wurde, und das Prinzip der Entblitterung gilt in diesem Falle und allge-
mein bei unstetigem Dichtegesetz nicht.

Daraus darf aber nicht der Schlull gezogen werden, daB3 die Entblitte-
rung auf die beiden, schon der klassischen Theorie bekannten Fille der
geschichteten Kugel und des MacLaurinschen Ellipsoides beschréinkt ist.
Wir erheben also die Frage nach der Moglichkeit der Entblitterung bei
den weitaus wichtigsten sogenannten einparametrigen Gleichgewichts-
figuren oder den Gleichgewichtsfiguren mit dem stetigen Dichtegesetz

272
e=9m4}~v(£” = ¢ (2). 8)

Hierin bedeutet gmax die maximale Dichte im Schwerpunkt, » eine Kon-
stante, die fiir die Macl.aurinschen Ellipsoide Null ist, mit wachsender
Massenkonzentration zunimmt und fiir die einparametrigen Sphiroide der
grol3ten Massenkonzentration knapp unter 1 liegt, und schlieBlich x den
Aquatorradius der laufenden, inneren Flichen gleicher Dichte, die wegen
des Gleichgewichtes mit den Niveauflichen und mit den Flichen gleichen
Druckes zusammenfallen. Wie eine eingehende Analyse gezeigt hat, ist
dies die einzig mégliche Form der Legendre-Laplaceschen Dichtefunktion
einer kompressiblen Fliissigkeit, bei der die Zunahme der Dichte nach
innen nur eine Folge der Gravitation der Masse ist und bei der die allein
durch die Gravitation verursachte Druckzunahme proportional der Dichte
erfolgt.

Das Dichtegesetz hat drei Konstanten gmax, » und a, so daf es bei
gegebener Masse E stets oo? einparametrige Gleichgewichtsfiguren gibt.
Bei Definition durch die Oberfléiche geniigt hier bereits die Nidherung 4.0.,
also (E, a, e, [,). Zur Festlegung in Néherung 6.0. ist grundsétzlich noch
die Kenntnis des zweiten Formparameters f, erforderlich. Den co* Gleich-
gewichtsfiguren (E, gmax, 7, @) stehen nur oo? Dichtegesetze gegeniiber;
tatsichlich dndert sich bei gleichem Dichtegesetz mit der Abplattungs-
funktion auch die Masse. Ist e die Abplattung der Oberfliche und g, die
mittlere Dichte, so gilt:

4
E=—§—na3(1 —e)gmoder:(l——e>9m=3E/4a3:m (9)

Unabhﬁngig von Gleichgewicht und Rotation folgt aus der ersten Glei-
chung (36) und (36a) in [6], Seite 68 und 70:

Ay 6 3
(1_B)Qm:(l—éz)=‘9max(1—gv—i—7v2)=cl

(10)
oder: €& =1—3E/[4nac;
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mithin ist durch die Daten (E, gmax, ¥, @) bereits ein bestimmter Durch-
schnittswert &, der Abplattungen gegeben, also ein wichtiges Bestim-
mungselement der Abplattungsfunktion. Aber selbstverstindlich ist da-
mit erst die Gleichgewichtsanordnung definiert; zur Gleichgewichtsfigur
mul} ganz im Sinne der obigen Festlegung durch (E, a, e, J2;) oder durch
(E, a, w, J2;) noch entweder die Abplattung der Oberfliche oder die
Rotationsgeschwindigkeit oder schliellich die Gleichgewichtsbedingung
o = w (E, S) zusitzlich vorliegen.

