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Les calculs de compensation basés sur des
sommes trigonométriques

par A. Ansermet

Dans de nombreux domaines, en technique instrumentale notam-
ment (voir [3]), on rencontre des fonctions périodiques qu’il faut analyser
et dont on doit déterminer les coefficients. Dans la pratique on se borne
en général a calculer une expression dite «somme trigonométrique»
revétant la forme suivante:

S(x) =y = Ay + A;cosx + A,cos2x + Azcos 3x + ...

1
+ B, sinx + B, sin 2x + Bj sin 3x 4 . <

Ce probléme n’est pas nouveau, mais la solution classique ne donne pas
toujours satisfaction au praticien; le but de ces lignes est surtout de
mettre en évidence certains aspects de cette somme quant a son applica-
tion. L’expression S (x) peut étre convertie en une somme de sinus ou de
cosinus ([2], p. 211), par exemple:

A cosx + B;sinx =rsin (r 4+ o)

Aprés cette substitution sous forme de sinus, les termes prennent le nom
d’harmoniques, la quantité telle que r étant une demi-amplitude. Faisons
de plus 'hypothése initiale suivante: Les valeurs observées de x sont
contenues dans une seule période, égale ou ramenée a la valeur 27. On
aura n couples de valeurs expérimentales '

Tys Y15 Loy Yos Xz Yz - -+« Tns Yn

donnant lieu a un systeme de n équations.

Un premier cas, trés simple, est celui ol le nombre d’équations est
égal au nombre des inconnues; il n’y a pas de compensation. S (x) regoit
alors le nom de somme trigonométrique d’interpolation; ce cas simple
est traité 4 fond dans la littérature ([2], p. 213). Toutes les discordances
sont éliminées, mais ce calcul présente peu d’intérét.

Pour la compensation proprement dite, et en vue de faciliter les
calculs, on s’efforce de réaliser la condition suivante: La matrice du
systéme d’équations normales est diagonale, et il en est de méme pour
la matrice inverse, celle des coefficients de poids des inconnues compensées.

La solution usuelle consiste & réaliser I’équidistance des n valeurs
de x, mais une solution plus générale sera développée.

Solution de Bessel

Pour faciliter les écritures la période 2# sera exprimée en degrés
(360°); de plus on peut avoir recours a une solution provisoire; 1’équa-
tion (1) prend alors la forme familiére et générale:
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— [+ v =dA, + dA,; cosx + dA,cos2x + ...

2
4+ dB,; sinx 4 dB, sin 2x + ... )

la définition des f étant connue (valeur provisoi‘l?e — valeur observée),
tandis que les dA et dB sont les corrections a apporter aux valeurs provi-
soires des inconnues. D’autres particularités sont a signaler: On peut
éliminer dA, en formant des équations réduites, mais les termes absolus f
sont seuls a réduire car, grice a l’équidistance des z, on a: {sinx] =
[cosx] =[cos2x] = ... = 0.

Des cas concrets montreront de facon explicite la marche a suivre
le nombre des inconnues est limité & cinq, ce qui suffit au point de vue
didactique. On aura successivement n = 6, puisn = 7:

= 2= ©&08% = sinx = cos2x = sin2x =
1 30° 60° | 4+ 0,866 | + 0,500 | + 0,500 | + 0,866 | + 1
2 90° | 180° 0,00 + 1,00 | — 1,00 0,00 +1
3 150° 300° | — 0,866 | + 0,500 | + 0,500 | — 0,866 | + 1
4 210° 420° | — 0,866 | — 0,500 | + 0,500 | + 0,866 | + 1
9 270° | 540° 0,00 — 1,00 — 1,00 0,00 +1
6 330° 660° | 4+ 0,866 | — 0,500 | + 0,500 | — 0,866 | + 1

Certains calculateurs attribuent la valeur zéro a z, initialement, au lieu
de 30°; cette valeur est arbitraire. Poids a priori: p = 1.

Inconnues: dA,, dB,, dA,, dB,, dA,.

On obtient immédiatement la matrice des équations normales et
I'inverse:

3,00 0 0 0 0 1, 0 0 0 0 |
0 30 0 0 0 0o 1Y, 0 0 0
0 0 3,00 0 0O o o0 1Y, 0 0
0 0 0 300 0 o o0 0 Y, 0
0 0 0 0 6,00 o 0 0 0 1

En remarquant que cos?x - sin?x = 1 et de méme pour 2x, on obtient

— 1 1 — 5
=g tsti=¢%

1
les poids a posteriori qui sont tous égaux: 5

Controle de ces poids: [p: P] =6 X & = 5 (5 inconnues).
Le calcul des termes absolus des équations normales est facile.
—[fl =6dA,

—[sinx - f] = 3dB, ...

