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Die geodätischen Probleme der künstlichen Satelliten
Satellitengeodäsie)

Von K. Ledersteger, Wien

(Fortsetzung)

Die reine Keplerbewegung ist durch 6 Elemente vollständig
bestimmt. Die Bahnform ist durch die große Halbachse a und die numerische

Exzentrizität definiert. Die Bahnebene, welche durch den
Erdschwerpunkt geht, kann durch zwei Elemente bezüglich des Äquators
festgelegt werden, nämlich durch den Abstand ß des aufsteigenden Knotens

vom Frühlingspunkt und durch die Neigung i, den Winkel, welchen
die Bahnebene mit der Äquatorebene in der Knotenlinie einschließt. Die

Fig. 3

Lage der Ellipse in der Bahnebene wird durch das Argument w des
Perigäums, dem in der Bewegungsrichtung gezählten Winkelabstand des

Perigäums vom aufsteigenden Knoten, fixiert, womit die Apsidenlinie
festliegt. Schließlich wird die Beziehung zur Zeit durch den augenblicklichen

Winkelabstand des Satelliten vom Perigäum, die wahre Anomalie
v, festgestellt (Figur 3). Die Sechszahl der Elemente erklärt sich leicht
aus der Notwendigkeit der zweimaligen Integration der drei
Bewegungsgleichungen, welche für das System Erde^Satellit lauten:

d2Ì È d2v tj d2 i l—- + k*E— =0; '- y k2E-*- 0; + /c2£— 0, (16)
dt2 r3 dt2 r3 dt2 r3

wobei f, -ry, £ die rechtwinkligen Koordinaten des Satelliten bezüglich des

Erdschwerpunktes sind.
Sind Radiusvektor x, Poldistanz & und Rektaszension oc die

geozentrischen Polarkoordinaten des Satelliten, so gilt bei Berücksichtigung der
Massefunktionen J die vektorielle Differentialgleichung 2.0.

8U 1 8U 1 BU
i grad U =^-tt + — -n-^-e<>+---.- q-^-e« (17)

or r od- r sin & ca.

mit
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OU
—— f — r&2 — r sin2 &. à2
tir

1 dU~ 2r& y rd- — r a2 sin & cos &
r d&

dU
2 r a sin # + 2 r &<x. cos d- + r ä sin &,

(18)

r sin è- dx

worin noch wegen der angenommenen Rotationssymmetrie dU/da.
verschwindet. Wiewohl diese drei Differentialgleichungen die Bewegung des
Satelliten vollständig beschreiben, sobald aus den Beobachtungen die
notwendigen Anfangsbedingungen vorliegen, ist ihre Integration mit
sehr großen Schwierigkeiten verbunden. Ähnlich wie beim Mehrkörperproblem

der klassischen Himmelsmechanik werden nämlich die
Bahnelemente Funktionen der Zeit; das heißt, sie unterliegen säkularen und
periodischen Störungen, so daß man mit dem Begriff der «oskulierenden
Bahnellipse» operiert. Letztere ist per deflnitionem jene Keplerellipse,
welche der Satellit beschreiben würde, wenn der augenblickliche Ortsund

Geschwindigkeitsvektor die Ausgangsdaten für eine störungsfreie
Bewegung um die im Schwerpunkt vereinigt gedachte gesamte Erdmasse
liefern würden. Die Entwicklungen der klassischen Störungstheorie sind
aber auf die künstlichen Satelliten wegen der ganz anders gearteten
Größenverhältnisse der störenden Kräfte und auch wegen der möglichen
großen Bahnneigungen nicht anwendbar. Das Problem der Satellitenbahnen

wurde von verschiedenen Astronomen eingehend studiert; die
entwickelten Methoden sind keineswegs einheitlich und unterscheiden
sich in erster Linie hinsichtlich des Grades der Annäherung.

Sieht man vom Einfluß des Luftwiderstandes und von den Störungen

durch Sonne und Mond ab, so sind die Bahnstörungen fast
ausschließlich durch die mit den zonalen Kugelfunktionen verknüpften
Massefunktionen J,- verursacht. Es sei gleich an dieser Stelle betont, daß
wegen der rapiden Abnahme der J,- eine Mitnahme der über J4
hinausgehenden Massefunktionen ziemlich illusorisch erscheint. Aus den wenigen

Andeutungen, welche über die Bewegungsgleichungen und ihre
Integration gemacht wurden, kann selbstverständlich kein klares Bild über
die Wirkungsweise der verschiedenen Massefunktionen gewonnen werden.