Gleichung (10) ergab sich aus dem Integral fiir die Gesamtmasse. Eine
weitere Beziehung liefern die Integrale fiir die Triagheitsmomente C und
(C — A), wobei im Hinblick auf das gesuchte Gleichgewicht bereits die
einparametrige Figurenreihe (v, C) = (w, K,) herangezogen wurde. Die
zweiten Gleichungen (36) und (36a) in [6] ergeben

10 5
Qmax(l '—“7—1’ + 6‘1’2) = Cy
und (ap:a2=c(1 —en):c; (1 —ey), 11)

worin a, und e, Achse und Abplattung des homogenen Ellipsoides der
genannten Reihe (w, C) bedeuten. Mit einer Wahl fiir e, > ¢, findet man
aus dem MacLaurinschen Ellipsoid (E, as, ex) die zugehérige Rotations-
geschwindigkeit und den Parameter & einer mehr oder minder guten
Niherungsléosung:

4 22 _ 3
& = 0 ap’/k* E = 3 en + 35 en’; E=&la:a (12)

Ahnlich ergibt sich fiir die statische Abplattung:

1 " 2
J2,n = 3 (2 eén — ehz) ; Jg= J2.n (ah : a) s (13)

da ja das Massenmoment K, = (C — A): E in der ganzen Reihe kon-
stant ist. SchlieBlich kann man zur Berechnung der Abplattung e der
als Niveaufldche vorausgesetzten Oberfliche in Ndherung 4.0. die 3. Glei-
chung (23) in [6], Seite 65, verwenden, in der die Gleichgewichtsbedingung
bereits mitberiicksichtigt ist:

13 25

— o 2 . aE 7" =
2e=3Jy, +E& + e 11 e & =g ° (14)

Ist die Rotationsgeschwindigkeit gegeben, dann kann man bereits aus
(11) und (12) in sukzessiver Approximation die richtigen Werte a; und
ep und anschlieBend iiber (13 und 14) die richtige Abplattung e finden.
Ist e gegeben, so wird Gleichung (14) einen Widerspruch aufweisen, der
abermals in sukzessiver Approximation ab (11) beseitigt werden kann.
Ist die Gleichgewichtsbedingung in der Form (3) gegeben, so findet man
mit dem e-Wert (14) einen verbesserten Wert fiir die Rotationsgeschwin-
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digkeit. Die richtige Abplattungsfunktion der Gleichgewichtsfigur (E,
Omax, ¥, @) ist dann bereits durch die drei Werte e, e, und ¢, festgelegt,
wobei e > ep > &, sein mull.

Nach diesen Vorbemerkungen gehen wir auf unser eigentliches Pro-
blem ein. Die freie Oberflache einer einparametrigen Gleichgewichtsfigur
sei durch den Index O, eine beliebig innere Dichte- und gleichzeitig Ni-
veaufliche durch den Index 1 gekennzeichnet. Die zwischen den Niveau-
flichen 0 und 1 gelegene Masse bildet den «Mantel», den wir abheben wol-
len. Das Potential Vy; der Gesamtmasse auf der Niveaufliche 1 kann
in (Vi1 + Vm,1) zerlegt werden, wobei Vu das Potential des Mantels
und V; das Potential der innerhalb der Niveaufliche 1 gelegenen Masse
bezeichnet. Ist w die Rotationsgeschwindigkeit der gegebenen Gleich-
gewichtsfigur und bezeichnet P den Pol der Niveaufliche 1, so gilt in
dieser Niveaufliche:

1
Vamy +Vig + o w? (353 = 92)1 = Vo, p (15)

Nach Abhebung des Mantels verbleibt die von der Dichtefliche 1 be-
grenzte Restfigur mit dem Aquatorradius a1 und mit dem Dichtegesetz:

T 2712 . 2
0 = Omax [l — (CT) ] mit », = » (al/a) (16)

Dies ist aber wieder das Dichtegesetz der einparametrigen Gleichgewichts-
figuren, und es gibt unbedingt eine einparametrige Gleichgewichtsfigur,
die mit unserer Restfigur, die wir als « Kern» bezeichnen wollen, die Daten
(Ek, Pmax, 71, @;) gemeinsam hat. Damit stehen drei Moglichkeiten zur
Diskussion:

a) Die Kernfigur ist unmittelbar die einparametrige Gleichgewichtsfigur;
das heilt, diese Gleichgewichtsfigur hat dieselbe Rotationsgeschwin-
digkeit wie die urspriingliche Figur, und das Prinzip der Entbléitterung
ist giiltig.

b) Sie ist eine starr gedachte Gleichgewichtsanordnung, welche fiir eine
andere Rotationsgeschwindigkeit zur einparametrigen Gleichgewichts-
figur wird. LaBt sich dann zeigen, da3 diese Rotationsgeschwindigkeit
w; mit der Rotationsgeschwindigkeit der Gesamtfigur zusammenfillt,
so sind wir auf-den Fall a) zuriickgekommen, und das Prinzip der Ent-
bldtterung ist bewiesen.

