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Die prinzipiellen Mängel des isostatischen Konzeptes

Von K. Ledersteger, Wien

Die Lehre vom Massenausgleich in der Erdkruste oder vom
isostatischen Gleichgewicht ist schon längst keine Hypothese mehr, sondern
eine durch die Erfahrung wohlbegründete Theorie. Aber selbstverständlich

kann jegliche Modellvorstellung der Isostasie wegen ihres notwendigerweise

schematischen Charakters dem überaus komplizierten Aufbau
der Erdkruste nur mehr oder minder gut gerecht werden. Im großen und
ganzen darf es aber als erwiesen gelten, daß die über das Geoid
herausragenden Kontinentalmassen nicht als Überschußmassen gewertet werden

dürfen, die einfach einer Normalerde aufgesetzt sind, sondern daß sie

weitgehend durch unterirdische Massendefekte kompensiert sind. Eine
ähnliche Kompensation durch unterirdische Massenüberschüsse liegt für
die Weltmeere vor, die man als Massendefizite auffaßt. Man ist aber zu
der Überzeugung gelangt, daß es noch Teile der Erdkruste gibt, die sich
noch nicht im isostatischen Gleichgewicht befinden, also Teile mit Überoder

Unterkompensation. Die drei entwickelten Modellvorstellungen, die
lokale Isostasie nach Pratt-Hayford und Airy-Heiskanen sowie die regionale

Isostasie nach Vening Meinesz, sind mehr oder minder zutreffende
Idealisierungen, von denen die eine da, die andere dort den tatsächlichen
Verhältnissen besser entspricht. Im allgemeinen verdient in physikalischer

Hinsicht die Airysche Annahme des Schwimmgleichgewichtes den
Vorzug vor der Prattschen Aufblähungstheorie und die regionale
Kompensation nach Vening Meinesz den Vorzug vor den beiden lokalen
Modellen, bei denen die Kompensation in vertikalen Elementarsäulen
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stattfinden soll, was nur bei einer wesentlich geringeren Starrheit der
Erdrinde denkbar ist. Wenn auch eine gewisse Vertrautheit mit der
Grundidee der Isostasie vorausgesetzt werden darf, wird doch mancherlei
Bekanntes wiederholt werden müssen, um das Verständnis der folgenden
Überlegungen nicht allzusehr durch Rückweise auf die vorhandene
Literatur zu erschweren.

Zweck vorliegender Studie ist der Nachweis, daß bei der
theoretischen Grundlegung der Isostasie einige wesentliche Gesichtspunkte
außer acht geblieben sind, die sich bei einer tieferen Beschäftigung mit
der Theorie des Normalsphäroides der Erde fast von selbst aufdrängen
und die dazu geeignet scheinen, manch ungeklärte Frage wenn schon
nicht vollständig zu lösen, so wenigstens aufzuhellen, wie den scheinbaren
Widerstreit zwischen Massenausgleich und Druckausgleich und die
merkwürdige Schwerpunktsverschiebung bei der isostatischen Reduktion,

die man zwar als physikalisch unmöglich erkannt hat, ohne sie aber
beseitigen zu können. Wäre die Isostasie in einer der drei genannten
Modellvorstellungen streng richtig, so müßte die zugehörige isostatische
Reduktion das hydrostatische Gleichgewicht, das unterhalb der
Ausgleichsfläche des Druckes herrscht, auch oberhalb, das heißt in der
Erdkruste, herstellen. Die Erde wäre dann vollständig regularisiert, und die
isostatischen Schwereanomalien müßten durchwegs verschwinden. Der
indirekte Effekt der isostatischen Reduktion würde unmittelbar die
Undulationen des Geoides liefern. Daß dies nicht der Fall ist, beruht
sicherlich zum Teil auf dem Umstand, daß der komplizierte Bau der
Erdkruste kaum die Anwendung eines einheitlichen, der Rechnung noch
zugänglichen Modells gestattet, ebenso sicher aber auch teilweise auf den
grundsätzlichen Mängeln des isostatischen Konzeptes.

Wir wenden uns zuerst dem Problem des Massen- oder Druckausgleiches

zu und legen der Diskussion die Hayfordsche Variante der Pratt-
schen Aufblähungstheorie zugrunde. Nach Pratt wird in einer gewissen
Tiefe D die isostatische Ausgleichsfläche angenommen. Diese soll die
Begrenzung des Hauptteiles der Erdmasse sein, der sich im hydrostatischen
Gleichgewicht befindet, ist also die oberste Fläche, die noch gleichzeitig
durch konstanten Druck und konstante Dichte ausgezeichnet ist. Die
über der Ausgleichsfläche liegenden Massen können in Vertikalsäulen von
beliebig kleinem Querschnitt zerlegt werden und haben um so geringere '