Daher genüge die Feststellung, daß sie säkulare, langperiodische und
kurzperiodische Änderungen der Bahnelemente zur Folge haben. Säkularer

Natur ist die Drehung der Bahnebene oder der Knotenlinie, wie sie
ähnlich von der Präzessionsbewegung der Erdachse bekannt ist. Als
langperiodisch dürfen wir den Umlauf des Perigäums oder die Drehung der
Apsidenlinie bezeichnen, während Änderungen von der Periode des
Umlaufs des Satelliten in seiner Bahn als kurzperiodisch gelten. Geodätisch
verwertbar sind natürlich nur jene Störungen, die mit einem solchen
Genauigkeitsgrad beobachtet werden können, daß sie einen sicheren
Rückschluß auf die verursachenden Massefunktionen gestatten.
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Die geraden Massefunktionen bewirken nun die Drehung der
Bahnebene, also die Änderung der Rektaszension des aufsteigenden Knotens
d&i/dt und die Drehung der Apsidenlinie, das heißt die Änderung des

Arguments des Perigäums dœ/dt. Man kann sie in die einheitliche Form
bringen:

oo ^21^2 y C22J2 y £41*^4 ~r • • •

(19)
O) d21 J2 + d22<V + daJt +

worin die Koeffizienten Funktionen der Bahnelemente a, e und i sind.
Demgegenüber bewirken die zonalen Glieder mit ungeradem Index
periodische Störungen der Elemente ß, to, e und i; die Periode ist der
Apsidenumlauf.

Führt man die aus dem dritten Keplergesetz folgende mittlere
Bewegung n des Satelliten in seiner Bahn ein:

k2E
a3

" (7a)

und überdies den Halbparameter p a (1 — e2) der Bahnellipse, so
erhält man nach Merson2 und King-Hele3 folgende bis einschließlich der
Glieder 4.0. entwickelten Ausdrücke für die säkularen und langperiodischen

Störungen:

• iR\2 I" R e sin co / 15 \
00 — n\— I cos 1 | J- — I J3 ;—— 11 — sin2 11 —\pj |/ p smi \ 4 /

9 IRVI 19 \ 15 /-R\2f
¦-4J''(T)(1-ia'ta")-xJ«(y)|(1+-*0-

• Il sin2 il + (— sin2 i — -—J e2 cos 2 co ;

ói= n^^jl—Jsin2i)sin2 i+1 J,
R

P

sm i sin co

(l

15

sin2 i -f e;
/35 35 1 \

sin21 —
\ 4 4 sin2 i j

J, 31.,. 49..¦— sin21 -) sm41
8 16

+ sin2 i cos 2 co —
16

sin'' i + 0W)jl.

(20)

2 R.H. Merson, «The Motion of a Satellite in an Axisymmetric Gravitational
Field», Geophysical Journal, Vol. 4, London 1961, S. 17-52.

3 D. G. King-Héle, «The Earth's Gravitational Potential, deduced from the
Orbits of Artificial Satellites», Geophysical Journal, Vol. 4, London 1961, S. 3-16.

123



Die Formeln, welche die Autoren für die Drehung der Bahnebene und der
Apsidenlinie geben, sind keineswegs vollständig übereinstimmend, teils
wegen der verschiedenen Vernachlässigungen bei der Entwicklung, teils
wegen der gänzlich verschiedenen Methoden, auf die wir hier unmöglich
eingehen können.

Langperiodische Änderungen erfahren auch die Neigung i der Bahnebene

und die Exzentrizität e oder die Perigäumsdistanz rp, was
gleichbedeutend ist, weil die Halbachse a - immer abgesehen vom Luftwiderstand!

- konstant bleibt:

i to y

rp rPo

eJ3 R 15J4e2 f R\2
2J2 P 64 J2 \ p /

J _7_ SÎJ^2 £

•
6 sin 2 i (1 — cos 2 co)

1 — f sin2 i v '

J3R 15 e JtR sin2 i
2J2 32 J2

R 1—1 sin2 i6
(1 cos 2 co)

p 1 — | sin2 i v ;

(21)

Hierin beziehen sich i0 und rp0 auf w 0.

Schließlich kann der Wert der Halbachse a aus der Knotenperiode
T vermöge

T 2-
k2E

3 7" (-: (7 cos2 i — 1) (22)

abgeleitet werden. In all diesen Gleichungen sind die Bahnelemente e

und i nicht als oskulierende, sondern als mittlere Elemente zu nehmen.
King-Hele4 hat auch recht brauchbare Näherungsformeln für die

säkularen Störungen im Knoten und im Argument des Perigäums
angegeben:

10,00 (—j cos i °/d

5,00 I— j
'

(5 cos2 i — 1) °/d

(23)

die aus den Gleichungen (20) unter Beachtung von (7a) leicht abzuleiten
sind. Die Drehung der Bahnebene verschwindet also bei der Bahnneigung
90°, was nur natürlich ist, da die zonalen Glieder bei Polbahnen kein
Drehmoment erzeugen, ß ist ein Maximum für i 0, was selbstverständlich nur
einen Grenzwert darstellt, weil dann die Definition des Knotens ihren Sinn
verliert. Der Knoten bewegt sich rückläufig, also in westlicher Richtung, so-