¢) Sie ist iiberhaupt keine Gleichgewichtsanordnung.

Wir priifen zuerst den Fall ¢). Als Teil der urspriinglichen Gleichge-
wichtsfigur hat der Kern dasselbe Dichtegesetz, und die Flichen gleicher
Dichte umschlieBen sich schalenartig. Unabhingig vom Gleichgewicht
und von der Rotation kann fiir die Abplattung des Kernes ebenso wie in
(10) ein Durchschnittswert &, r bestimmt werden, der auch fiir die Gleich-
gewichtsfigur mit den Daten (Ek, gmax; %, @;) gilt. Dann aber erfordert
die gleichzeitige FErhaltung der Masse Ej; und des Durchschnittswertes
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2.k, dall es in dieser Gleichgewichtsfigur eine Niveaufliche oder Dichte-
fliche a, mit derselben Abplattung gibt, wihrend oberhalb die Abplat-
tungen der Dichteflichen groBer (kleiner) und unterhalb kleiner (gréBer)
sind als im Kern. Dies ist aber ohne Anderung der riumlichen Dichte, also
des Dichtegesetzes, unmdoglich, womit bereits der Widerspruch aufge-
deckt ist.

Mithin mufl der Kern zumindest eine Gleichgewichtsanordnung sein.
Nun bewirke die Abhebung des Mantels in den Dichteflichen des Kernes
eine Potentialverminderung, die im Aquator jeweils groBer als im Pol
sein miiBte, wobei diese Differenz mit abnehmendem Aquatorradius der
inneren Dichteflichen gegen Null konvergiert. Demnach miiflte der Kern
als Gleichgewichtsfigur eine gri3ere Rotationsgeschwindigkeit w, besitzen
und zur Widerlegung der Annahme b) wire zu zeigen, dal w; = w sein
muB. Zunachst gilt:

1
Vi1 + 5 w,? (332 + y2)1 =Vip, (17)

A

N

@ |

woraus sich gegeniiber (15) die Differenz ergibt:

0

1
Vma + E(wz - wf) (312 - yz) =Vopr —Vi,p=Vmp (18)
1

Wir wihlen innerhalb des «Kernes» eine weitere Dichtefliche mit dem
Aquatorradius a, und mit dem Index 2, welche gleichzeitig Niveaufliche
der urspriinglichen Gleichgewichtsfigur ist. Dann gilt analog (18) sofort:

1
Ve + E(wz - wlz) (x“ + yz) =Voo —Vi0 =Vme, (19
2
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AVm

wenn ( den Pol dieser Fliche bezeichnet. Fiir zwei beliebige Punkte A
und B, die in Richtung der Rotationsachse iibereinander liegen, ver-
schwindet in der Differenz der Einflu3 der Fliehkraftpotentiale, und es
folgt aus (18) und (19):

Vma—Vm,B=Vmp — VMo, VMa —Vm,p=VMB — VM0 (20)
Setzt man schliellich (a, : @) = n > 1, so gilt wegen:
1
Vm,r + 5 (0)2 — CU12> a?® =Vm,p
1
Vmc%~5(w2—a¥)af==VMP
1
Vum,p + o <w2 = wlz) a* = Vm,q
sofort:
Vm,F —Vmp =n* (Vm,c —Vm,p) = n* (Vm,p —Vm,0) =2 0 (21)

Zieht man den konstanten Hauptteil des Mantelpotentials ab, so kann
man (21) in der Form

