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Die Ausgleichung trigonometrischer Punkte

im Lichte der Mittelbildungseigenschaft
der Methode der kleinsten Quadrate

Von Prof. Dr. techn. Paul Gleinsvik, Vollebekk (Norwegen)

Zusammenfassung

In dem vorliegenden Aufsatz werden verschiedene Fragen hinsichtlich
der Bestimmung sowie der Genauigkeit trigonometrischer Punkte
behandelt, und zwar unter dem Gesichtswinkel des in [2] nachgewiesenen
mittelbildenden Mechanismus der Methode der kleinsten Quadrate.

Es wird festgestellt, daß für die einzelnen Neupunkte sowohl die
ausgeglichenen "Werte der Koordinaten als auch der sich aus der Ausgleichung

ergebende Wert des mittleren Punktfehlers, der Radiusvektor der
Fußpunktkurve und die Orientierung der Fehlerellipse bei ihrem Entstehen

derselben Gesetzmäßigkeit folgen: Alle diese Größen ergeben sich als
allgemeine arithmetische Mittel aller möglicher Partialwerte, die sich aus
dem Beobachtungsmaterial ohne Ausgleichung ableiten lassen.

Résumé

Dans le présent article quelques questions concernant la détermination
des points trigonométriques et la précision qui s'y rattache font l'objet
d'une analyse au point de vue du mécanisme de la méthode des moindres
carrés démontré dans [2]. Il se trouve en effet que pour chacun des points
inconnus les valeurs compensées des coordonnées, l'erreur moyenne des
points compensés, le rayon recteur de la «Fusspunktkurve» (courbe des
sommets du rayon vecteur représentant l'erreur moyenne dans une
direction quelconque) et l'orientation de l'ellipse d'erreur sont en ce qui
concerne leur origine soumises aux mêmes lois: toutes ces grandeurs
coïncident avec les moyennes arithmétiques générales de toutes les valeurs
correspondantes possibles, non compensées.
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1. Einleitung

In einer früheren Arbeit [2] wurde generell nachgewiesen, daß der
«Mechanismus» der Methode der kleinsten Quadrate in einer Mittelbildung
nach Gewicht besteht. Die Ergebnisse einer strengen Ausgleichung
entstehen durch gewogene Mittelbildung aus allen möglichen korrespondierenden

Partialwerten. Dies trifft sowohl für die Zahlenwerte der verschiedenen

Größen als auch für die Genauigkeit derselben zu. Es bestehen also
ganz allgemein folgende Relationen (das Zeichen ' indiziert unausgeglichene

Partialwerte):

m [P'ml 1 [p'Q'mm]
m und Qmm -—— —¦— -

[Pi u + 1 [p'[

Hierbei ist m eine beliebige Größe, welche direkt (als Unbekannte) oder
indirekt (als Funktion der Unbekannten) durch die Ausgleichung
bestimmt wird, und ü die Anzahl der Überbestimmungen. Die Gewichte p'
sind gegeben durch (a ist die Anzahl der Unbekannten) :

P' Pi Pi - Pu • D2jj... u

Dabei sind p,-, p;-,..., pu die Gewichte der einzelnen Fehlergleichungen
einer beliebigen der im ganzen (JJ) möglichen Kombinationen der n
Fehlergleichungen, von denen jede einzelne gerade ausreicht, die
Unbekannten zu bestimmen, und Dy... u sind die dazugehörigen Determinanten.

In welcher Weise diese Mittelbildungseigenschaft der Methode der
kleinsten Quadrate die trigonometrische Punktbestimmung «beeinflußt»,
soll hier etwas eingehender untersucht werden.

2. Die ausgeglichenen Werte der Koordinaten

Bei der Behandlung dieses Problems beschränken wir uns auf das
überbestimmte Vorwärts- und Rückwärtseinschneiden und die Einzelpunktbestimmung

durch Trilatération.