4 D.G. King-Hele, «The Effect of the Earth's Oblateness on the Orbit of a
Near Satellite», Proc. Boy. Soc. A, 247. S. 49-72, 1958.
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lange die Neigung kleiner als 90° ist. Dies war bisher stets der Fall, weil
man die Satelliten gerne im Sinne der Erddrehung auf ihre Bahn bringt, um
die Rotationsgeschwindigkeit der Erde, rund 460 m/s im Äquator, mit
auszunützen. Mit zunehmendem Halbparameter p oder auch mit
wachsender Perigäumshöhe nimmt die Drehung der Bahnebene rasch ab. Es
sei aus (23) folgende kleine Tabelle für die Knotenwanderung,
ausgedrückt in Graden pro Tag, berechnet:

\p-Ry 300 km 600 km 900 km

0° — 8,51 — 7,30 — 6,30
30° — 7,37 — 6,32 — 5,46
60° — 4,26 — 3,65 — 3,15
90° 0,00 0,00 0,00

Die Änderung des Argumentes co verschwindet für cos2 i xlb, das
heißt für i 63° 26' und 116° 34'. Man hat es also in der Hand, durch
geeignete Wahl der Neigung die Drehung der Apsidenlinie zum
Verschwinden zu bringen. Analog zur vorhergehenden sei auch für ä> folgende
Tabelle gegeben:

300 km 600 km 900 km
p-R

0°
30°
60°
90°

+ 17,00 + 14,60 + 12,60
-I- 11,71 + 10,04 + 8,66
+ 1,06 + 0,91 + 0,79
— 4,26 — 3,65 — 3,15

Für den Umlauf der Apsidenlinie ergeben sich also bei einer Perigäumshöhe

von 300 km Perioden zwischen 21 Tagen und oo.
Abschließend sei noch die Frage der längenabhängigen Glieder

gestreift, welche in (15) unterdrückt wurden. Diese bewirken im allgemeinen

wegen der Rotation der Erde nur kurzperiodische Störungen, das
heißt Störungen von der Periode der Erdrotation und der
Satellitenrevolution, die nur schwer erfaßbar sind. In gewissen Resonanzfällen
können, wie Cook5 zeigt, wohl auch säkulare und langperiodische
Störungen auftreten; aber auch in diesen Fällen dürften die Absolutbeträge
hart an der Grenze, wenn nicht unter der Beobachtungsgenauigkeit
liegen.

f) Die Bestimmung der Massefunktionen Ji

Da wir uns meines Erachtens grundsätzlich auf die Massefunktionen
J2, J3 und J4 beschränken dürfen, ergibt sich aus der Präzessionsglei-

6 A.H. Cook, «Resonant Orbits of Artificial Satellites and Longitude Terms
in the Earth's External Gravitational Potential», Geophysical Journal, Vol. 4,
London 1961, S. 53-72.
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cliung eines einzigen Satelliten die Massefunktion Jv wenn man für J3
und J22 ausreichende Näherungen einführen kann, während dabei J3
vernachlässigt werden darf, falls, wie wir es für geodätische Satelliten
gefordert haben, die Bahnexzentrizität klein ist. Aus Präzession und
Apsidendrehung eines Satelliten erhält man ähnlich J2 und Jit wobei

-man aber entweder einen recht guten Wert für J3 benötigt oder sich auf
ein Zeitintervall beschränken muß, in welchem sin co klein ist, damit der
Faktor (sin i:e) in der zweiten Gleichung (20) nicht zu groß wird.
Übrigens ist zu bedenken, daß die Apsidendrehung namentlich bei Bahnen

geringer Exzentrizität nur wesentlich ungenauer als &o aus den Beobachtungen

hervorgeht und daß co natürlich nur in Verbindung mit Ti
bestimmbar ist, weil ja das Argument des Perigäums vom Knoten ab
gezählt wird. Hat man die Präzession von n Satelliten beobachtet, so
können im Ausgleichswege J2 und J4 bestimmt werden, wenn sich nur
die Bahnen hinreichend in der Neigung, eventuell auch im Parameter p
unterscheiden. Bloße Variation von a und e bei gleicher Neigung, wie sie

etwa durch den Luftwiderstand im Leben eines einzigen Satelliten
hervorgerufen wird, genügt nicht. Ist die Zahl der Satelliten groß, so können
grundsätzlich neben J-. und J4 auch einige höhere Massefunktionen J2i
bestimmt werden, wobei allerdings nur bei sehr hoher Genauigkeit der
Elemente verläßliche Resultate zu erwarten sind. Auf diesem Wege dürfte
sich in naher Zukunft höchstwahrscheinlich die rapide Abnahme der
Massefunktionen J2; empirisch bestätigen lassen. Die Hauptschwierigkeit
für die nötige Genauigkeitssteigerung liegt in der sicheren Erfassung des

Luftwiderstandes.
Die starke Konvergenz der geraden Massefunktionen J2; gegen Null

gestattet noch keinen sicheren Schluß auf das Verhalten der ungeraden
Massefunktionen, welche allein durch die Abweichungen vom hydrostatischen