AVmMr=n2AVyp = AVmp — n? AVu, (21a)
fiir die kleinen Restbetrige 4V ansetzen. Der Mantel ist nun zwar hetero-
gen. Aber in Analogie zu den Wiechert-Modellen mii3te er durch eine
dquivalente, homogene Schale ersetzt werden koénnen, deren Begren-
zungsflichen Ellipsoide der Abplattungen e* und e, < e* sein mégen und
deren Dichte p* wir gar nicht zu kennen brauchen. Der Mantel wird also
durch die Differenz zweier homogener Ellipsoide der Dichte o* ersetzt,
und zwar eines Ellipsoides der Masse E* mit den Achsen a* und c¢* = a*
(1 — e*) sowie des mit der Dichtefliche 1 achsengleichen Ellipsoides a,
und ¢; = a; (1 — ¢,), das den Teil E*” der Masse E* einschliefit. Dann gilt
fir das Potential des Mantels in einem Punkt (z, y, z) an der Oberfliche
oder im Innenraum des «Kernes» gemil3 der Formel (15) in [2]:

(22)

_ _B[REr(1 4 18 N B (1 4 18 N
T T2 e \37 5 35 e \3 517 35 1) 4
B[RE*(1 2 ., 1 .\ KE¥( 2 1 ],

S i — R S —_—— — —s —_— —— __._._e
2 c** \3 5 35 ¢ \3 5 35 )]

Daraus folgt unmittelbar fiir die beiden Aquatorpunkte F und D wegen

al = naz:

188

AVymr = n?AVm,p

(23)



und ebenso fiir den Pol Q* des zur Kernoberfliche dhnlichen Ellipsoides

(ay, €5 = ¢):
AVum,p = n*AVy, o* (23a)

Andererseits folgt aus (23) und (21a) dieselbe Gleichung fiir den Pol der
Dichtefldche 2:
AVm,p = n?4AVp,g, (23b)

obwohl wegen ¢, < ¢; der Punkt Q nidher an P liegt als der Punkt Q*.
Dieser Widerspruch verschwindet nur, wenn alle AV = 0 sind oder wenn
w, = w gilt. Dies besagt aber, dal der Mantel durch eine von zwei dhn-
lichen Ellipsoiden der Abplattung e; = e* ersetzt werden kann. Tatséich-
lich ist dann wegen

4
E*[c*s =~ g*/(1 — e%)* = E¥'[e;? (24)

das Potential des Mantels an der Oberfliche und im Innenraum des
Kernes konstant: AVy = 0, und die Restfigur ist selbst eine einpara-
metrige Gleichgewichtsfigur derselben Rotationsgeschwindigkeit. Damit
ist aber das Prinzip der Entblitterung fiir den Fall des stetigen Dichte-
gesetzes (8) verifiziert.

Bei der vorstehenden Beweisfithrung war nicht wesentlich das Dichte-
gesetz (8) und (16) vorausgesetzt, sondern allgemein ein stetiges Dichte-
gesetz und Gleichgewicht. Bei einem beliebigen stetigen Dichtegesetz
kann aber sicherlich das Gravitationspotential eines von der freien Ober-
fliche und einer beliebigen inneren Dichtefliche begrenzten «Mantels»
im allgemeinen nur durch eine dquivalente homogene Ellipsoidschale er-
setzt werden, fiir welche e* > e, ist. Dann aber bliebe der Widerspruch
zwischen (23a) und (23b) bestehen, und das Gleichgewicht wire unmog-
lich. Diese Uberlegung zeigt jedenfalls, daB es, mit Ausnahme der Kugel,
nicht einparametrige Gleichgewichtsfiguren mit beliebigem stetigen Dich-
tegesetz gibt. Damit ist freilich noch nicht gesagt, dafl diese Argumenta-
tion gleichfalls das Dichtegesetz (8) als die einzig moégliche Dichtefunk-
tion bestatigt.

