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§ 7. Exemple numérique

Nous donnons ci-aprés un exemple numérique calculé avec le pro-
gramme N° 404.1. D’autres exemples et des conclusions d’ordre pratique
sont indiqués dans [3].
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Applieation de la théorie de I’équivalence
en géodésie et en statique

Par A. Ansermel

Anmerkung der Redaktion

Das Problem der Aquivalenz ist von mehreren Autoren bereits vor Jahrzehn-
ten in der Literatur behandelt worden. Dabei waren sie sich — wie es heute scheint —
nicht bewuBt, daB sie den Begriff der Aquivalenz in verschiedener Weise definieren,
so dal} jede Publikation eines einzelnen Autors fiir sich richtig, jedoch mit analogen
Publikationen anderer Autoren nicht vergleichbar ist. — Es ist ein Verdienst von
Professor Ansermet, im folgenden Artikel diesen Umstand aufzudecken und ins-
besondere im dritten Beispiel zu zeigen, da8 bei Vorliegen von Nebenbedingungen
die Zahl der frei wiahlbaren Variablen geringer ist als ohne diese Nebenbedingungen.
Mag diese Tatsache auch selbstversténdlich erscheinen, so wird sie doch von ande-
ren Autoren nirgends erwahnt.

Professor Ansermet ist auf die Frage der Aqulvalenz beim Studium statischer
Probleme gestoBen. Das Problem der Aquivalenz wurde in den letzten Jahren in der
geodéatischen Literatur seltener als frither behandelt. Es diirfte beim Studium von
Satellitentriangulationen erneut eine Rolle spielen F. Kobold

L’application de cette théorie, planimétriquement ou spatialement,
avait donné lieu, dans notre numéro de mars 1960, & un article assez
succinct (voir [4]). C’est un vaste probleme susceptible d’étre étendu aux
systémes hyperstatiques articulés («Stabfachwerke») en vue du calcul des
ellipses et ellipsoides de déformation. Il y a en effet une corrélation étroite
avec les compensations de mesures linéaires; c’est ce qu’un auteur ex-
prima sous la forme: «Im dreidimensionalen Raum stimmen der einkno-
tige, statisch beliebig unbestimmte Stabverband und der zugehorige
uberbestimmte Bogenschnitt villig iiberein» ([2], p. 104). Ce ne sont plus
les coordonnées des sommets d’un réseau qui varient, mais celles des
nceuds d’un systéme; les c6tés déviennent des barres, et grice a la réali-
sation de I’équivalence on peut substituer & un systéme de n équations
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initiales (aux erreurs ou aux déformations) un autre comptant n’ équa-
tions (n’ < n). Si n” = n, ’équivalence est compléte ([3], p. 75); un cas
intéressant est celui o n° = u (u inconnues). Il n’y a plus surdétermina-
tion, ce qui est appréciable, mais alors my* = [pvv]: (n” — u) = 0/0; en
statique, c’est la déformation quadratique moyenne pour le poids unité.

Il doit y avoir équivalence non seulement pour les valeurs des incon-
nues mais pour leurs poids et les poids de fonctions des inconnues; en
d’autres termes: les matrices des coefficients des équations normales et
les matrices inverses aux coefficients de poids des inconnues subsistent
sans changement. Les cas concrets, traités ci-aprés, sont choisis en ad-
mettant comme hypothéses: n’ = u, puis n” = n. Le lecteur sait que
tous les auteurs ne définissent pas I’équivalence de 1a méme fagon.

Si on donne le centre d’une ellipse ou d’un ellipsoide, il faut connaitre,
en plus, trois éléments pour la courbe et six pour la surface; or deux tan-
gentes suffisent pour ’ellipse si elles sont respectivement paralléles 4 deux
diameétres conjugués. Pour Dellipsoide trois plans tangents suffisent si
leurs points de contact sont les extrémités de trois diamétres mutuelle-
ment conjugués. ‘

Avant de passer aux applications une remarque essentielle s’impose:
Porientation des axes de coordonnées est ici arbitraire en ce sens qu’on
peut modifier cette orientation pour que les matrices des équations nor-
males soient digonales, ce qui facilite les calculs.

Premier exemple:
Détermination d’un point par des mesures linéaires ([4], p.71)

Le systéme équivalent ne comprend plus que n’ = 2 = u mesures
fictives, les deux inconnues étant les coordonnées du point.