Gleichgewicht bedingt sind. Es muß daher keineswegs J3 seiner
Größenordnung nach in der Mitte zwischen J2 und J4 liegen; viel
wahrscheinlicher ist sogar, daß J3 die Größenordnung von J4 besitzt. Dennoch
darf bei der Bestimmung von J3 aus (21) J4 unterdrückt werden, weil es

gegenüber J3 beide Male mit dem Faktor e multipliziert ist, der zumindest
bei den geodätischen Satelliten sehr klein sein wird. Überdies erzeugt J4
ein Glied mit der Periode 2 co. Wir können also mit völlig ausreichender
Genauigkeit ansetzen:

1 Jj il „ 1 Jj R
oi ' e cos i sin co; Se sin i sin co. (24)

2 J2 p 2 J2 a

Ungerade Massefunktionen J; können nur bei einer Asymmetrie zwischen
der Nord- und Südhalbkugel der Erde auftreten. So hat man aus der
periodischen Schwankung des Perigäumsabstandes von Vanguard I mit
einer Amplitude von etwa 4 km für J3 den Wert —2,4 • IO-6 berechnet
und hieraus geschlossen, daß die nördliche Polarhalbachse der Erde um
etwa 16 m größer, die südliche um denselben Betrag kleiner sei als der
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Mittelwert. Hier das Wort «Birnenform» zu gebrauchen, scheint reichlich

irreführend.
King-Hele3 hat aus den Satelliten Sputnik 2, Vanguard I und

Explorer 7 eine Neuberechnung der geraden Massefunktionen vorgenommen.

Ohne auf weitere Einzelheiten einzugehen, sei bemerkt, daß er
folgende Zusammenstellung der bisherigen Bestimmungen der Massefunk-

J2 (+ 1082,79 ± 0,15) IO"6

J, (— 2,4 ±0,3 io-6
J* (— 1,4 ±0,2 IO"6

Js (— 0,1 ±0,1 IO"6

J. (+ 0,9 ±0,8 IO"6

Sofort fällt auf, daß die mittleren Fehler von J5 und J6 gleich groß sind
wie die ausgewiesenen Werte. Hinzu kommt, daß King-Hele selbst etwas
früher aus einem anderen Satelliten (Explorer 4) für J6 den Wert J6

(— 0,1 ± 1,5) • IO"6 gefunden hat, während Kozai fast gleichzeitig mit
der Neubestimmung von King-Hele für J6 (— 2,3 ± 0,2) • IO-6
berechnet hat. Dies erweckt wohl berechtigte Zweifel, ob die Bestimmungen

von J5 und J6 überhaupt noch als reell bezeichnet werden dürfen.
Unsere späteren theoretischen Betrachtungen werden zeigen, daß J6 nur
von der Größenordnung 1 • 10"8 sein kann und sich daher wohl
endgültig einer empirischen Bestimmung entzieht.

Aber auch der ausgewiesene Wert für J4 ist keineswegs so sicher, als

man aus dem mittleren Fehler der Bestimmung erwarten dürfte. Es
wäre sonst kaum denkbar, daß Schongolowitsch6, gleichfalls 1960, aus
Sputnik 2, Sputnik 3 und dessen Rakete J4 (— 4,1 ± 0,7) • IO"6
ableiten konnte.

Die obige kleine Tabelle hat übrigens King-Hele zu der Frage
angeregt, ob die Massefunktionen J; für i > 3 annähernd von derselben
Größenordnung sind oder ob sie, wie Jeffreys vermutet, zumindest so
rasch wie 1/i abnehmen. Meines Erachtens ist diese Fragestellung nicht
einwandfrei. Man muß vielmehr scharf zwischen den geraden und
ungeraden Massefunktionen unterscheiden und vorerst die Abnahme der
geraden Massefunktionen im Falle des hydrostatischen Gleichgewichtes
untersuchen. Die ungeraden Massefunktionen, die, wie schon erwähnt,
aus den verhältnismäßig geringen Abweichungen vom hydrostatischen
Gleichgewicht resultieren, werden dann vermutlich immer von der
Größenordnung der nächstfolgenden geraden Massefunktion sein. Es dürfte
somit vollkommen berechtigt sein, die höheren Massefunktionen zu
vernachlässigen, und zwar nicht erst ab i 7, wie es King-Hele vorschlägt,
sondern bereits ab i 5.

6 I.D. Schongolowitsch, «Ein Versuch, bestimmte Parameter des Erdschwerefeldes

aus den Beobachtungsresultaten der Satelliten 1957 ß2, 1958 ß 1 und 1958 ß2
abzuleiten», Bull, der Stationen für optische Beobachtung der künstlichen
Erdsatelliten, Nr. 2, 1960, S. 1-24.
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In diesem Zusammenhang erscheint auch die Deutung etwas irrig,
daß die höheren Massefunktionen eine Auswirkung der regionalen und
lokalen Anomalien darstellen. Die geraden Massefunktionen J2* beliebiger

Ordnung treten auch in der Kugelfunktionsentwicklung der
hydrostatischen Gleichgewichtsfiguren auf, also beim Fehlen jeglicher Anomalien.