Bei fortgesetzter Entblidtterung wird der Kern oder die Restfigur
einem homogenen Ellipsoid immer dhnlicher. Denn die Formparameter
der Dichteflichen konvergieren gegen Null, wihrend ihre Abplattung
einem Minimum e, zustrebt. Um diese Grenzabplattung zu finden, gehen
wir von dem Grenzwert fiir £ aus:

2 18 2
lim (wz as ke E) = lim %2 -0 f’ — ) 24)
a=0 a=°—§nk“a3(1——e)g b 4 ( 0) Omax

und finden die Grenzabplattung aus der MacLaurinschen Gleichgewichts-
bedingung in der Form:

R 3 w? 11
7 4 47k (1 — e;) Omax 14
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oder nach Multiplikation mit (1 — e,), gleichfalls in Nidherung 4.0.:

15 w? 3

16 7 K* gmas + 11 €2 (25)

€0=

Die Methode der Entblidtterung ist also im Falle der einparametrigen
Gleichgewichtsfiguren gerechtfertigt, wihrend sich bei den Wiechert-
Modellen die stirksten Abweichungen ergeben. Besteht ndmlich eine
Gleichgewichtsfigur aus mehreren (N) homogenen Schalen, so kann mit
wachsendem N natiirlich eine fortschreitende Anniherung an den Fall
der einparametrigen Figuren erfolgen, noch mehr natiirlich, wenn alle
oder zumindest ein Teil der Schalen heterogen sind. Aber selbst beim
Wiechert-Modell werden trotz einer relativ starken Anderung der Kern-
abplattung, wenn man fiktiv das Entblitterungsprinzip zugrunde legt,
die GréBen, auf die es eigentlich ankommt, kaum nennenswert beeinfluf3t.
So ergeben sich zum Beispiel fiir die Verhiltnisse der Erde (Kerntiefe
2900 km) die GroBen 4.0. J, und f, nur um kaum 3 - 10-8 respektive
8 - 10-8, also bloB um GroBen 6.0. verfilscht, die bei der iiblichen Nihe-
rung 4.0. ohnedies zu vernachlissigen sind. Hingegen kann im Trigheits-
moment C der Unterschied bereits an die Grélenordnung von 19, heran-
reichen, wihrend der Fehler in der Kernabplattung 209, betragen kann.

AbschlieBend sei noch eine Bemerkung gemacht. Man kann ohne wei-
teres eine einparametrige Gleichgewichtsfigur mit dem stetigen Dichte-
gesetz (8) durch differentielle, von Niveauflichen begrenzte homogene
Schalen approximieren. Hingegen diirfte der umgekehrte Vorgang nicht
statthaft sein. Aus noch so vielen Schalen homogener, inkompressibler
Flissigkeiten (N — o0) kann niemals das stetige Dichtegesetz einer kom-
pressiblen, blo3 der Eigengravitation unterworfenen Fliissigkeit herge-
leitet werden. Tatsidchlich miiBte man sonst ja beim Grenziibergang
N — oo jedes beliebige stetige Dichtegesetz gewinnen kénnen, wahrend
sich unschwer stetige Dichtefunktionen angeben lassen, die niemals eine
Gleichgewichtsfigur liefern.

Literatur
[1] K.Voss: Uber die Gestalt und das Schwerefeld der Erde. Zeitschrift fiir Geo-
physik, Heft 6, Wiirzburg 1965.

[2] L. Ledersteger: Zur Theorie der Wiechert-Modelle. Erscheint demnéchst in Zeit-
schrift fiir Geophysik, 1966.

[3] K. Ledersteger: Das allgemeine Niveausphiroid in Niherung achter Ordnung.
Osterreichische Zeitschrift fiir Vermessungswesen, Nr. 5, Wien 1965,

[4] L. Lichtenstein: Gleichgewichtsfiguren rotierender Fliissigkeiten, Berlin 1933.

[56] K. Ledersteger: Das Theorem von Stokes-Poincaré und die sinnvolle Wahl der
Stokesschen Elemente. Erscheint demnéchst in den Sitzungsberichten der Oster-
reichischen Akademie der Wissenschaften, Wien 1966,

[6] K. Ledersteger: Die Neubegrindung der Theorie der sphiroidischen Gleichge-
wichtsfiguren und das Normalsphéroid der Erde, Sonderheft 24 der Osterreichi-
schen Zeitschrift fiir Vermessungswesen, S. 31-125, Wien 1964.

190



	Zur Frage der Entblätterung heterogener sphäroidischer Gleichgewichtsfiguren