2.1. Das überbestimmte Vorwärtseinschneiden

In der Figur 1 wird ein Neupunkt P
durch die drei Visuren von den
Festpunkten 1, 2 und 3 bestimmt. Die
Punkte Px> j, -Pi, 3 und P2j 3 sind die
Schnittpunkte zwischen jeweils zwei
Strahlen und bilden somit die
sogenannte fehlerzeigende Figur. Infolge
des Mechanismus der Methode der
kleinsten Quadrate ergibt sich die
ausgeglichene Punktlage als allge-

Figur 1 meines arithmetisches Mittel von Py.
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Dies bedeutet [py • xy] [py • yy]
x —'-——— und y

[Pai [pu]

unter der Voraussetzung, daß die Gewichte auf py p,-p/D2y fixiert
werden, wobei p,- und pj die Gewichte der einzelnen Strahlen
(Fehlergleichungen) einer unausgeglichenen Bestimmung von P und Dy die
dazugehörige Determinante sind. Für letztere ergibt sich aus der
Kombination von zwei beliebigen Fehlergleichungen:

vt a; x + b( y + fi I q q
[a ^- sing? und b -y cosçp

Vj ajx + bj y + f,- \ s s

„ sincpi costpi sinœ/ cosa?, ps
D ai bj - a,bt Ç—H. gi + L^L Q. _ y^ siny...

Hierbei ist yy der Schnittwinkel im Neupunkt zwischen den Strahlen
i und /. Die bei der Mittelbildung zu verwendenden Gewichte werden
folglich zu:

sin2y sin2)/! 3 sin2y2 3
Pi, 2 PxP* —gag2 Pi, 3 Pi Ps g.

' und p2> 3 pa Ps ' '
Ol Og Oj Oj Og O3

oder anders geschrieben

Pi,2 P1P2S32 sin2y1>2, p1>3 PxP3Sr2 sin2y1>3 undp2>3 PiP3Sa_2sin2y2>!,

2.2 Das überbestimmte Rückwärtseinschneiden

Genauso wie beim Vorwärtseinschneiden ergibt sich auch hier eine
fehlerzeigende Figur, auf Grund welcher sich der ausgeglichene Punkt als
gewogenes Mittel der Eckpunkte derselben ableiten läßt (bei nur einer
überschüssigen Richtung wird diese Figur aus 4 Punkten bestehen,
entsprechend den (|) Kombinationsmöglichkeiten).

Aus dem Fehlergleichungssystem des einfachen Rückwärtseinschnei-
dens (siehe Figur 2, wo der Neupunkt P von den drei Festpunkten I, II
und III aus bestimmt wird)

Vi — z + axx + bxy + A

v2 — z y a2 x y b2 y + f2

v3= — z + a3x + b3y + f3

»2 — z y a2x + b2 y + /s I a -—¦ sinç> und b — coscpS S
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>I

-—II

vm

Figur 2

ergibt sich für die Determinante

D (a2 bx - ax b2) + (a3 bx - ax ba) + (a3 b2 - a2 b3)

Dieser Ausdruck ist bekanntlich gleich der
doppelten Fläche des reziproken Dreiecks (in Figur 2

ist 1, 2, 3 das reziproke Dreieck), das heißt:
Auch beim überbestimmten Rückwärtseinschneiden
ist die ausgeglichene Punktlage identisch mit dem

gewogenen Mittel der Eckpunkte der fehlerzeigenden

Figur. Hierbei sind die Gewichte auf

Pijk Pi Pj Pk • Fijk2

zu fixieren, wobei F die Fläche des reziproken
Dreiecks der Kombination i, j, k und p,-, p,- und
Pk die dazugehörigen Einzelgewichte darstellen.

2.3 Die Einzelpunktbestimmung durch Trilatération

Das Fehlergleichungssystem, auf welchem eine beliebige unausgeglichene

Bestimmung des Neupunktes beruht, lautet (die cp beziehen sich
auf den Neupunkt):

Vi — cosipiX — sincpiy + /;

Vj — cos cpj x — sintpj y + fj
mit der Determinanten

D sirxcpj costpi — sinç>i coscpj sinyy,
wobei yi/ der Schnittwinkel im Neupunkt zwischen den Seiten i und / ist.

