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L'analogie entre les ellipsoïdes d'erreur et les ellipsoïdes
de déformation en statique

Par A. Ansermet

Rappel de notions usuelles. Cet intéressant problème fut abordé dans
la présente Revue, mais de façon assez succincte et en laissant de côté
certains aspects du calcul (numéro de décembre 1961). On se trouve en
présence d'un système de points appelés sommets ou nœuds, reliés
mutuellement par des côtés ou des barres; les côtés sont mesurés tandis que
les barres subissent des déformations, allongements ou raccourcissements.

A la base du calcul, si les éléments connus sont en nombre surabondants,

on a la condition: [pvv] minimum.
Pour les barres du système articulé on a:

EaS-i En Se EoSo
Pl: py. p3 —^y : - -^ : - (voir [6])

'l <2 '3

où les E sont les coefficients d'élasticité, les S les sections transversales
Tl

des barres et les ; leurs longueurs; de plus v - en laissant les indices
ES

de côté, les T étant les tensions. Les lecteurs connaissent la signification
des p et des v en telemetrie (mesures linéaires).

La détermination des éléments surabondants est basée sur le même
raisonnement en géodésie et en statique; considérons un système de cinq
sommets ou nœuds reliés mutuellement par dix côtés ou barres. Il y a
donc quinze coordonnées spatiales inconnues mais, sans déformer le
système, on peut lui faire subir trois translations et trois rotations.
Géométriquement cela revient à choisir arbitrairement six coordonnées;
en d'autres termes, on attribuera une valeur nulle à six variations de
coordonnées des sommets ou nœuds. Le choix de ces six éléments n'est
pas toujours facile; spatialement on a donc au moins six liaisons. En
général une liaison s'exprime analytiquement par une relation F (x, y,
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z) 0 entre les coordonnées d'un sommet ou nœud déterminé ou aussi,
en fonction des variations de coordonnées, par une équation telle que
a0 dx + b0dy -f c0dz 0. Le nœud est astreint à se déplacer sur une
surface.

Rappelons enfin la formule: m\ ^ [pvv] : r, où m0 est l'erreur
quadratique moyenne relative à l'unité de poids (en statique la déformation).
Le nombre d'éléments surabondants est égal à r.

Equations aux erreurs et aux déformations

L'établissement de ces équations est l'étape fondamentale du calcul;
il y a là quelques particularités à mettre en évidence. Quand on se base
sur des mesures linéaires, il est impossible de déterminer les coordonnées
des sommets sans ambiguïté; une solution entre plusieurs consiste, comme
en statique, à couper momentanément les côtés surabondants, ce qui
lève l'ambiguïté. Le praticien est parfois dans l'embarras pour choisir
ces côtés dont il est fait abstraction. On obtient alors des valeurs provisoires

qui diffèrent de quantités fi de celles mesurées; la solution provisoire

correspond à des valeurs nulles pour les variations des coordonnées.
On a donc la forme générale connue:

v / + a(dx — dx') yb (dy — dy') + c(dz — dz')

(a2 y b2 + c2 1)

[pff] >_ [pvv] ; les (dx, dy, dz) et (dx', dy', dz') sont les variations de
coordonnées des extrémités du côté mesuré. En statique on coupe aussi les
barres surabondantes après les avoir choisies, ce qui est souvent malaisé;
mais on ne peut pas former les termes absolus / comme ci-dessus. Après
ces coupures on obtient une structure statiquement déterminée; aux
forces extérieures viennent s'ajouter, pour chaque barrée coupée, deux
forces opposées de grandeur arbitraire (en général 1 tonne chacune).
C'est la solution provisoire de la statique; on passe ensuite à l'état final
caractérisé par les valeurs X1-1T, X2-1T, X3-1T pour les tensions
inconnues dans les barres coupées. Ces Xv X2, X3 sont les inconnues
hyperstatiques ([pvv] minimum). Pour la solution provisoire on avait
Xt X2 X3 1, ce qui fournit les /; l'équation (1) est encore
valable. On passe des / aux v en faisant varier les coordonnées des nœuds.
Certains staticiens ont formé des équations sans opérer de coupures,
donc sans avoir recours à des termes absolus / ([2], p. 50-57); des conditions

d'équilibre furent ajoutées et il y a autant d'inconnues que d'équations,

ce qui peut mener loin (une équation par barre, trois par nœud,
une par réaction ou liaison).

Il est essentiel de remarquer que les solutions provisoires ont un
caractère arbitraire tant en ce qui concerne le choix des côtés ou barres
à couper que celui des forces s'exerçant provisoirement à chaque
coupure (en général 1 tonne). On peut ajouter une valeur provisoire ou la
retrancher dans les équations sans modifier les poids.
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L'équation aux erreurs ou aux déformations revêt donc la forme:

— ft + vi at (dxg — dxh) + bt (dyg — dyh) + cf (dzg — dz„)
\A)

poids pi (a*i + b*i + c2i 1)

i est l'indice de la barre ou du côté, g et h les indices des nœuds ou
sommets. Les dx, dy, dz sont des variations. Ce système d'équations (2) est
l'élément de base du problème; on peut calculer les poids des inconnues
ou de fonctions de celles-ci indépendamment des /,-. En particulier on
calculera les poids Pi des binômes (—¦/; + w,-); ce sont les poids des côtés
ou des barres a posteriori à comparer avec ceux a priori p,-. On a Pi > pt
et la somme des quotients (pi : Pj) est égale au nombre des inconnues
([5]). Un cas concret sera traité ci-après.