Man müßte dann in der Lage sein, diese Funktionen in einen
normalen und einen Störungsanteil zu zerlegen. Es hat somit den Anschein,
daß die künstlichen Satelliten derzeit mangels einer ausreichenden
theoretischen Kontrollmöglichkeit sozusagen «überfordert» werden. Zur
Entscheidung dieser Frage müssen wir zuerst die theoretische Kontrolle
entwickeln.

g) Die Grundzüge der Theorie der Gleichgewichtsfiguren

Im folgenden sei in großen Zügen eine Theorie der hydrostatischen
Gleich gewichtsflguren entwickelt, welche im Gegensatz zur klassischen
Theorie gänzlich auf dem Außenraumpotential begründet ist. Dies ist
möglich, sobald drei Prinzipien nachgewiesen sind. Erstens muß das
Dichtegesetz der Gleichgewichtsflguren streng individuell sein, damit die
Unbestimmtheit des Stokesschen Satzes aufgehoben ist. Zu jeder
vorgegebenen Figur, die als freie Oberfläche und gleichzeitig Niveaufläche
von unendlich vielen Massenanordnungen denkbar ist, gibt es, wenn
überhaupt, so nur eine einzige Massenanordnung im hydrostatischen
Gleichgewicht. Dabei kann bekanntlich die Bedingung des
Gleichgewichtes so formuliert werden, daß die inneren Niveauflächen mit den
Flächen gleicher Dichte zusammenfallen, wobei lediglich aus Stabilitätsgründen

zusätzlich gefordert wird, daß die Dichte nach innen niemals
abnimmt. Damit ist gleichzeitig die freie Oberfläche die oder eine der
Flächen der geringsten Dichte. Um ferner vom Außenraum her jede
beliebige innere Niveaufläche mit all ihren geometrischen und physikalischen

Daten bestimmen zu können, ist das Prinzip der Entblätterung
erforderlich, welches besagt, daß man die Niveauflächen Schale für
Schale abheben kann, wodurch eine Reihe von Gleichgewichtsflguren
mit abnehmenden Dimensionen und abnehmender Masse entsteht. Dies
ist jedoch nur möglich, wenn jede zwischen zwei Niveauflächen einer
beliebigen Gleichgewichtsfigur eingeschlossene Masse auf den Innenraum
der kleineren der beiden Niveauflächen keinerlei Anziehungskraft ausübt.

Die beiden genannten Prinzipe lassen sich ziemlich leicht aus den
Wavreschen Schichtungssätzen beweisen. Schließlich muß es noch möglich

sein, die freie Oberfläche aus der Schar der äußeren Niveauflächen
herauszuheben. Dies ist tatsächlich der Fall. Vergleicht man diese
Niveaufläche mit ihren achsengleichen Rotationsellipsoiden, so läßt sich
ihre Gestalt durch Achse, Abplattung und einen oder mehrere
Formparameter kennzeichnen, welche die Abweichungen vom achsengleichen
Ellipsoid beschreiben. Zumindest der erste Formparameter, eine stets
negative Größe von der Ordnung des Quadrates der Abplattung, ist nun
an der Oberfläche in seinem Absolutbetrag ein Minimum.
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Es ist bekanntlich üblich, das Außenraumpotential W des tatsächlichen

Erdkörpers in einen Normal- und einen Störungsteil zu zerlegen:
W U y T. Wählt man für U die Kugelfunktionsentwicklung einer
schwach abgeplatteten hydrostatischen Gleichgewichtsfigur, welche
durch Rotationssymmetrie und Symmetrie zur Äquatorebene
ausgezeichnet ist:

ÜB
k2E

r

CO

1 — Z J2i
i l

' R \2i w2 R3
P,i (cos &) H i

2 v ; 3 k2 E R
fo — pA (25)

so kann man durch «Regularisierung», das heißt durch die Herstellung
des hydrostatischen Gleichgewichtes, die Restfunktion T exakt zum
Verschwinden bringen.

Die einfachsten Gleichgewichtsflguren sind die oo2 homogenen
MacLaurinschen Ellipsoide. Sie haben keinen Formparameter und können

daher auch als «nullparametrige» Gleichgewichtsflguren bezeichnet
werden. Jedes homogene Ellipsoid ist für einen bestimmten Wert der
Rotationsgeschwindigkeit im Gleichgewicht; dann gehört die Oberfläche
der Schar der inneren Niveauflächen an, welche stets homothetische
Ellipsoide sind, und es ist die MacLaurinsche Gleichgewichtsbedingung
erfüllt:

w2 R3

k2E
4

— a
5

22

35 + (26)

