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Les calculs de compensation basés sur des

sommes trigonométriques

par A. Ansermet

Dans de nombreux domaines, en technique instrumentale notamment

(voir [3]), on rencontre des fonctions périodiques qu'il faut analyser
et dont on doit déterminer les coefficients. Dans la pratique on se borne
en général à calculer une expression dite «somme trigonométrique»
revêtant la forme suivante:

S (x) y A0 y At cosx + A2 cos 2x + A3 cos 3x +
+ Bt sinx + B2 sin 2x + B3 sin 3x +

Ce problème n'est pas nouveau, mais la solution classique ne donne pas
toujours satisfaction au praticien; le but de ces lignes est surtout de
mettre en évidence certains aspects de cette somme quant à son application.

L'expression S (x) peut être convertie en une somme de sinus ou de
cosinus ([2], p. 211), par exemple:

Ax cosx + Bj sinx r sin (x + a)

où r2 A,2 + B,2 tga=A1:.Bi
Après cette substitution sous forme de sinus, les termes prennent le nom
d'harmoniques, la quantité telle que r étant une demi-amplitude. Faisons
de plus l'hypothèse initiale suivante: Les valeurs observées de x sont
contenues dans une seule période, égale ou ramenée à la valeur 2tt. On
aura n couples de valeurs expérimentales

xi> Dit •c2> Di\ x3> U3 • • • xm lin

donnant lieu à un système de n équations.
Un premier cas, très simple, est celui où le nombre d'équations est

égal au nombre des inconnues; il n'y a pas de compensation. S (x) reçoit
alors le nom de somme trigonométrique d'interpolation; ce cas simple
est traité à fond dans la littérature ([2], p. 213). Toutes les discordances
sont éliminées, mais ce calcul présente peu d'intérêt.

Pour la compensation proprement dite, et en vue de faciliter les
calculs, on s'efforce de réaliser la condition suivante: La matrice du
système d'équations normales est diagonale, et il en est de même pour
la matrice inverse, celle des coefficients de poids des inconnues compensées.

La solution usuelle consiste à réaliser l'équidistance des n valeurs
de x, mais une solution plus générale sera développée.

Solution de Bessel

Pour faciliter les écritures la période 2-ir sera exprimée en degrés
(360°); de plus on peut avoir recours à une solution provisoire; l'équation

(1) prend alors la forme familière et générale:
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f yv dA0 + dAx cosx

+ dBx sinx

dA2 cos 2x +
dB« sin 2x +

(2)

la définition des / étant connue (valeur provisoire — valeur observée),
tandis que les dA et dB sont les corrections à apporter aux valeurs provisoires

des inconnues. D'autres particularités sont à signaler: On peut
éliminer dA0 en formant des équations réduites, mais les termes absolus /
sont seuls à réduire car, grâce à l'équidistance des x, on a: [sinx]
[cosx] [cos 2x] =0.

Des cas concrets montreront de façon explicite la marche à suivre
le nombre des inconnues est limité à cinq, ce qui suffit au point de vue
didactique. On aura successivement n 6, puis n 1:

x 2x cosx sinx cos 2x sin 2x
1 30° 60° + 0,866 + 0,500 + 0,500 + 0,866 + 1

2 90° 180° 0,00 + 1,00 — 1,00 0,00 + 1

3 150° 300° — 0,866 + 0,500 + 0,500 — 0,866 + 1

4 210° 420° — 0,866 — 0,500 + 0,500 + 0,866 + 1

5 270° 540° 0,00 — 1,00 — 1,00 0,00 + 1

6 330° 660° + 0,866 — 0,500 + 0,500 — 0,866 + 1

Certains calculateurs attribuent la valeur zéro à x, initialement, au lieu
de 30°; cette valeur est arbitraire. Poids à priori: p 1.

Inconnues: dAx, dBx, dA2, dB2, dA0.

On obtient immédiatement la matrice des équations normales et
l'inverse:

Va 0 0 0 0
0 Va 0 0 0
0 0 Va 0 0
0 0 0 Va 0
0 0 0 0 Vj

ie même p our 2x, on ob
1

D
t— 3 + î + X — Â

6 6-

3,00 0 0 0 0
0 3,00 0 0 0
0 0 3,00 0 0
0 0 0 3,00 0
0 0 0 0 6,00

les poids à posteriori qui sont tous égaux: r
Contrôle de ces poids: [p : P] 6 x | 5 (5 inconnues).

Le calcul des termes absolus des équations normales est facile.

En particulier on a: —[/] 6dA0

— [cosx • /] 3 dAx — [sinx • /] 3 dBx (3)

C'est grâce à la propriété connue dite d'orthogonalité que les matrices
sont diagonales. L'exemple ci-après fut conçu en vue d'être combiné
avec le précédent; on a encore converti en degrés:
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x 2x
1 25°,7 51°,4
2 77°,1 154°,3
3 128°,6 257°,l'
4 180° 360°
5 231°,4 462°,9
6 282°,9 565°,7
7 334°,3 668°,6

cosx sinx cos2x sin 2x

+ 0,901 + 0,434 + 0,624 + 0,782
+ 0,223 + 0,975 — 0,901 + 0,434
— 0,624 + 0,782 — 0,223 — 0,975
— 1,00 0,00 + 1,00 0,00
— 0,624 — 0,782 — 0,223 + 0,975
+ 0,223 — 0,975 — 0,901 — 0,434
+ 0,901 — 0,434 + 0,624 — 0,782

Quatre éléments diagonaux de la matrice des équations normales sont
égaux à 3,5 et le cinquième à 7. A priori on a p =1.