La quantité [pvv] exprime le travail de déformation (minimum). Pour
simplifier admettons dx/, dy/, dZh 0 et posons:

- /i + Vi aidx + bi dy + ci- dz

1 8 [pvv] f dv
\pv2 8dx Y d dx

[pav] 0. De même: [pbv] =[pcv] =0. (3)

Ce sont les équations normales sous forme implicite avec la matrice
des coefficients:

[paa] [pab] [pac]
[pba] [pbb] [pbc]
[pca] [pcb] [pcc]

termes absolus: [paf], [pbf], [pcf]

Pour les ellipsoïdes il faut s'efforcer de réduire l'influence des
éléments non diagonaux et de rendre les coefficients quadratiques presque
égaux; le cas concret le montrera. Les dx, dy, dz fournis par les équations
répondent à la condition [pvv] minimum; c'est le cas simple où un
sommet ou un nœud est considéré isolément. Admettons ce point comme
origine d'un nouveau système de coordonnées parallèle au précédent,
donc obtenu par translation et désignons par (dx), (dy), (dz) les
coordonnées nouvelles; on aura donc, en fonction de ces accroissements:

vi' ai(dx) + bi(dy) + ctdz + vt (4)

et en tenant compte des équations (3): [pvv'] [pvv]

[pv'v'] [pvv] + (QT) (5)

où (QT) est une forme quadratique ternaire (six termes) en (dx), (dy),
(dz). C'est l'équation d'un ellipsoïde d'erreur ou de déformation dont le
centre est le point pour lequel [pvv] minimum; si les coefficients
quadratiques sont seuls différents de zéro, on a:

[pv'v'] [pvv] + [paa] (dx)2 + [pbb] (dy)2 + [pcc] (dz)2 (6)
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Dans le cas général à six termes pour (QT) on retrouve un problème
connu de géométrie analytique; on forme les trois invariants de la forme
quadratique ternaire ([5], [3], p. 167). Les axes principaux sont vite
calculés. Le terme [pv'v'] exprime un travail de déformation, ce qui confère
de l'intérêt aux ellipsoïdes. L'équation (6) devient:

(dx)2
~qT~ «22

(dz)2

Ö33
constante K (par exemple: K =m20). (7)

Les dénominateurs, dits coefficients de poids des inconnues, sont
les inverses des poids [paa], [pbb], [pcc]. On a en effet:

dx
[paa]

[patì-

En application de la loi de propagation des erreurs et des poids de

Gauss, on obtient pour le poids px de dx en posant m\ 1 :

1

Px

Pl«l
[paa]) Pi

+
P2«2

[paa]

1

P2
+ P3«3

[paa]

1

Pa
+

1

[paa]
Qu (8)

Les poids des / j ouent ici un rôle, mais pas les /. [pbb] Q22 1, [pcc] Q^ 1.

Dans le cas général où les coefficients [pab], [pac], [pbc] ne sont pas
nuls, le calcul est connu (voir [1]).

Application. Considérons un système articulé avec un seul nœud
libre 1 relié par des barres à quatre nœuds fixes 2, 3, 4, 5. En radiotélé-
métrie ce même problème se présente avec des mesures linéaires.

«i bi Ci Pi Pi
barre 1-2
barre 1-3
barre 1-4
barre 1-5

+0,817
0,00

—0,817
0,00

0,00
—0,817

0,00
+ 0,817

+0,577
+0,577
+0,577
+0,577

1,0
1,2
1,0
1,2

1,38
1,55
1,38
1,55

[pab] [pac] [pbc] 0

[paa] 1,33, [pbb] 1,60, [pcc] 1,47

On 0,75

Von 0,867

Q22 0,625

Vu,, 0,79

Q33 ¦¦

VÖ33
0,68

0,825

(dx)2 (dy)2 id z)2
m2 1

0,75 0,625 0,68

(ce m20 a une dimension)

(9)

Cette surface diffère peu d'une sphère; on a trois paires de plans
respectivement parallèles aux plans de symétrie de l'ellipsoïde et tan-
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gents à cette surface; dans le cas particulier c'est suffisant, car les axes
de coordonnées coïncident avec les axes principaux. Chacune des quatre
barres fournit aussi une paire de plans tangents normaux par rapport à

ces barres; le centre de la surface est à la distance ±/n0: VP; de ces

plans (voir [1]), [5]), donc ± Vl/P; si l'on admet m20 1. Ces poids P,-,
dits a posteriori, sont les poids a priori p,- amplifiés par l'application du
principe des moindres carrés. On a pour la somme des quotients (p; : P{):

[Pi : Pi] 2 x —j- + 2 • -^L 2 (0,727 + 0,773) 3,00 (10)
1,38 1,55

nombre des inconnues.