Dichte, je höher sie über das Geoid hinausragen. Lediglich aus
rechentechnischen Gründen zählt Hayford die Kompensationstiefe D nicht wie
Pratt vom Geoid, sondern von der physischen Erdoberfläche oder,
korrekter ausgedrückt, von der Lithosphäre ab. Die mittlere Säule in Figur 1,
die oben mit dem Geoid abschließt (h ~ 0), habe die mittlere Krustendichte

p 2,67, die Säule mit der Höhe h eine kleinere, jene unter dem
Meer der Tiefe T beginnende Säule eine größere Dichte p'. Bemerkt sei,
daß diese Annahme Vor- und Nachteile hat. Auf den Kontinenten ist es

gut, wenn die Kompensation bereits an der Oberfläche und nicht erst im
Geoid beginnt, weil dadurch eine Dichteabnahme nach innen vermieden
wird. Hingegen haben unter dem Meere die Kompensationssäulen der
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Dicke D den Nachteil, daß dadurch die Ausgleichsfläche den oben
definierten Sinn verliert. Dies läßt sich leicht vermeiden, wenn man, wie wir
es später machen wollen, die Kompensation nur bis zur Ausgleichsfläche
reichen läßt.
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Fordert man Massengleichheit in den Säulen, vernachlässigt aber
die durch die Erdkrümmung bedingte Lotlinienkonvergenz, so liegt der
Fall des genäherten Massenausgleiches vor. Auf den Kontinenten ergibt
sich

Dp' =(D — h)p

oder das Dichtedefizit

Ap' (p' — p) =— — p (1)

und im ozeanischen Falle, unter pw 1,03 die Dichte des Meerwassers
verstanden,

(D + T)p Dp' + TPW,

also der Dichteüberschuß

àp' +^(p — pw)- (la)
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Will man die Konvergenz der Lotlinien wenigstens rein sphärisch
berücksichtigen und wird der Querschnitt Q der Elementarsäulen im
Geoid oder auf der Oberfläche der Kugel vom Radius R 6371,2 km
mit 1 angenommen (z 0), so läuft dies auf eine andere Definition von
p' und Ap hinaus, und man findet für den nunmehr vorliegenden strengen
Massenausgleich bei sofortiger Beschränkung auf den kontinentalen Fall:

h 0

p' f (1 + z/R)2 dz p f (1 + z/R)2 dz. (2)
-D+h -D\h

Wird im Integranden (z/R)2 unterdrückt, so folgt

p' / D—h
p'D + IT [h* — (D — h)2] =p(D — h)(lR l V tar, y R

und mit p p + Ap und nach Einführung der Näherung (1) in die
Korrektionsglieder

phDphyAp- D —y^-. (a)

Das Ergebnis (1) des genäherten Massenausgleiches können wir in
dieselbe Form bringen:

ph + Ap'D 0. (b)

Fordern wir anstelle der Massengleichheit konstanten Druck der
Elementarsäulen in der Ausgleichsfläche, so müssen wir die Zunahme der
Schwerebeschleunigung nach innen berücksichtigen. Aus der Definitionsgleichung

h h

f pgdz —fAp-gdz (3)
o ~D±h

ersieht man unmittelbar, daß sich dieser Fall wegen der geringen
Veränderlichkeit von g mit der Höhe nur wenig vom genäherten
Massenausgleich unterscheiden kann. Im Zentrum der Topographie, das heißt
in der Höhe h/2, sei die Schwere g. Das Zentrum der negativen
Kompensationsmassen liegt genau um (D — h)/2, also näherungsweise um D/2,
unterhalb des erstgenannten Zentrums. Mithin ergibt sich dort nach der
Preyschen Schwerereduktion

g 3 p q \ q^-9+iD-^TmiD 9+4TiD' (4)

wenn man p: pm== 1/2 setzt (p 2,67, mittlere Erddichte pm 5,52),
und es folgt aus (3)

p'gcD pgcD — pgh

oder ph + Ap"D yT~—, (c)
4rt

wenn man abermals im Korrektionsglied die Näherung (1) verwendet.
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Man sieht, daß der genäherte Massenausgleich (b) dem strengen
Druckausgleich (c) viermal näher liegt als dem strengen Massenausgleich
(a). Gleichheit von Masse und Druck ist mit dem Pratt-Hayfordschen
Modell unvereinbar.

Bei Berücksichtigung der Lotlinienkonvergenz ergeben sich die
Volumina der Topographie und der Kompensation, wenn man den
Querschnitt Q 1 im Geoid mit h (1 + h/R) beziehungsweise mit D [1 —
— (D — 2 h)/R] multipliziert. Vernachlässigt man h/R und denkt die
Topographie auf die Kugel vom Radius R kondensiert, so hat diese Belegung
die Flächendichte ph. Ähnlich kann die Kompensationsmasse auf die
Kugel vom Radius (R — D/2) kondensiert werden und hat die Flächendichte

pD, die aber von Fall zu Fall eine andere ist:

Ap D (1 — D/R) Ap'D Ap"D (1 ± D/AR) — ph. (5)

(5) ist bloß eine Zusammenfassung der drei Gleichungen (a) bis (c). Die
Flächendichte ist am größten beim strengen Massenausgleich j zJp -D ]

ph (1 + D/R), wodurch tatsächlich die Flächenverringerung

(R — D/2)2 : R2 (1 — D/R)

gerade aufgehoben wird. Beim genäherten Massenausgleich ist die
Flächendichte dieselbe wie die der Topographie und daher die Kompensationsmasse

kleiner, was in noch stärkerem Maße für den Druckausgleich
zutrifft. Wir erhalten demnach für die Massensumme aus Topographie
(mt) und Kompensation (mk) beim

strengen Massenausgleich:
genäherten Massenausgleich:
Druckausgleich:

Soweit die bisherigen Ergebnisse, die man am besten in der vorzüglichen
Darstellung des Isostasieproblemes bei Heiskanen1 verfolgen kann.