Die Mittelbildungseigenschaft der Methode der kleinsten Quadrate
führt somit diesmal zum folgenden Schluß: Bei der Einzelpunktbestimmung

durch Trilatération ergibt sich die ausgeglichene Punktlage als
gewogenes Mittel der Eckpunkte der fehlerzeigenden Figur, wobei die Gewichte

auf
Pü Pi Pi sin2yy

zu fixieren sind (p,- und pj sind die Gewichte der Seiten i und /).

3. Der Zusammenhang zwischen der Genauigkeit der Ausgleichungs¬
und der Partialergebnisse

3.1. Der mittlere Punktfehler
Der Gewichtskoeffizient des mittleren Punktfehlers ist bekanntlich

gegeben durch:
Qmm Qxx + Qyy
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Bei Berücksichtigung der Entstehung von Qxx und Qyy aus den Partial-
werten ergibt sich (das Zeichen ' indiziert auch hier Partialergebnisse):

¦[PT9TTL + [p'C-n _i i_ s p, (ö^ + ÖW)
« + 1 V [P'] [P'I / ü + 1 [p'] A v vw " ^ w m)

Q'mm
1 [p' Q'mm]

ü + 1 [p']

oder beim Übergang zum mittleren Punktfehler

1 (p' M'2]
M2

ü + 1 [p']

Für den allgemeinen Fall - n Fehlergleichungen und u Unbekannte -
läßt sich die aufgezeigte Gesetzmäßigkeit, wie folgt, formulieren:

Aus jeder der (") möglichen unausgeglichenen Bestimmungen der
Unbekannten resultieren partielle mittlere Punktfehler der Neupunkte. Der
ausgeglichene quadratische Wert des mittleren Punktfehlers eines beliebigen
Neupunktes entsteht als gewogenes Mittel aller möglichen partiellen Werte
desselben, dividiert durch ü + 1.

3.2 Das Entstehen der Fehlerellipse
Die Genauigkeit einer Punktbestimmung in beliebiger Richtung

kommt bekanntlich durch die Fußpunktkurve der mittleren Fehlerellipse

zum Ausdruck. Ihre Gleichung lautet:

Qrr cos2 9? Qxx + sin2ç> Qyy + sin 2 tp Qxy

Der mittlere Fehler in der Richtung cp ergibt sich unmittelbar als Radiusvektor

dieser Fußpunktkurve, das heißt:

rv m0 |/ Qrr

Bei Berücksichtigung der Gesetzmäßigkeit hinsichtlich des Entstehens
der Gewichtskoeffizienten erhalten wir für Qrr:

n
1 / IP' Q'xx] [P' Q'yy] 0 [P' Q'xy] \Qrr - TTT(cos'* —[pr + *~~wT + sm2,p^pTT~\

i i S p' (cos2 cp Q'xx y sin2 cp Q'yy + sin 2 cp Q'xy)a + i [p'i
Q'
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das heißt: 1 [p' Q'rr]
Qrr--üTT~W\~

oder beim Übergang zum mittleren Fehler

M* ü + 1 [p']

Zusammenfassend haben wir also gefunden:

Aus jeder der (") möglichen unausgeglichenen Bestimmungen der
Koordinatenunbekannten resultiert für jeden der beteiligten Neupunkte eine
partielle Fehlerellipse. Diese partiellen Fehlerellipsen setzen sich zu den
ausgeglichenen Fehlerellipsen zusammen, wobei das Bildungsgesetz der letzteren
folgendes ist: Der quadratische Wert des Radiusvektors der Fußpunktkurve
der ausgeglichenen Fehlerellipse ist das gewogene Mittel der quadratischen
Werte der Radiusvektoren der Fußpunktkurven der partiellen Fehlerellipsen,
dividiert durch ü + 1. (Man könnte sich vielleicht vorstellen, daß die Achsenlängen

der Fehlerellipsen in analoger Weise entstehen, also als gewogene
Mittel der entsprechenden Werte der unausgeglichenen Fehlerellipsen.
Das aber trifft doch nicht zu I)

3.3. Die Orientierung der Fehlerellipse
Bekanntlich ist die Orientierung der Fehlerellipse gegeben durch

tg2 0
2 QXy

Qxx Qxy

wobei 0 die Richtung der großen Halbachse ist.