Les Pi sont les poids des binômes (—/; + v{).

Or, ici on rencontre une concordance parfaite avec la géométrie.
x2 u2

Considérons l'ellipse 1 1 et la tangente à la courbe dont la
a2 b2

direction est connue; son équation est: ([3], p. 134)

y mx + h mx + Vm2a2 + b2 \%<p -x-y Vtg2 cp - a2 + b2

où h est le segment déterminé sur l'axe des y par la tangente (x 0).
La distance de l'origine à la tangente est h cos cp, d'où:

h2 cos2 cp sin2?-a2 + cos2 tp-b2

et, en introduisant les valeurs numériques de l'équation (9):

h2 cos2? 0,8172 x 0,75 + 0.5772 X 0,68 0,727 (plan x-z)
et h2 cos2? Ô^Î72 x 0,625 + 0^5772 x 0,68 0,644 (plan y-z)

Or, ce sont précisément les valeurs — — ou — —, (voir [51)H
P1 P3 P2 PT "

car la loi de propagation donne, si les coefficients quadratiques sont seuls,
différents de zéro:

1 1
0,8172 X Ou + 0,5772 X Q33 0,727 (pour Q„ 0)

1 1
0,8172 x Q22 + 0,5772 X Q33 0,644 (pour Q23 0)

On aboutit au même résultat par deux voies différentes. Bien
entendu, ces considérations sont valables quand une extrémité de la barre
est fixe; en général le poids de la barre a posteriori dépend de six et non
de trois variations de coordonnées. L'analogie entre les ellipsoïdes d'erreur

relatifs à des mesures linéaires et les ellipsoïdes de déformation est
manifeste.

155



Calcul d'une coupole. Le cas envisagé ici est très simple; le cas des

coupoles, sous une forme plus générale, sera traité ultérieurement.
Il y a huit nœuds, donc 24 coordonnées; numériquement on a:

Nœuds

1

2

3

4
5

6

7
8

X y z

0.00 0.00 0.00 L'unité de mesure
—1.414 + 1.414 0.00 est arbitraire, par

0.00 +2.83 0.00 exemple: le déca+
1.414 + 1.414 0.00 mètre. Ces valeurs
0.00 +0.707 + 1.414 servent à calculer

—0.707 + 1.414 + 1.414 les coefficients
0.00 +2.12 + 1.414 a, b, c

+0.707 + 1.414 + 1.414

Il y a 24 variations de coordonnées, mais six peuvent d'emblée être
considérées comme nulles; le nombre des liaisons simples n'est pas
inférieur à trois planimétriquement et à six spatialement. Par exemple on
aura:

dxt dj/j dzj dz2 dzt dx3 0

y
2 6

\ >7\ /\ /

1

^^y^-iß.

*

Admettons en tout huit liaisons simples; rappelons que la coupole
du Reichstag d'après Zimmermann reposait sur huit nœuds astreints à

douze liaisons simples. Si le nombre des côtés ou des barres est supérieur
à 16 (24-8), on opère des coupures qui sont au nombre de cinq sur la
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figure, mais ce choix est ici arbitraire. Remarquons d'autre part que le
calcul peut être plus ou moins facilité par un choix judicieux du système
de coordonnées. Sur la figure les forces extérieures ne sont pas indiquées.
Bornons-nous à écrire les équations pour les barres 8-6, 5-1, 8-1:

- /s-6 + "8-6 dx8 — dx6

¦ /5-1 + îVi 0,448 dy5 + 0,895 dz, (dxx dyt dzx 0

et 5-1 1,58)
- /8-i + i>8-i 0,333 dxs + 0,667 dya + 0,667 dza (8-1 2,12)

(H)

Quand on considère comme connus les poids p,- et la structure du
système, on peut calculer les dimensions des ellipsoïdes mais en valeurs
relatives, pas absolues tant que les termes absolus / n'interviennent pas;
c'est un élément caractéristique de cette solution. Pour le sommet ou
nœud 1 l'ellipsoïde se réduit à un point à cause des trois liaisons simples;
pour d'autres cette surface se réduit à un segment linéaire ou à une
ellipse toujours à cause des liaisons.

Pour la détermination des /, c'est-à-dire pour le calcul du système
dit fondamental, la solution par la représentation plane est indiquée;
en particulier dans le cas de la coupole Schwedler ([2], p. 71) cette
méthode est favorable, les barres surabondantes étant donc coupées. Pour
la résolution des équations normales et l'inversion de matrices, l'emploi
de calculatrices électroniques est à envisager.

En résumé on peut dire que le calcul des déformations en
hyperstatique des systèmes articulés est facilité grâce à l'application des
notions déjà connues en théorie des erreurs, l'analogie avec une théorie
des déformations étant manifeste quand les erreurs portent sur des

mesures linéaires.
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