Damit sind wir aber bei einem Widerspruch angelangt. Der reine
Massenausgleich ist physikalisch nicht zu rechtfertigen. Denn die
Auflockerung des Krustenmaterials bei der Bildung der Kontinente ist
unweigerlich mit einer Druckabnahme in der Ausgleichsfläche verbunden,
die um so größer ist, je höher eine Elementarsäule über das Geoid
herausragt; die Ausgleichsfläche soll aber eine Fläche konstanten Druckes
sein. Umgekehrt ist beim Druckausgleich im kontinentalen Falle die
Masse der Topographie größer als die negative Kompertsationsmasse. Bei
der isostatischen Reduktion wird also nicht die gesamte Masse der
Topographie zur Auffüllung des unterirdischen Defizites gebraucht, während
auf den Ozeanen andererseits die Überschußmassen des Untergrundes
nicht zur Auffüllung des Defizites des Ozeanwassers genügen. Mithin
verlangt der isostatische Druckausgleich auch horizontale Massenver-

1 W. A. Heiskanen, F. A. Vening Meinesz, «The Earth and Its Gravity Field»,
New York/Toronto/London 1958, Kapitel 5.

98

mt + mk 0, (a')
mt + mk + phQ D/R, (bO

m, + mk - + phQ ¦ 5D/4R. (C)



Schiebungen, womit gleichzeitig erreicht werden kann, daß die Gesamtmasse

der Erde unverändert bleibt, was unbedingt erforderlich ist. Wir
dürfen wohl mit Recht annehmen, daß sich der Erdkörper vor der
Krustenbildung gänzlich im hydrostatischen Gleichgewicht befunden hat.
Dann aber muß vollständige Massengleichheit mit Druckgleichheit in der
Ausgleichsfläche verbunden sein. Aber die Massengleichheit ist nur als
Erhaltung der Gesamtmasse und nicht im Sinne einer Massengleichheit
in den Elementarsäulen zu verstehen.

Tieferen Einblick in die noch offenen Fragen erhalten wir, wenn
wir die Möglichkeiten einer Regularisierung der Erdkruste untersuchen.
Die Erde sei bis zur Oberfläche des Mantels, die wir als idealisierte
Mohorovicic-Fläche betrachten dürfen, im hydrostatischen
Gleichgewicht. Die über der Manteloberfläche liegenden Massen denken wir
abgehoben und wollen sie zweiteilig, bestehend aus einer homogenen
Wasserhülle und einer einparametrigen Kruste, wieder aufbauen. Die homogene

Wasserhülle hat ein Dichtegesetz mit zwei Konstanten, während
für die feste Kruste gemäß

x
P Pmax I 1 t— V

'
(6)

ein Dichtegesetz mit drei Konstanten vorliegt2. Dürfen wir die Gesamtmasse

(Ozean + Kruste) als gegeben ansehen, so liegen demnach oo5

Möglichkeiten für den Aufbau einer idealen Gleichgewichtsfigur oder für
die Regularisierung vor. Sind überdies die Tiefe des Weltozeans, die
Dichte des Wassers und die Dicke der festen Kruste bekannt, so bleiben
nur mehr oo2 Möglichkeiten; das heißt, wir haben noch sinnvoll über zwei
Konstanten zu verfügen, um eine streng eindeutige Lösung zu gewinnen.
Nun muß auf jeden Fall der Drehimpuls des in sich geschlossenen
mechanischen Systems der Erde und damit das polare Trägheitsmoment C
unverändert bleiben. Ebenso dürfen wir fordern, daß auch der Anteil der
Kruste am arithmetischen Mittel der beiden äquatorialen Trägheitsmomente

vor und nach der Regularisierung derselbe ist. Der tiefere Sinn
dieser Forderung ist, daß dann die statische Abplattung des
Normalsphäroides der Erde identisch ist mit der statischen Abplattung des
wirklichen Erdkörpers, welche aus den Bahnstörungen der künstlichen
Satelliten abgeleitet werden kann. Es muß aber betont werden, daß letztere

Forderung zwar äußerst zweckentsprechend und naheliegend, jedoch
nicht unbedingt notwendig ist.