Wie oben gezeigt, resultiert aus jeder der (") möglichen unausgeglichenen

Bestimmungen der Koordinatenunbekannten für jeden der
beteiligten Neupunkte eine Fehlerellipse mit einer gewissen Orientierung.
Aus diesen partiellen Fehlerellipsen entsteht so die ausgeglichene Fehlerellipse.

Behauptung: Der ausgeglichene Wert von tg 2 0 ist gleich dem
allgemeinen arithmetischen Mittel der korrespondierenden unausgeglichenen

Partialwerte desselben tg 2 0'= " das heißt:
\ Q xx — Q yy/

tg2 0
[P" tg 2 6']

[P"\

wenn p" auf p" p' (Q'xx — Q'yy) fixiert wird
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Um das zu zeigen, bilden wir

tg2 0
[P" tg 2 B']

\P"\

2 [p' Q'xy]

2 [P' Q'xy]

[P']
[P' Q'xx] ~[P' Q'yy]

2 Qxy

Qxx Qyy

[p' Q'x

[p']
[p' Q'iyyi

[P']

womit die Behauptung bewiesen ist. Die nachgewiesene Gesetzmäßigkeit
läßt sich wie folgt formulieren:

Die Orientierung der ausgeglichenen Fehlerellipse eines beliebigen
Neupunktes ergibt sich aus der Orientierung der korrespondierenden
unausgeglichenen Fehlerellipsen in der Weise, daß der zu der ausgeglichenen Fehlerellipse

gehörige Wert von tg 2 0 gleich dem gewogenen Mittel der entsprechenden

Werte der unausgeglichenen Fehlerellipsen wird.

4. Zahlenbeispiel

Abschließend wollen wir die diskutierten Genauigkeitszusammenhänge
bei der trigonometrischen Punktbestimmung an einem Beispiel näher
erläutern. In Figur 3 wird ein Neupunkt P durch Vorwärtseinschneiden
von den drei Festpunkten 1, 2 und 3 aus bestimmt.

In einem Achsensystem mit der
x-Achse parallel zur Seite S2p und bei
Vernachlässigung der Konstanten q
und S ergeben sich die folgenden drei
Fehlergleichungen zur Bestimmung
von P:

vx - 0,760 x + 0,649 y + h

v2 y 0,667 y y f2

v3 + 0,951 x y 0,309 y + h,

'<W
55"

2

Figur 3

welche als gleichgewichtig vorausgesetzt

werden. Durch Kombination
von je zwei Gleichungen ergeben sich
drei unausgeglichene Bestimmungen

von P. Schließlich wird P durch eine Gesamtausgleichung ermittelt. Die
Ergebnisse dieser Berechnungen sind in der nachstehenden Tabelle
zusammengestellt, wobei die letzte Zeile die Ergebnisse der strengen
Ausgleichung enthält.
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Kombination
Qxx Qyy Qxy A B «sr 2 e Max.-

richt. Qmm D P'
D2

P"
mQxx
-Qyy)

1,2
1,3
2,3

3,363
0,712
1,344

2,245
2,040
2,250

+ 1,915

+ 0,274

-0,732

2,19
1,45

1,63

0,90
0,81
0,97

+ 3,424

-0,412
+ 1,615

41,0*
87,6

132,4

5,608
2,752
3,594

-0,507
-0,852
-0,634

0,257
0,726
0,402

+ 0,288

-0,965
-0,364

1,2, 3 0,694 1,069 + 0,144 1,06 0,80 -0,765 79,2 1,763

Eine Kontrolle der Formeln

1 tP' Q'mm] „ [P" tg 2 6']
Qmm -s^ i^pL und tg 2 0 ^ :