Es folgen die oo3 einparametrigen, heterogenen Gleichgewichtsflguren,
deren Oberflächen durch Äquatorachse, Abplattung a und den

ersten und einzigen Formparameter /4 gegeben ist, wobei der Index
andeutet, daß es sich um eine Größe 4.0. handelt. Jede dieser Figuren ist,
was übrigens auch ganz allgemein gilt, durch die Masse und die Gestalt
der Oberfläche, also durch [E, R, a, /J, bestimmt. Selbstverständlich
lassen sich die drei geometrischen Bestimmungsstücke auch ganz oder
teilweise durch physikalische Parameter ersetzen. Im Hinblick auf (25)
empfiehlt sich besonders die Definition der einparametrigen
Gleichgewichtsflguren durch [E, R, co, JJ. Grundsätzlich ist auch die
Festlegung durch die drei Konstanten des streng individuellen, stetigen und
differenzierbaren Dichtegesetzes

: Pmax 1 y)' (27)

also durch [E, R, pmax, v] möglich. In (26) ist pmäx die Dichte im Schwerpunkt

und x der Äquatorradius der laufenden inneren Niveaufläche.
Hält man je zwei Parameter fest, zum Beispiel (co, R), so entstehen

lineare Reihen von Gleichgewichtsflguren, die stets mit einem homogenen
Ellipsoid beginnen und bei fortgesetzt zunehmender Massenkonzentration

schließlich in einem «Sphäroid der größten Massenkonzentration»
enden. Bei diesen Grenzfiguren erfüllt die Oberflächendichte gerade die
Poincarésche Gleichung:

oi2 2 tt k2 Pmin. (28)
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Speziell für die Rotationsgeschwindigkeit der Erde ist pmjn 0,013.
Der Koeffizient v des Dichtegesetzes ist für die homogenen Ellipsoide
Null, während er für die Sphäroide der größten Massenkonzentration
knapp unter 1 liegt. Um auch einen Einblick in die Zunahme der
Maximaldichte zu gewinnen, führen wir das Verhältnis n (pmax : Pm) ein,
unter pm die mittlere Dichte der Figur verstanden. Demnach ist n 1

für die MacLaurinschen Ellipsoide, während für die Sphäroide der
größten Massenkonzentration n über 4 liegt. Setzt man ferner /4

— ko.2, so erreicht k bei den Grenzfiguren den Maximalbetrag 1,5.
Setzt man in Verallgemeinerung der MacLaurinschen Bedingung

s =xa ±'ya2, (29)

so wächst in jeder einparametrigen Figurenreihe x von 0,8 bis auf 1,4583
an, während y in Funktion von x durch die Gleichung

/ 5 \ 29 95 435
22 y 1 x) —x x2-| x3 (30)J \ 2 35 2 14

K '

gegeben ist. Damit nimmt zum Beispiel für die Sphäroide der größten
Massenkonzentration die Gleichgewichtsbedingung die Gestalt an:

é 1,4583 a + 0,0592 a2. (31)

Im allgemeinen Falle, das heißt im Falle der mehrparametrigen
Gleichgewichtsflguren, bei denen höhere Formparameter (/6, /8 auftreten,
muß die fehlende Gleichgewichtsbedingung dank unserem dritten Prinzip

durch die charakteristische Eigenschaft df/da 0 an der Oberfläche
ersetzt werden.

Beschränkt man das Problem der Gleichgewichtsflguren auf die
Näherung 4.0., vernachlässigt also die Glieder 6.0., was sich wegen deren
Geringfügigkeit als einzig sinnvoll erweist, so treten neben der Gesamtmasse

E folgende Parameter auf:

a) die Bestimmungsstücke der geometrischen Gestalt: Äquatorradius

R, Abplattung a und der erste Formparameter /4;
b) die Bestimmungsstücke der theoretischen Schwere: Äquatorschwere

y0, Schwereabplattung ß und der Koeffizient jS4 von 4.0. ;

c) die Massegrößen: mittlere Dichte pm und die beiden Massefunktionen

J2 und J4;
d) die Rotationsgeschwindigkeit co, der Potentialwert W0 der freien

Oberfläche und das Verhältnis e von Fliehkraft zur Schwere am Äquator
oder die Größe s.

Die genannten Parameter lassen sich durch 9 Gleichungen verbinden,

so daß, wie es für die Näherung 4.0. sein muß, drei Bestimmungsstücke

bedingt frei gewählt werden können; mit dem Worte «bedingt»
ist dabei ausgedrückt, daß die Wahl der freien Parameter weder in ihrer
Kombination noch in ihren Zahlwerten gänzlich willkürlich ist. Man
findet folgendes Gleichungssystem:
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(32)

Diese Gleichungen sind also Näherung 4.0. sowohl für die einparametrigen

wie auch für alle mehrparametrigen Gleichgewichtsflguren.
Verschwindet die zu U„ gehörige Restfunktion T, so stellt der

Potentialausdruck

U* ='k2E R\2
P. — J.

R\* œ2R?