Halten wir diese Regularisierungsart fest, so müssen bei den
isostatischen Massenverschiebungen die Trägheitsmomente C und (A + B)/2
erhalten bleiben. In diesem Sinne ist es sehr interessant, daß eine Berechnung

der durch die isostatischen Massenverschiebungen bewirkten
Änderung des Hauptträgheitsmomentes C aus 14 schematischen Schollen

2 K. Ledersteger, «Zur Frage des Dichtegesetzes der einparametrigen heterogenen

Gleichgewichtsflguren», Schweizerische Zeitschrift für Vermessung, 1960.
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durch W. de Sitter3 AC —3,4 • IO"7 C —0,027 • IO40 g cm2
ergeben hat. Dieser kleine Wert des Verhältnisses AC: C weicht nur mehr
geringfügig vom Sollwert Null ab.

Auch das Problem des Volumens der Erde oder der Oberfläche der
festen Kruste hängt eng mit der Isostasie zusammen. Bei den üblichen
isostatischen Modellen werden die Kontinente zur Auffüllung des inner-
krustalen Massendefizits und ebenso die Massenüberschüsse unter den
Meeresböden zur Auffüllung des Defizits des Wassers verwendet. Damit
aber ist das Meer vollständig verschwunden, und anstelle des Volumens
der tatsächlichen Erde tritt das Volumen des Geoides. Es ist klar, daß
auf diesem Wege keine wirkliche Regularisierung der Erdkruste erfolgt.
Die Frage ist also, in welcher Tiefe nach der Regularisierung die
Oberfläche der festen Kruste oder der Meeresboden liegt. Im nichtisostati-
schen Falle ist diese Tiefe ohne Zweifel identisch mit der mittleren Tiefe
der Lithosphäre. So hat auch Prey4 seine nichtisostatische Normalerde
konstruiert. Auf Grund seiner Entwicklung der Höhen- und Tiefenverhältnisse

der Erde5 ist die mittlere Tiefe der Lithosphäre 2456 m, während

die mittlere Tiefe der Hydrosphäre 2681 m beträgt. Werden also
die Kontinente abgetragen und in die Ozeane versenkt und sodann das
Meer über die geglättete Oberfläche der festen Erde ausgegossen, so liegt
der Wasserspiegel dieser Normalerde 225 m über dem Geoid, und die
Normalerde ist volumengleich mit der tatsächlichen Erde. Im isostatischen

Falle muß die Oberfläche der festen Kruste unbedingt tiefer liegen,
wodurch sich das Volumen der regularisierten Erde kleiner als das der
wirklichen Erde ergibt, während natürlich das Volumen des Meeres
unverändert bleibt. Im Extremfall liegt nach der Regularisierung der
Meeresboden in der mittleren Tiefe der Hydrosphäre, und das
Normalsphäroid wird volumgleich mit dem Geoid.

In all diesen Fällen kann von einer Massengleichheit in den
Elementarsäulen keine Rede sein. Vielmehr ist eine Regularisierung nur denkbar,
wenn wir vertikale und horizontale Massenverschiebungen vornehmen, die
wir am besten in zwei Etappen durchführen, womit natürlich nichts über
den tatsächlichen Vorgang bei der Ausbildung des isostatischen
Gleichgewichtes gesagt sein soll. Es handelt sich also bloß um eine Modellkonstruktion,

bei der wir des leichteren Verständnisses wegen vom
Normalsphäroid ausgehen. Dabei sei angenommen, daß das Normalsphäroid
volumgleich mit dem Geoid ist oder daß der Meeresboden in der Tiefe
von 3679 m liegt, welche nach der neuen Delfter Entwicklung6 für die

3 W. de Sitter, «On the Flattening and the Constitution of the Earth», Bull,
of Astr. Inst, of the Netherlands, Vol. 2, p. 97-108, 1924.

4 A. Prey, «Zur Frage nach dem isostatischen Massenausgleich in der
Erdrinde», 1. Mitteilung, Gerlands Beiträge zur Geophysik, Bd. 29, 1931.

5 A. Prey, «Darstellung der Höhen- und Tiefenverhältnisse der Erde durch
eine Entwicklung nach Kugelfunktionen bis zur 16. Ordnung», Abhandlungen der
Königlichen Gesellschaft der Wissenschaften zu Göttingen, Bd. 11, 1922.

6 Die Ergebnisse der neuen, noch unveröffentlichten Delfter Entwicklung
nach Kugelfunktion bis zur 32. Ordnung wurden mir freundlicherweise von Herrn
Prof. Bruins zur Verfügung gestellt.
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mittlere Tiefe der Hydrosphäre resultierte. Ferner betrachten wir nicht
nur das Meer, sondern auch die feste Kruste als homogen, operieren also
mit der jeweiligen Mitteldichte, was bei der geringen Dichtezunahme in
der Kruste sicherlich erlaubt ist. Damit gewinnen wir sofort zwei Normalsäulen,

nämlich die des Normalsphäroides und eine Vergleichssäule für
die wirkliche Erde (Fig. 2). Erstere besteht aus einer Wassersäule der
Dicke Tn 3679 m und aus einem festen Teil der Dicke (D — Tn) und
der Dichte (p + xn); letztere ist eine bis zum Geoid reichende homogene
Säule der Dichte p 2,67. Diese repräsentiert das Ergebnis der durch
die übliche isostatische Reduktion angestrebten «Regularisierung», bei
welcher das Meer vollständig verschwindet.
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Fig. 2

Beide Normalsäulen mögen in der Ausgleichsfläche den Normaldruck
bewirken, so daß wir aus der Forderung der Druckgleichheit und unter
Beachtung von (4) eine Bestimmungsgleichung für xn gewinnen:

(p +x„)D(l +\^
oder

xnD 1

(p y xn — 1,03) Tn pD M ± 1^
1 D
4 ^R (1,64 + xn) Tn.