1
Pour les sept poids à posteriori on obtient la valeur 5/, — ou

1,4 fois.
1,4. Dans ces deux exemples les poids sont amplifiés 1,2, puis

Solution générale

L'application trop systématique de l'équidistance dans le choix des

valeurs de x présente des inconvénients; graphiquement les ordonnées
J/i> Ü2 - - - Un sont donc tracées à intervalles réguliers, et leurs extrémités
coïncident plus ou moins avec la courbe représentative de la fonction
S (x) y. Si cette courbe présente des sinuosités prononcées, il serait
désirable que l'intervalle entre deux ordonnées puisse varier, la matrice
des équations normales restant diagonale. Une solution consiste à

combiner deux groupes de valeurs x, ceux pour lesquels n 6 et n 7

par exemple; les valeurs initiales pour x peuvent varier, la différence
30° — 25°,7 4°,3 étant arbitraire. Le calculateur a donc bien des
possibilités.

x
1 25°,7
2 30°
3 77,1
4 90
5 128,6
6 150
7 180
8 210
9 231,4

10 270
11 282,9
12 330
13 334,3

Deux intervalles 51°,4 et 60°

La forme des équations normales est toujours:

[v] 0; [cosx ¦ v] [sinx ¦ v] — [cos 2x • v] [sin 2x • v] 0,

et pour la matrice on obtient, en se basant sur ce qui précède:
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6,5 0 0 0 0
0 6,5 0 0 0

0 0 6,5 0 0

0 0 0 6,5 0
0 0 0 0 13,0

Les valeurs inverses des éléments diagonaux sont les coefficients de

poids des inconnues compensées. L'amplification des poids est ici égale
à13/5 2,6 fois.

A certains égards on pourrait renoncer à l'équidistance des valeurs
observées, mais les calculs deviennent longs; cette solution portant sur
deux equidistances (51',4 et 60°) joue un rôle intermédiaire. Dans
certains cas elle sera fort opportune.

Méthode de Tchebicheff

Lorsque le nombre des inconnues augmente et surtout si le nombre
n des observations devient fort élevé, on a recours à une solution plus
simple dont le mérite revient à Tchebicheff; une solution provisoire n'est
plus nécessaire. La forme initiale est de nouveau:

S (x) y — Aa y Ax cosx + A2 cos 2x + A3 cos 3x +
+ Bx sinx + B2 sin 2x + B3 sin 3x +

L'inconnue A0 est toujours calculée par l'expression:

nA0 — [y]". Ce A0 peut être éliminé.

De plus on admet la valeur initiale x 0; traitons un cas concret
pour n 48 et 9 inconnues. Il y a equidistance, et la période est 2tt.

La somme trigonométrique considérée est dite d'ordre p 4. L'examen

du tableau permet instantanément d'écrire les relations (5):

y, — yim ^2(AX + As) y-*, — y270 Jg 2 (B,. — B3) (v 1)

Vo — «/oo + J/iso — y210 & 4A 2 yu — y135 + y22S—y315 m 4J?2 (v 2)

y« — Vm + yua — !/i8o + J/240 — î/aoo Sa 6A3;

ym — y»o y #150 — y2io + y270 — J/aao W 6B3 (v 3) | (5)

y<> — y45 + y«) — yias + yiso — y™ + y*™ — y3i5 m sa4 (r 4)

:2,5 ye7,5 + !/ll2,5 yi57,5 + #202,5 y247,5 "T" #292,5

— y337,5 & 8B4 (v =4)
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Av y A3v + A5„ + Alv + sö-^-|b(0) — y[ — +i~[y

3tt
Tv

(6)

+ y^j-y^)+...-y((2v-l)^
By-Bav + Bs,-Blv+ m^[y(^-y

+ ^)'-((4'-^)]
Il n'y a que des indices multiples impairs de v pour les A et les ß.

Dans les relations (5) on a successivement v 1, 2, 3, 4. Si v 1, on
considère comme valables les indices v et 3v; si v 2, 3, 4, on fait
abstraction des valeurs 3v =6, 3v =9, 3v 12, et ainsi de suite. Dans
l'exemple numérique la valeur n fut portée à 48 pour mieux montrer
l'application de la méthode.

En résumé les praticiens disposent des solutions suivantes:

1° celle classique de Bessel qui est trop connue pour donner lieu à des

commentaires;
2° celle plus générale tendant à fractionner la série d'éléments obser¬

vés en deux groupes ayant chacun une equidistance propre pour les
valeurs x; la matrice des équations normales est aussi diagonale;

3° la méthode de Tchebicheff, pour un nombre n fort élevé d'observa¬
tions.

Pour terminer rappelons, au sujet de ce problème, une appréciation
d'un géodésien eminent (sans traduire): «Genau genommen ergeben die
Gleichungen gar nicht die A und B selbst, sondern Aggregate aus unendlich

vielen Gliedern» (Helmert, Ausgleichungsrechnung, p. 411). Cette
remarque visait la solution de Bessel.
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