En particulier on a:
—[cosx - f] = 3dA, (3)

C’est grace a la propriété connue dite d’orthogonalité que les matrices
sont diagonales. L’exemple ci-apreés fut cong¢u en vue d’étre combiné
avec le précédent; on a encore converti en degrés:
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r =—
25°,7
77°,1
128°,6
180°
231°,4
282°,9
334°,3

NO OV R W N e

2%
914

257°,1
360°

462°,9
565°,7

668°,6

154°,3.

COSX

+ 0,901
+ 0,223
— 0,624
—1,00
— 0,624
+ 0,223
+ 0,901

sinx
+ 0,434
+ 0,975
+ 0,782
0,00
— 0,782
— 0,975
— 0,434

cos 2x =

-+ 0,624
— 0,901
— 0,223
+ 1,00

— 0,223
— 0,901
+ 0,624

sin 2x =

1 0,782
+ 0,434
0,975

0,00
+ 0,975
— 0,434
— 1,785

O S = Gl SE ey

Quatre éléments diagonaux de la matrice des équations normales sont
égaux a 3,5 et le cinquieme a 7. A priorionap = 1.

1
Pour les sept poids & posteriori on obtient la valeur 3/, = ) ou

P =7/, =1,4. Dans ces deux exemples les poids sont amplifiés 1,2, puis
1,4 fois.

Solution générale

L’application trop systématique de I’'équidistance dans le choix des
valeurs de x présente des inconvénients; graphiquement les ordonnées
Y1 Ys - .. Un sont donc tracées a intervalles réguliers, et leurs extrémités
coincident plus ou moins avec la courbe représentative de la fonction
S (x) = y. Si cette courbe présente des sinuosités prononcées, il serait
désirable que l'intervalle entre deux ordonnées puisse varier, la matrice
des équations normales restant diagonale. Une solution consiste .4 com-
biner deux groupes de valeurs x, ceux pour lesquelsn =6 et n =7
par eéxemple; les valeurs initiales pour x peuvent varier, la difiérence
30° — 25°,7 = 4°,3 étant arbitraire. Le calculateur a donc bien des pos-
sibilités.

X =
25°,7
30°
7751
90
128,6
150
180
210
231,4
270
282,9
330
334,3

Deux intervalles 51°,4 et 60°

OIS Uk W=

La forme des équations normales est toujours:

[v] = 0; [cosx - V] = [sinx - ] =[cos2x - V] =[sin2x - v] = O, 4)

et pour la matrice on obtient, en se basant sur ce qui précéde:
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Les valeurs inverses des éléments diagonaux sont les coefficients de
poids des inconnues compensées. L’amplification des poids est ici égale
a 13/, = 2,6 fois.

A certains égards on pourrait renoncer a I’équidistance des valeurs
observées, mais les calculs deviennent longs; cette solution portant sur
deux équidistances (51,4 et 60°) joue un role intermédiaire. Dans cer-
tains cas elle sera fort opportune.

Méthode de Tchebicheff

Lorsque le nombre des inconnues augmente et surtout si le nombre
n des observations devient fort élevé, on a recours a une solution plus
simple dont le mérite revient & Tchebicheff; une solution provisoire n’est
plus nécessaire. I.a forme initiale est de nouveau:

S(x) =y =A, + A,cosx + A,cos2x + Azcos3x + ...
+ B,sinx + B, sin2x + B, sin3x + ..

L’inconnue A, est toujours calculée par I’expression:
'nA, = [y]{- Ce A, peut étre éliminé.

De plus on admet la valeur initiale x = 0; traitons un cas concret
pour n = 48 et 9 inconnues. Il y a équidistance, et la période est 2.

LLa somme trigonométrique considérée est dite d’ordre p = 4. L.’exa-
men du tableau permet instantanément d’écrire les relations (5):

Up— o L2 (A; + Ay) Yo — Yazo L 2 (B, — B;) v =1)
Yo— UYso + Yso— Y0 L4As  UYss— Ypss + Yoos— Yas L4B, (v = 2)

Yo — Yso + Uizo — Y1so T+ Yzao — Yseo L 6A5;
Uso— Uso + Yiso— Yoo + Yor0 — Yazp L 6B, v =3); (9

Yo— Yas + Yso — Yizs + Yiso — Yazs 1 Yzzo — Yms L 84, v =4)

Yse s — Yer,s + Y125 — Yisz,s T Ysoz,s — Yeaz,s + Yseos —
— Ysars L 8B, v=4)
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2x

30°
45
60

90
120
135
150
180
210
225
240
270
300
315
330
360
390
405
420
450
480
495
510
540
570
585
600
630
660

675
690

3z
0

45°

87,5

90
135
180
202,5
225
270
315
337,5
360
405
450
472,5
495
540
585
607,5
630
675
720
742,5
765
810
855
877,5
900
945
990

1012,5
1035

41z

0
60°
90
120

180

240

270
300

360
420
450
480
540
600
630
660
720
780
810
840
900
960
990
1020
1080
1140
1170
1200
1260
1320