1 D2
Mit R 6371,2 km und D 30 km wird

4 R

(V)

0,035315 km, also

xn (30 035,3 — Tn) 1,64 Tn (7a)
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worin Tn in Metern auszudrücken ist. Mit Tn 3679 m folgt xn
0,22 892. Diese Gleichung liefert natürlich zu jeder beliebigen Meerestiefe

T den Dichtezuwachs x des Untergrundes, der zur Erhaltung des
Normaldruckes erforderlich ist:

T 1 km
T =2 km

r 3km

x 0,05648 T 5 km; x 0,32754

x 0,11700 T 6 km; x 0,40940 (7b)
x 0,18199 T 7 km; x 0,49837

Nunmehr berechnen wir die in der Säule des Normalsphäroides
vorhandene Masse:

-T„ o

(p y xn) / (1 + 2z/R) dz y 1,03 / (1 + 2z/R) dz
-D -Tn (8)

(p + x„) (D — Tn) [1 — (D + Tn)/R] + 1,03 Tn (1 — Tn/fi).

Dies gibt für D 30 km:

75 900,19 ± 3787,18 79 686,38.

Nach Multiplikation mit dem Querschnitt Q 1 m2 stellen die beiden
Zahlen die in Tonnen ausgedrückten Massen der festen Kruste und des
Wassers in den Elementarsäulen des Normalsphäroides dar. Für die zweite
Normalsäule findet man:

o

p f (1 + 2z/R) dz pD (1 — D/R) 79 722,83, (9)
-D

also einen Massenzuwachs von 36,45 t, das heißt, die verdrängte Wassermasse

3787,13 t muß durch die größere Masse 3823,70 t festen
Krustenmaterials ersetzt werden, damit die durch die Massenauflockerung
bedingte Druckabnahme kompensiert wird.

Dieser nur durch horizontale Massenverschiebungen ermöglichte
Massenzuwachs setzt bereits ein, sobald die Meerestiefe kleiner als Tn
wird. Man findet ihn leicht, wenn man in (8) den Index n beiseite läßt
und zu jeder Meerestiefe T das zugehörige x nach (7) berechnet. Bezogen
auf die zweite Normalsäule, liefert die Differenz (8) — (9) bei
Vernachlässigung von T2/R den relativen Massenzuwachs

xD (1 — D/R) — (1,64 T + xT)

und zusammen mit (7):

5 D 5 D 5 D
— xD —1,64 T —0,6142 p T (10)

4 R 4 R H 4 R
K '

oder speziell für D 30 km insgesamt, das heißt bezogen auf das
Normalsphäroid:

[35,51 — 0,0096528 Tm] t/m2. (10a)
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In dieser Formel ist die Konstante, für die wir oben den genaueren Wert
36,45 gefunden haben, den begangenen Vernachlässigungen angepaßt.
Für ein Meer von 2 km Tiefe ergibt sich zum Beispiel ein Massenzuwachs
16,20 t/m2. Umgekehrt bewirkt in der Tiefsee T > Tn die Kompression
der Kruste einen Druckanstieg, zu dessen Kompensation mehr festes
Material wegzunehmen ist, als Wasser zufließt. Für T =1 km folgt
bereits eine Massenverminderung im Betrage —32,06 t/m2.

Auf dem Festlande ist mit zunehmender Höhe h ein ansteigender
Massenzuwachs erforderlich, den wir als Dichtezuwachs y in einer mit
dem Geoid abschließenden Säule der Dicke (D — h) darstellen, welche in
der Ausgleichsfläche einen Überdruck erzeugt, der durch entsprechende
Auflockerung zu tilgen ist. Diese Auflockerung erfolgt nach dem Prinzip
der Massengleichheit, bis mit dem Normaldruck die notwendige
Druckgleichheit hergestellt ist. Die Massengleichung (2) lautet jetzt:

h o

p' f (1 + 2z/i?) dz (p + y) f (l + 2z/R) dz (2a)
-D h -D+h

und liefert

(p y y)(D — h)(l — --------- 4D+^--«-}
was mit der wesentlich negativen Größe Ap (p' — p) bei Vernachlässigung

von h2/R schließlich ergibt:

(—Ap + y) D (p + y) h (1 ± D/R). (2b)

Durch diese Massengleichung ist bei gegebenem h bloß die Defizitdichte
(Ap — y) bestimmt, ohne daß eine Trennung der beiden Summanden
möglich wäre.