T) 4 + 3 k2 E (1—J»0 (25a)

sämtliche denkbare Gleichgewichtsflguren und deren äußere Niveauflächen

in Annäherung 4.0. dar. Jede der co3 Flächen S (R, <x, /4) ist
überdies für einen bestimmten Wert der Rotationsgeschwindigkeit in
aller Strenge eine einparametrige Gleichgewichtsfigur; das heißt, alle
höheren Formparameter sind exakt Null. Damit verschwinden aber
natürlich nicht auch die höheren Massefunktionen J6, J8, Weil aber
das Dichtegesetz (27) der einparametrigen Figuren bekannt ist, können
bei entsprechender Weiterentwicklung über C/4 hinaus die höheren
Massefunktionen eindeutig berechnet werden. Ist aber dieselbe Figur
bloß Näherung 4.0. irgendeiner mehrparametrigen Gleichgewichtsflgur,
so müßten die höheren Massefunktionen empirisch ermittelt werden, was
mit Hilfe der künstlichen Satelliten wohl theoretisch, kaum aber praktisch

möglich ist. Mithin lassen sich mehrparametrige Figuren offen-
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sichtlich nur mit Hilfe der Konstanten ihres streng individuellen
Dichtegesetzes berechnen.

Wir definieren daher die mehrparametrigen Gleichgewichtsflguren
am besten folgendermaßen:

1. Die mehrparametrigen Gleichgewichtsflguren bestehen aus
verschiedenen Teilen, die gegeneinander durch Niveauflächen begrenzt sind.

2. Jeder Teil ist entweder homogen oder hat ein Dichtegesetz der
Gestalt (27), jedoch eine andere Abplattungsfunktion als die entsprechende

einparametrige Figur.
3. An den Trennungsflächen der aufeinanderfolgenden Teile tritt ein

Wechsel des Dichtegesetzes ein, wobei ein Dichtesprung nicht
ausgeschlossen ist (Diskontinuitätsflächen der Dichte).

4. Bei Entblätterung bis zur innersten Trennungsfläche resultiert
ein null- oder einparametriger Kern.

5. Aus Stabilitätsgründen kann die Dichte nach innen niemals
abnehmen.

Damit ist der Stufenaufbau der komplizierteren Gleichgewichtsflguren

bereits vorgezeichnet. Die co4 zweiparametrigen Figuren mit den
Oberflächen S (R, a, /4, /6) haben ein Dichtegesetz mit 4 Konstanten. Es
handelt sich also um die sogenannten Wiechertschen Modelle, bestehend
aus einem homogenen Kern und einem ebensolchen Mantel. Die co5

dreiparametrigen Figuren S (R, a, /4, /6, /8) haben ein Dichtegesetz mit
5 Konstanten; das heißt, sie können wegen 5=2+3 nur aus einem
homogenen Mantel und einem heterogenen Kern oder umgekehrt
bestehen. Das allgemeinste zweiteilige Modell ist somit vierparametrig
(6=3+ 3), usw.

h) Das Normalsphäroid der Erde

Ohne Zweifel wird die Normalflgur der Erde am besten als
hydrostatische Gleichgewichtsflgur definiert und in Näherung 4.0. aus [E,
co, R, JJ bestimmt, wie es gemäß (32) am natürlichsten erscheint. Die
Potentialentwicklung der tatsächlichen Erde' weist nun eine Restfunktion

T auf, welche durch die sichtbaren und unsichtbaren Massenunregelmäßigkeiten

bedingt ist, von denen gewöhnlich angenommen wird, daß
sie auf die Kruste beschränkt sind. Heben wir daher die gesamte Kruste
ab, so haben wir sie zwecks «Regularisierung» zweiteilig aus einer homogenen

Wasserhülle und einer heterogenen festen Kruste aufzubauen, und
zwar über der Oberfläche des Mantels, die wir als idealisierte Mohoro-
vicic-Fläche betrachten dürfen. Für diesen Aufbau ist also ein Dichtegesetz

mit 5 Konstanten erforderlich, von denen aber nur drei, nämlich
der Äquatorradius R der Gesamtfigur, die Dicke der Wasserhülle, welche
identisch ist mit der mittleren Tiefe der Lithosphäre, und die Dichte des
Wassers (p 1,028), empirisch vorgegeben sind. Mithin können die zwei
spezifischen Konstanten des Dichtegesetzes der festen Kruste so gewählt
werden, daß die Anteile der gesamten Kruste an den Trägheitsmomenten
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der Erde, genauer gesagt am Hauptträgheitsmoment C um die Rotationsachse

und am mittleren äquatorialen Trägheitsmoment (A + B)/2, bei
der Regularisierung nicht geändert werden. Nebenbei bemerkt, ermöglicht

dies eine Verfeinerung der isostatischen Reduktion. Unsere Forderung

ist nicht nur möglich, sondern offenbar auch die beste, weil ja der
Drehimpuls co C des in sich geschlossenen Massesystems der Erde
unverändert bleiben muß.