Graphiquement ces mesures équivalentes permettent de tracer deux
tangentes a l'ellipse (voir figure); ces droites sont paralléles aux dia-
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meétres conjugués de longueurs 2 r et 2 s, les poids fictifs étant respective-
ment (P,) et (P,), tels que:

ré# =1:(Py) et 5% =1:(Pp) (pour my? = 1)

Ces r’ et s” sont des rayons vecteurs de la podaire («Pedale») de I’ellipse
par rapport a son centre; si les axes principaux sont 2 a et 2 b, on a les
relations géométriques connues:

r: +s*=a® -+ b*etrs-sin(z' —z) =ab,

et celle moins connue:

1 1 1 1 '
wta=agtp=(F)+&)
propriété d’invariance

on peut avoir:

’ 4

r=s’, r

’

=aoub, s =boua

Les deux équations fictives sont caractérisées par les valeurs

a; b Poids
v, =0]| cosz sinz y
v, = 0| cosz’ | sinz’ Ty

d’ou: [maa] :[#bb]: (+ |mab]) = Qy: Qu: (— Q)

ces trois derniers éléments étant les coefficients aux poids non fictifs des
inconnues; éliminons ; et =,:

Qe 1 1
Qu tgfz tg*z’ | =0
—Q, tgz tgz
ou Qntgztigz’ + Qp(tgz + tgz’) + @y = 0.

La correspondance entre ces variables est involutive.

Cas concref. Admettons le parallélisme des axes principaux de I’ellipse
et des axes de coordonnées;

Q12 = 0, tgz * th’ = — -_Q..!_!_
Q2
tgz = —1, sin’z = cos?’z =0,5; tgz’ = 4 0,75,

sin?z’ = 0,36, costz’ = 0,64.
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Posons: Oe—=1, Q=075

1 1
= 0,64 + 0,36 Q,, = 0,84 — = 0,5 (1,00 + 0,75) = 0,875
(P,) Cu * (P,)
Invariance:
P,) + (P)) = ! + ! = 2,33 =
W Y7 o,84 0875 0 7T
1 1 1 1 :
= e o + =1,33 + 1,00 (m?=1)

a® b Qu . Qe

Les poids fictifs varient donc entre les limites 1,00 et 1,33.

Second exemple: Délermination d’un point spatial ou d’'un neeud
n=4 n =u=3
Les équations initiales ont la forme classique:
—fi + vi = aidx + bijdy + c;dz  (poids p;)) ai + b2 +¢2 =1,
les inconnues étant les variations des coordonnées.

En hyperstatique les poids p; sont donnés par le quotient: ES: L,
E étant le coefficient d’élasticité, S et L les sections transversales et lon-

TL
gueurs des barres, tandis que v = FS (T = tension dans la barre). La

solution provisoire est appelée souvent état fondamental [«Grund-
system»).) Considérons les valeurs numériques ci-aprés.

Cotés ou

barres a; : b; e Pi pP;
1-2 +0,817 0,00 +0,577 0,64 0,915
1-3 0,00 —0,817 + 0,577 0,96 1,20 l
14 — 0,817 0,00 + 0,577 0,64 0,915
1-5 0,00 + 0,817 + 0,677 0,96 1,20 ‘

1:0,915 =1,093; 1:1,20 = 0,833. P;: poids a posteriori. Le nceud 1
est le sommet libre d’'une pyramide.

Les matrices mutuellement inverses des équations normales et aux coeffi-
cients de poids sont diagonales, ce qui facilite le calcul des P;:

1: P, =1: Py, =0,817* x 1,170 + 0,577 x 0,940 = 1,093;

. 1
de méme N e 0,833

2 4
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Les matrices sont:

0,854 0,00 0,00 1,170 0,00 0,00 Ou Qn O
0,00 1,280 0,00 0,00 0,781 0,00 = | Qs QO O
| 0,00 0,00 1,067 0,00 0,00 0,940 On Qn Qs

Contréle: [p;: Pi];# = 2 (0,64 x 1,093 + 0,96 x 0,833) = 3,00 = u.

Equivalence. 11 y a aussi une propriété d’invariance pour les trois
poids fictifs; mais auparavant il faut déterminer les coefficients des trois
€équations nouvelles et fictives. Dans le cas particulier six coefficients
seulement ont des valeurs arbitraires & cause des relations: a; + b2 + ¢
= 1; ce cas ne fut pas toujours traité dans la littérature.

Pour I’exemple numérique ci-dessus on trouve:

Cotés ou

I aj b ¢i pi= (Py)
vy, =0 1-2' + 0,653 + 0,490 + 0,577 1,0
v, =0 1-3° 0,00 — 0,817 + 0,577 1,2
v, =0 | 1-4’ | —0,653 +0,490 | 40,577 | 1,0

Les matrices inverses mutuellement sont les mémes que ci-dessus.