Vor der Auflockerung ist der Überdruck y (D — h) gc vorhanden.
Die Auflockerung faßt man gedanklich am leichtesten so, daß man
zunächst die Topographie als Zusatzmasse der Dichte (p + y) deutet,
wodurch der Überdruck zum Betrage

y (D — h) gc + (p y y) hg

ansteigt, der durch Massenentzug der Dichte (—Ap ± y) getilgt wird:

y(D — h) (1 ± D/4R) y(Pyy)h=D (—Ap + y) (1 + D/4R). (11)

Zusammen mit (2b) ergibt dies für die Zusatzmasse und Zusatzdichte mit
derselben Genauigkeit:

5 D 5/z h
y(D — h)=(p + y)hj—; y - — p 3,3375 — (12)
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Die gesamte Zusatzmasse in den kontinentalen Elementarsäulen ist demnach

35,51 + y (D — h) (35,51 + 0,0157153 hm) t/m2 (13)

und die weitere Dichteabnahme gegenüber p — 2,67

Ap — [ph (1 — D/4R)] : D —0,0889 hkm. (14)

Damit scheint das Problem gelöst. Nach horizontalen
Massenverschiebungen, welche die Druckverhältnisse in der Ausgleichsfläche
ändern, kann ein strenger Druckausgleich durchgeführt werden, indem
man vertikale Massenverschiebungen unter strenger Beibehaltung der
nunmehrigen Massen in den Elementarsäulen vornimmt. Aber die
vorstehenden Ausführungen sind noch in verschiedenen Richtungen
unvollständig. So wurde ohne Beweis vorausgesetzt, daß das Normalsphäroid
mit dem Geoid volumgleich ist, obwohl ein größeres Volumen denkbar
ist. Da die mittlere Tiefe der Lithosphäre nach der Delfter Entwicklung
3348 m, die der Hydrosphäre jedoch 3679 m beträgt, könnte die
Oberfläche des Normalsphäroides bis maximal 331 m über dem Geoid liegen.
Letzterer nichtisostatische Wert ist natürlich gerade wegen der Existenz
der Isostasie ausgeschlossen. Sollte aber die Dicke der gesamten Hülle
(Ozean + fester Kruste) beim Normalsphäroid etwas größer sein als der
Wert D, der sich für die wirkliche Erde aus der seismischen, gravimetrischen

und geologischen Forschung ergibt, so ließen sich obige Rechnungen

ebenfalls widerspruchsfrei durchführen. Auch haben wir bei den
Massenverschiebungen gar nicht berücksichtigt, ob sie nicht, möglicherweise

mit einer Verschiebung des Schwerpunkts und mit einer Änderung
des Trägheitsmomentes C verbunden sind, was beides theoretisch nicht
sein dürfte. Die drei aufgeworfenen Fragen hängen übrigens vermutlich
enge zusammen.

Es sei noch die Frage der Schwerpunktsverschiebung untersucht.
Um die auf die Flächeneinheit bezogene Masse der Topographie zu
berechnen, müssen wir die entsprechenden Koeffizienten L und H der
Entwicklungen der Lithosphäre und der Hydrosphäre mit den Dichten 2,67
und 1,03 multiplizieren und die Produkte voneinander subtrahieren:

q (2,67 L — 1,03 H) t/m2. (15)

Bequemer ist es, die Wassermassen auf die Krustendichte zu kondensieren,

wodurch eine neue Lithosphäre entsteht:

_ 1,03 _H; q= 2,67 L. (16)
2,67

Bekanntlich hängt die Schwerpunktslage von den Gliedern 1. Ordnung
der Kugelfunktionsentwicklung ab. Mit den Gliedern 1. Ordnung der
neuen Delfter Entwicklung ergibt sich:
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610,5 m;

+ 782,2 m;

550,8 m;

<7i Ì9> A) <7i,o sin^> ± gV"i cos 95 cos A ± q\\ costp sin A. (17)

Im nichtisostatischen Falle bedeuten die Kontinente zusätzliche
Massen und die Ozeane zusätzliche Massendefekte, welche den Schwerpunkt

der Normalerde verschieben. Diese Verschiebung ist auf das
Maximum von q-, hingerichtet. Sind s, tps und As die Polarkoordinaten der
Verschiebung, so sind ihre Komponenten in den Koordinatenrichtungen

Lifi + 945 m; Hlfi + 867 m; L\fi

qlü + 1630,1 t/m2

£,$ ± 1188 m; MI + 1052 m;
T(e)
L\,\

?U + 2088,4 t/m2

L(ï\ + 800 m; //ft + 646 m; -t. 1,1

çft ± 1470,6 t/m2

man erhält:

Ax s cos £>s cos As qï,\/pm

Ay s cos^s'sinAs ìfi/pml Zlz s sin^ q\fi/pm,

worin pm 5,5168 die mittlere Erddichte bedeutet. Man findet:

(18)

s Qum^ =*yR3. qu max
J_ y/ 2 + g(c)2 + ß, 549)2 m

Pm à> r:, pm

tg*. -^h° - <ps 32° 33' (19)

tgXs =q[a\:q{â;Xs 35° 09'.