1350
1380

cosx
+1,00

40,966
+0,924
+ 0,866

40,707
+0,500
+0,383
+0,259
0,00
—0,259
—0,383
—0,500
—0,707
—0,866
—0,924
—0,966
—1,00
—0,966
—0,924
—0,866
—0,707
—0,500
—0,383
—0,259
0,00
+0,259
40,383
40,500
+0,707
+0,866

+0,924
+0,966

sinx
0,00

40,259
40,383
+0,500

+0,707
+0,866
+0,924
+0,966
+1,00
+0,966
40,924
+ 0,866
+0,707
+0,500
+0,383
+0,259
0,00
—0,259
—0,383
—0,500
—0,707
—0,866
—0,924
—0,966
—1,00
—0,966
—0,924
—0,866
—0,707
—0,500

—0,383
—0,259

cos 2
+1,00

10,866
40,707
40.500

0,00
—0,500
—0,707
—0,866
—1,00
—0,866
—0,707
—0,500

0,00
+ 0,500
40,707
+ 0,866
41,00
+0,866
+0,707
+0,500

0,00
—0,500
—0,707
—0,866
—1,00
—0,866
—0,707
—0,500

0,00
40,500

40,707
+0,866

sin 2z
0,00

40,500
40,707
+ 0,866

+1,00
+ 0,866
+0,707
+ 0,500
0,00
—0,500
—0,707
—0,866
—1,00
—0,866
—0,707
—0,500
0,00
40,500
40,707
40,866
+1,00
+ 0,866
+0,707
+0,500
0,00
—0,500
—0,707
—0,866
—1,00
—0,866

—0,707
—0,500

cos 3x
+1,00

+0,707
+0,383
0,00

—0,707
—1,00
—0,924
—0,707
0,00
40,707
40,924
+1,00
40,707
0,00
—0,383
—0,707
—1,00
—0,707
—0,383
0,00
40,707
41,00
10,924
40,707
0,00
—0,707
—0,924
—1,00
—0,707
0,00

+0,383
+0,707

sin 3z
0,00 |

+0,707
+ 0,924
-+ 1,00

+0,707
0,00
—0,383
—0,707
—1,00
0,707
—0,383
0,00
+0,707
+1,00
40,924
+0,707
0,00
—0,707
—0,924
—1,00
—0,707
0,00
+ 0,383
40,707
+1,00
+0,707
+0,383
0,00
—0,707
—1,00

—0,924
—0,707

cos 4z
~-1,00

+0,500
0,00
—0,500

— 0
—0,500
0,00
40,500
+1,00
40,500
0,00
—0,500
—1,00
—0,500
0,00
40,500
41,00
40,500
0,00
—0,500
—1,00
—0,500
0,00
40,500
+1,00
40,500
0,00
—0,500
—1,00
—0,500

0,00
40,500

sindx
0,00

40,866
+1,00
+0,866

0,00
— 0,866
—1,00
—0,866
0,00
10,866
+1,00
10,866
0,00
—0,866
—1,00
— 0,866
0,00
+0,866
11,00
10,866
0,00
—0,866
71 100}
— 0,866
0,00
10,866
11,00
10,866
0,00
—0,866

—1,00
—0,866

Des remarques essentielles sont opportunes: il a été fait abstraction
des v; de plus cette succession de termes positifs et négatifs entraine
I’élimination de I’'inconnue A, méme si ce A, n’était pas éliminé.

Les formules générales de Tchebicheff sont, en substituant 2# a
360°:



1
Ay + Azy + A5y + A7y + ... g_gﬁv[g(o)_y(%)_i_

i

1 ™ 37
By — B3y + Bsy— Bz, + ... g—[.U(%)‘—y(“—““) +

S5 T
)5

Il n’y a que des indices multiples impairs de v pour les A et les B.
Dans les relations (5) on a successivement v =1, 2, 3, 4. Siv =1, on
considére comme valables les indices v et 3v; si v = 2, 3, 4, on fait abs-
traction des valeurs 3v =6, 3v =9, 3v = 12, et ainsi de suite. Dans
I’exemple numérique la valeur n fut portée a 48 pour mieux montrer
I'application de la méthode.

t (6)

En résumé les praticiens disposent des solutions suivantes:
10 celle classique de Bessel qui est trop connue pour donner lieu a des
commentaires;

20 celle plus générale tendant A fractionner la série d’éléments obser-
vés en deux groupes ayant chacun une équidistance propre pour les
valeurs x; la matrice des équations normales est aussi diagonale;

3° la méthode de Tchebicheff, pour un nombre n fort élevé d’observa-
tions.

Pour terminer rappelons, au sujet de ce probléme, une appréciation
d’un géodésien éminent (sans traduire): «Genau genommen ergeben die
Gleichungen gar nicht die A und B selbst, sondern Aggregate aus unend-
lich vielen Gliedern» (Helmert, Ausgleichungsrechnung, p. 411). Cette
remarque visait la solution de Bessel.
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