Les axes principaux de l’ellipsoide d’erreur ou de déformation sont
2a,2b,2¢

@ =meQy U =md?Qy, A =mlQy (m? =1),
tout ceci en admettant les mémes p; en géodésie et statique.

Théoriquement une autre solution serait la suivante:

Cotés ou
beries a; b; Ci pi=(Py)
v, =0 1-2” + 0,633 + 0,775 0 1,067
v, =0 - 1-3” + 0,633 — 0,775 0 1,067
v, =0 1-4” 0 0 41 1,067
' 2 % 1,067

Invariance: 1,00 + 1,20 4 1,00 = 0,854 + 1,28 + 1,067 = 3,20.

Les poids fictifs varient entre les limites 0,854 et 1,28; on a donc une cer-
taine liberté.

On a en effet (voir [4]):

LT SO S 1)2+ LY (LY
@ e \r s’ r
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Ces r’, s/, ' sont des rayons vecteurs de la surface podaire («Fuss-
punktfliche») de I’ellipsoide par rapport a son centre; ce sont les perpen-
diculaires abaissées sur trois plans tangents paralléles a trois plans dia-
métraux conjugués.

Troisieme exemple: Equivalence compléte pour une paire de points P et P’

n=n =11, vu=4, i=1,2 ,..11.

—fi +vi = qidx x bidy + ¢idx’ + d;dy’ (poids p;)

a + b =¢f +d? =1

a; b; ¢ d; D; Cotés a; b; c; d;
0,342 |4 0,940 1 P-6 |+40,375|4+ 0,927
0,906 |4 0,423 1,2 P-7 |+40,891|4 0,454
}- 0,643 | — 0,766 1 P-8 (40,616(— 0,788
0,423 — 0,906 1,2 P-9 |+40,454|— 0,891
-0,985|—-0,174 1 P-10 |—0,990|— 0,139
F1 = | P P-P’ (41 =5 I
+06 |+08 1,3 P’-6’ + 0,707 { 4 0,707
+0,8 |—06 [1,3|Equivalence|P’-7’ + 0,707 — 0,707
40,2594 0,966 1 | aussi pour (P8’ + 0,407} 4 0,914
+ 0,707 — 0,707 1 (pff-4] |P-9 + 0,588 — 0,809
—0,966|—0,259| 1 | =[pww] [P"-10’ —0,995|— 0,105
11 suffit d’écrire les matrices des équations normales:
[27+p 0 —p 0| [p+1,5p;+p. O —p 0 |
0 2,7 0 0 ot 0 1,5p,+ p, 0 0
—p 0 28+p 0 —Pp 0 p+ps+1,5p, O
[ 0 0 0 2,8 0 0 0 Ps+1,9p,
Equivalence: 2,7 =15p, + pss 2,8 =p; + 1,5p,

Sip = 0,on aen P et P’ des cercles d’erreur. Il n’y a plus de liaison PP,

Considérations finales. Dans le cas de trois inconnues, traité ci-
dessus, il n’y a pas d’éléments surabondants; ce cas est plus d’une fois
développé dans la littérature, mais dans I’hypothése ol les coefficients
des équations initiales (aux erreurs, aux déformations) sont mutuellement
indépendants, ce qui n’est pas réalisé ici.

Le dernier exemple est consacré a un double-point ou un double-
nceud dans le plan; pour rendre le calcul plus clair des simplifications
furent apportées, soit: [paa] = [pbb]; [pcc] = [pdd]; les autres coefficients
des équations normales sont nuls sauf [pac]. A cet effet, les cotés ou les
barres sont deux A deux égaux et perpendiculaires ou trois a trois égaux
et inclinés 4 120° mutuellement. Les conditions d’équivalence sont alors
aisées a établir, et il y a des éléments surabondants.
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Les coeflicients a et b sont: a = cosz, b = sinz; considérons les valeurs
z et z + 90° (poids p), puis z’ et z’ 4+ 90° (poids p’); la condition d’équiva-
lence est: p + p’ = [paa] = [pbb] = const., mais les quatre valeurs z,
z’, p et p’ peuvent varier.
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Hinweise auf neue Instrumente

Ein neues Weitwinkelobjektiv von Wild Heerbrugg

Neben den iiblichen panchromatischen Emulsionen werden heute in
der Luftbildmessung und besonders auch fiir die Photointerpretation in
zunehmendem Mage Filme mit Infrarotemulsionen verwendet. Dieser

Das neue Weitwinkelobjektiv Wild 6” Universal-Aviogon f: 5,6
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