Der Verschiebungsvektor weist auf Palästina hin.
Im isostatischen Falle bleibt die Richtung dieses Vektors natürlich

unverändert, während sich sein Betrag zumindest stark verkleinert. Zur
Abschätzung kondensieren wir die Topographie auf die Kugel vom
Radius R, die Kompensationsmasse auf die in der mittleren Tiefe
gelegenen Kugel vom Radius (R — D/2). Dann ist die Flächendichte der
Topographie pL, die der Kompensation gemäß (10) pL (1 + D/R), also:

477
PK max [R3 ~ (R — D)3 (1 + D/R)]3E

3 D
2 lì -il-1-'-RJ] 2 R

(20)
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Wie schon erwähnt, wird beim strengen Massenausgleich, wie wir ihn in
den Elementarsäulen durchgeführt haben, die größere Flächendichte der
Kompensation gerade durch die Flächenverringerung aufgehoben.
Hingegen hängt die Schwerpunktslage von der Differenz der Produkte
(Masse mal Abstand vom Koordinatenursprung) ab, und s,- könnte demnach

nur verschwinden, wenn die Kompensationsmasse entsprechend
größer wäre als die Masse der Topographie, während andererseits der
Betrag (20) eine logische Folge des strengen Massenausgleiches ist. Dieser
Betrag ist sehr klein; für D 30 km und 60 km resultieren beziehungsweise

1,29 und 2,59 m.
Mit (20) ist aber nur die aus der vertikalen Massenbewegung

hervorgehende Schwerpunktsverschiebung gewonnen. Wir haben also noch die
aus dem horizontalen Massentransport resultierende Schwerpunktsverlagerung

abzuleiten. Hierzu gehen wir von der mit (16) eingeführten
Entwicklung

L =/. — 0,3858// (16a)

aus. Auf dem Festlande ist H =0 und daher L L h. Auf dem Meere
ist L H —T, also L — 0,6142 T. Mithin können wir die beiden
Gleichungen (10a) und (13) für die horizontalen Massenverschiebungen
in eine zusammenfassen:

r _ s d
35,51 + pLm — — t/m2, (21)

woraus sich gemäß (19) eine Schwerpunktsverschiebung des Betrages

_ 5 D 5 D
(PLU max : Pm) • ^ R 4^s (22)

in der gleichen Richtung ergibt. Für D — 30 und 60 km folgen für diese
Verschiebung 3,23 und 6,46 m.

Die horizontalen und vertikalen Massentransporte zusammen
verursachen somit die Schwerpunktsverschiebung

7 D
4RS- (23>

Dies ist aber genau dieselbe Verschiebung, wie sie sich beim üblichen
Druckausgleich ergibt. Denn dort ist gemäß (5) die Flächendichte der
Kompensation pL (1 — D/4/?), also

3 D\/. 1 D
2 R \ 4 R

7 D
s. (23a)

4 R
K '

Diese theoretisch natürlich undenkbare Schwerpunktsverschiebung, die
bei der isostatischen Reduktion eine entgegengesetzt gleiche Verschie-
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bung des Schwerpunkts des Cogeoides gegenüber dem Schwerpunkt der
tatsächlichen Erde zur Folge hat, wurde schon vielfach diskutiert, ohne
daß bisher eine wirklich befriedigende Erklärung des Widerspruchs
gelungen wäre. Der Widerspruch kann daher anscheinend nur auf einen
Mangel des isostatischen Konzeptes zurückgeführt werden, der auch bei
Einführung der horizontalen Massenverschiebungen bestehen bleibt.

Bei der vorliegenden Lösung sind aber noch zwei weitere Fragen
offen. Wir haben nämlich die horizontalen Massenverschiebungen aus der
Forderung des gleichen Normaldruckes in unseren beiden Normalsäulen
abgeleitet und stillschweigend angenommen, daß bei diesen
Massenverschiebungen die Gesamtmasse der Erde erhalten bleibt. Nun zeigen
aber die obigen Ausführungen über die Regularisierung der Erdkruste
deutlich, daß die Forderung desselben «Normaldruckes» in der
Ausgleichsfläche keineswegs notwendig ist. Notwendig ist allein, daß in der
Ausgleichsfläche sowohl beim Normalsphäroid wie auch bei der
wirklichen Erde konstanter Druck herrscht, ohne daß diese Konstante in
beiden Figuren denselben Wert haben muß, und daß die Masse der
gesamten Kruste unverändert bleibt. Hierfür liegt aber in der Gleichung
(21) ein wichtiges Kriterium vor. Denn bei Erhaltung der Gesamtmasse
muß (21) für das Glied nullter Ordnung von L verschwinden. Die beiden
Hauptglieder der Delfter Entwicklungen: La —3348 m und //„

—3679 m liefern gemäß (16a): L0 —1928,8 m. Will man dies in
(21) einführen, so ist zu bedenken, daß der Massenzuwachs / (30) 36,45
beziehungsweise 35,51 unter der Voraussetzung der Druckgleichheit in
den beiden Normalsäulen für D 30 km berechnet wurde. Unter
derselben Voraussetzung müßte die Erhaltung der Gesamtmasse für ein
bestimmtes D die Gleichung