1 0,257 • 5,608 + 0,726 • 2,752 + 0,402 • 3,594
Qmm — — * " "———— ¦ - ¦ ¦ -——————————— 1,763* 2 0,257 + 0,726 + 0,402

tg20
+ 0,288) + 3,424) + - 0,965) - 0,412) + - 0,364) + 1,615)

+ 0,288 - 0,965 - 0,364
0,765

bestätigt deren Richtigkeit.
Figur 4 gibt eine geometrische Veranschaulichung von der Entstehung

der ausgeglichenen Fehlerellipse aus den partiellen Fehlerellipsen. Hier
sind nämlich die Fußpunktkurven der verschiedenen Fehlerellipsen,
sowohl die partiellen als auch die ausgeglichene, graphisch dargestellt.

5. Tangierung der partiellen Fußpunktkurven mit der ausgeglichenen

Aus Figur 4 gewinnt man den Eindruck, daß jede der unausgeglichenen
Fußpunktkurven die ausgeglichene Fußpunktkurve tangiert, und zwar
in zwei diametralen Punkten. Das wäre ja an und für sich eine ziemlich
überraschende Feststellung, weil es nämlich bedeuten würde, daß für die
betreffenden Richtungen die Ausgleichung keine Genauigkeitssteigerung
mit sich geführt hat.

Nachstehend wird die Frage, ob es sich hier um eine allgemeingültige
Erscheinung bei der trigonometrischen Punktbestimmung handelt, zum
Gegenstand einer näheren Untersuchung gemacht.

Die generelle Bedingung dafür, daß zwei Fußpunktkurven gemeinsame

Punkte haben, ist gegeben durch:

QxxCos2tp + Qyysm2cp + QZtfsin2ç> Q'^cos2? + Q'gysin2f + Q'xysin2ç5

wobei Qxx, Qyy und Qxy beziehungsweise Q'xx, Q'yy und Q'xg die
Gewichtskoeffizienten sind, welche als gegebene Größen in den Gleichungen der
zwei Fußpunktkurven auftreten. Das heißt:

(QXX - Q'XX) COS2?* + (Qyy - Q'yy) SUI2? + (QXy - Q'Xy) SU! 2 Cf, Q

Oder (Qxx - Q'xx) + (Qyy - Q'yy) tg2<p + 2 (QXy - Q'xy) tg? 0
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Figur 4

Die Fußpunktkurve der Fehlerellipse der Kombination 1,2

Die Fußpunktkurve der Fehlerellipse der Kombination 1,3

Die Fußpunktkurve der Fehlerellipse der Kombination 2,3

Die Fußpunktkurve der ausgeglichenen Fehlerellipse

Aus der letzten Gleichung resultiert

tg?> - (Qxy - Q'xy) ± ]/(Qxy - Q'xy)2 - (Qyy - Q'yy) (Qxx - Q'xx)

(Qyy ~~ Q m)

Hieraus folgt, daß die allgemeine Bedingung für Tangierung in zwei
diametralen Punkten - was der Fall sein wird, wenn die obige Gleichung
nur einen einzigen Wert für tgç> liefert - gegeben ist durch:

(Qxy Q xy) — (Qyy Q yy) (Qxx ~ Q xx)

Für die Richtung des «Tangierungsdiameters » ergibt sich

(Qxy Q xy)
tg?> - (Qyy Q yy)
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Es fragt sich nun, ob die allgemeine Bedingung der Tangierung bei der
trigonometrischen Einzelpunktbestimmung erfüllt ist. Um diese Frage zu
beantworten, wird mit Ausgangspunkt in folgendem Fehlergleichungssystem

Gewicht

v., axx + bxy + fx px

v2 a2x + b2y + /2 p2

v3 CL-X + b3y + /3 p3

der Ausdruck gebildet:

— p1a1b1 — p2a2b2 — p30e,b3 pxaxbx + p2a22>2\2 (pxax2 + p2a22 + p3a32

D123 D12 J \ L)123

pxaa,2 + p2a22\ (pxbx2 + p2V + p,b,- pxbx2 + p2ft22)\

D12 /\ D123 D12

/ [pad] [pbb] [pab] \(bekanntlich ist ja Qgy if^-L, Qra i^i- und QXf, - -^~-j

Dieser Ausdruck stellt die Bedingung für die Tangierung der
Fußpunktkurve 1, 2 mit der ausgeglichenen Fußpunktkurve dar. Durch
Ausmultiplizieren stellt sich heraus, daß die Gleichung für die oben genannte
Bedingung erfüllt ist, und dies ist auch für die unausgeglichenen
Fußpunktkurven 1, 3 und 2, 3 der Fall. Dagegen ist die Gleichung nicht erfüllt,
wenn die Anzahl der Fehlergleichungen 3 überschreitet.

Es hat sich folglich herausgestellt, daß eine Tangierung in zwei
diametralen Punkten immer dann besteht, wenn nur eine überschüssige
Messung vorhanden ist, ganz gleich, ob die Bestimmung durch innere
oder äußere Richtungen, durch Trilatération oder auf andere Weise
geschieht.

(In der Tat ist die hier aufgezeigte Gesetzmäßigkeit nur eine Auswirkung

eines viel allgemeineren Gesetzes, welches darauf hinausläuft, daß
jede Fußpunktkurve, entstanden aus n — 1 Fehlergleichungen, in zwei
diametralen Punkten die Fußpunktkurve tangiert, die aus sämtlichen n
Fehlergleichungen resultiert.)

6. Nachtrag

Nach der Ausarbeitung des vorliegenden Aufsatzes ist es dem Verfasser
gelungen, nachzuweisen, daß die Mittelbildungseigenschaft der Methode
der kleinsten Quadrate viel weiter geht, als in [1] dargestellt.

Wir nehmen an, daß zur Bestimmung der u Unbekannten xx, x2,
xu folgendes Fehlergleichungssystem vorliegt:
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Gewicht

vx otx i xx + ccx 2 x2 + + ax u xu + fx px

v2 cx.2X X2 + 0C2 2 x2 + + 0C2 u xu + /2 p2

^n — ani *^n ~r Änt 3*2 1 ••• 1 anu *^n ~r /n Pn

Wir denken uns nun, daß die Unbekannten durch «partielle»
Ausgleichungen nach der Methode der kleinsten Quadrate bestimmt werden,
und zwar stets auf Grund n' Fehlergleichungen (n' < n). Das Ergebnis
einer Gesamtausgleichung ist dann gegeben durch (das Zeichen ' weist
auf ausgeglichene Partialwerte hin):

•ZPi'xï ü' + l Y.p'Qij'
—= und Qu — —
laPi' ^' ü + i Sp'

1 1

oder

Hierbei sind die Gewichte p' D' die Determinanten der
Normalgleichungssysteme der «amputierten» Ausgleichungen und ü' die
entsprechende Anzahl der Überbestimmungen, während ü sich auf die
Gesamtausgleichung bezieht. In die Ausdrücke für x; und Qy müssen alle
nur möglichen Kombinationen, bestehend aus n' Gleichungen, welche
sich aus dem Gesamtsystem bilden lassen, eingehen. Das heißt:

Die Ergebnisse einer strengen Ausgleichung sind sowohl zahlen- als auch
genauigkeitsmäßig identisch mit den gewogenen Mitteln aller möglichen
Werte, die sich aus den «partiellen» Ausgleichungen ergeben, wobei die
Gewichte als Determinanten der Normalgleichungen der letzteren zu fixieren
sind.

Es ist einleuchtend, daß die Gesetzmäßigkeit, die in dem sogenannten
Satz von Jacobi enthalten ist, nur ein Spezialfall dieser allgemeineren
Gesetzmäßigkeit darstellt, welcher eintrifft, wenn ü' gleich Null ist.

Die in dem vorliegenden Aufsatz gezogenen Folgerungen lassen sich
ohne weiteres durch entsprechende «Ausweitungen» in die erweiterte
Perspektive der Methode der kleinsten Quadrate einpassen.
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