/ (D) — 6437,4 D/R 0 (24)

befriedigen. Rechnen wir aber den Massenzuwachs / (D) nach den
Formeln (7) bis (9), so finden wir der Reihe nach für:

D 30 km: + 36,45 — 30,31 ± 6,14 t/m2
40 + 48,23 — 40,42 + 7,81
50 + 60,00 — 50,52 + 9,48
60 + 71,78 — 60,62 ±11,16

Kleinere Werte von D sind physikalisch sicher unmöglich. Übrigens
würden unsere Näherungsformeln nicht mehr genügen, sobald die Differenz

(D — Tn) kleiner wird.
Zuerst haben wir zu prüfen, ob diese Diskrepanz auf die Unsicherheit

in der Entwicklung der Höhen- und Tiefenverhältnisse zurückgeführt

werden kann. Halten wir die mittlere Festlandshöhe mit ± 331 m
fest und führen die mittlere Tiefe der Hydrosphäre als Unbekannte x

x ± 331 und

L0 0,6142 x +331. (25)
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Andererseits ist der Koeffizient von D/R in Gleichung (24) :

5 _± — pL0 ± 3,3375 L0,

und wir finden aus der Verbindung mit (25):

D 30 km: L0 —2319,4, H0 —4315 m
40 —2301,8 —4287
50 —2290,8 —4269
60 —2283,8 —4257

also offensichtlich zu große Werte für //„. Es scheint demnach, daß die
Annahme der Druckgleichheit in der Ausgleichsfläche beim
Normalsphäroid und bei der tatsächlichen Erde unmöglich ist.

Läßt man daher diese Annahme fallen, so ist nach (24) der
Massenzuwachs / (D) in der zweiten Normalsäule durch + 6437,4 D/R
bestimmt, und wir finden aus (8) und (9) zur Bestimmung des
Dichteunterschiedes xn die Gleichung:

(p y x„) (D — Tn) [1 — (D + Tn)/R]

pD (1 — D/R) — 3787,18 — 6437,4 D/R. (26)

Damit aber kann der Druck in der Ausgleichsfläche sowohl beim
Normalsphäroid (A) als auch bei der wirklichen Erde (B) berechnet werden:

A (p + xn) D (1 ± D/4R) — (1,64 ± xn) Tn

B pD(\ yD/4R),
immer mit der oben eingeführten Annäherung. Es ergeben sich folgende
Druckwerte und Differenzen, ausgedrückt in 103kp/m2:

D 30 km: A 80200,47; B 80194,29; (A — B) + 6,18
40 106975,50 106967,63 ± 7,87
50 133771,50 133761,92 ± 9,58
60 160588,46 160577,16 ±11,29

Die gesuchte Druckdifferenz ist natürlich numerisch nur ganz geringfügig

größer als die oben ausgewiesene Massenzunahme. Es ist aber auch
die Kenntnis der Druckwerte A und B selbst von Interesse; wir sehen,
daß es sich bloß um eine relative Differenz von 0,07 bis 0,08 Promille
handelt, welche mit wachsendem D abnimmt.

Die vorliegende Lösung vermag also grundsätzlich Druck- und
Massenausgleich sinngemäß zu verbinden und die Erhaltung der
Gesamtmasse unter gleichzeitiger Bestimmung der Druckdifferenz in den
beiden Normalsäulen zu garantieren. Jedoch muß noch besonders
hervorgehoben werden, daß hier ganz im Sinne der Pratt-Hayfordschen Hypothese

die Ausgleichstiefe D mit der Erdkrustendicke identifiziert wurde,
was besagt, daß die Normaldichte 2,67 der Erdkruste bis zur Ausgleichs-
fläche gelten soll. In Wahrheit reicht aber die Erdkruste nur bis zur
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Mohorovicic-Diskontinuität, welche unter den Bergen wesentlich tiefer
liegt als unter den Meeren. Ihre mittlere Dichte wird mit etwa 30 km
angenommen. Im Sinne der Hypothese von Airy-Heiskanen ist also die
Tiefe der Ausgleichsfläche größer als die mittlere Dicke der Erdkruste.
Mithin hätten wir in unseren beiden Normalsäulen in 30 km Tiefe einen
Dichtesprung anzunehmen, der in der zweiten Normalsäule etwa 0,6
Einheiten beträgt, in der ersten Normalsäule hingegen um xn geringer ist.

Jedoch bleibt auch jetzt noch eine Reihe von Fragen offen. Das
abermalige Auftreten der Schwerpunktsverschiebung beweist, daß auch
das neue Modell der Isostasie noch unvollkommen ist. Auch wurde das
Volumproblem und die Frage der Konstanz des Trägheitsmomentes C
noch nicht untersucht. Es bleibt nur zu hoffen, daß die Lösung dieser
Probleme eine Verbesserung des isostatischen Modells ermöglicht, die
Schwerpunktsverschiebung aufhebt und die direkte Berechnung der
Ausgleichstiefe auf Grund der Delfter Entwicklungen gestattet.
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