Mithin gibt es eine Gleichgewichtsfigur, welche mit der wirklichen
Erde alle vier obigen Bestimmungsstücke gemeinsam hat, was besonders
für die «statische Abplattung»

- C~A 1

K2 (33)
ER2 R

wichtig ist. Das «Massenmoment K2» 2.0. ist die durch die Erdmasse
dividierte Differenz der Trägheitsmomente. Erst seit wir die statische
Abplattung mit der nötigen Genauigkeit aus den künstlichen Satelliten
ableiten können, ist eine Berechnung des Normalsphäroides in Näherung
4.0. ohne eine Voraussetzung über die Parameterzahl oder über das
Dichtegesetz möglich. Nur müssen wir die primär unbekannte Erdmasse
durch die empirisch gut bekannte Äquatorschwere y0 ersetzen. Mit den
Ausgangsdaten

y0 978,037 gal; co2 5,317496 • IO"9 sec~2;r (34)
R 6 378 290 m; J2 10 8310 • 10"8

finden wir aus (32) das Normalsphäroid:

E 5976,32 • IO24 g; a 335289 • IO"8 1:298,25;

/4
¦

— 426 • IO"8; ß 530379 • IO"8; j84 + 3613 • IO"8;

s 346782 • IO-8; ë 346147 • IO"8; pm 5,5168 *• (35)

K2 44063,3 • 1010 cm2; J4 — 332 • 10"

W0 62638,5 ¦ 10'cm2 sec"2

Aus dieser hydrostatischen Gleichgewichtsfigur ergibt sich sofort ein
wichtiger Schluß für die Massefunktion J4. Bei der Regularisierung der
Erdkruste kann sich wohl J4 geringfügig ändern. Jedoch ist es ziemlich
evident, daß die Änderung kaum mehr als 3% ~ 1.10-7 betragen kann.
Mithin stellt das theoretische Ergebnis eine sehr gute Kontrolle der
empirischen Bestimmung dar. Tatsächlich liegen die empirischen
Bestimmungen zwischen —1,4 und — 4,1 • 106; es hat demnach den
Anschein, daß das Ergebnis von Schongolowitsch der Wahrheit am nächsten
kommt.

133



Für einparametrige Gleichgewichtsflguren gilt die Identität der
Reihen

(co, K2) (co, C) (co, H), (36)

wenn wir unter H die dynamische Abplattung verstehen:

H (C — A) : C (37)

Wäre also unser Normalsphäroid (35) eine einparametrige Gleichgewichtsfigur,
so könnten wir am homogenen Ausgangsellipsoid der zugehörigen

Reihe (w, K2):
ah 5 812 413 m; ah 32 6598 • IO-8, (38)

trotzdem dessen Achse um rund 566 km kleiner ist, die Trägheitsmomente

der wahren Erde ablesen:

C f Eah2 80 762 • 1040 g cm2; H 32 6065 • IO"8

C — A 263,34 ¦ IO40 g cm2.
(39)

Dieses Ergebnis steht nun in krassem Widerspruch zu der aus der
Präzessionskonstante empirisch abgeleiteten dynamischen Abplattung:

H 32 7237 • IO"8, (40)

welcher numerische Wert von Bullard7 im Jahre 1948 ermittelt wurde.
Statt aber hieraus den Schluß zu ziehen, daß die Erde nicht einparametrig
sein kann, hat man wiederholt erklärt, diese auffallende Diskrepanz
zwischen der statischen und dynamischen Abplattung beweise, daß die
wirkliche Erde stärker vom hydrostatischen Gleichgewicht abweiche, als
man früher vermutet hat, und daß es daher nicht zweckentsprechend
wäre, dem Problem des Geoides ein hydrostatisches Normalsphäroid
als Vergleichsfläche zugrunde zu legen.

Diese Diskrepanz hat aber noch einen verhängnisvolleren
Fehlschluß gezeitigt. Vor den künstlichen Satelliten konnte die statische
Abplattung nur mit sehr mäßiger Genauigkeit aus den Ungleichheiten der
Mondbewegung abgeleitet werden, weshalb man es stets vorzog, lieber
von der dynamischen Abplattung auszugehen. Mit den Ausgangsdaten
[y0, w, R, H] findet man in indirekter Rechnung über das homogene
Ausgangsellipsoid der zugehörigen Reihe (co, H) die einparametrige
Gleichgewichtsfigur:

E 5976,26 • IO24 g; a 6 378 290 m; a 33 6267 • IO"8 j
1:297,38; J2 108960 • IO"8; K2 44327,6 ¦ 1010cm2;

1

(41)
C 80955 • IO40 g cm2; (C — A) 264,91 • IO40 g cm2. j

' E.G. Bullard, «The Figure of the Earth», Monthly Not. Boy. Astr. Soc,
Suppl. Vol. V, N. 6, 1948.

134



Durch die gleichzeitige empirische Bestimmung der statischen und
dynamischen Abplattung sind schließlich beide Trägheitsmomente der
tatsächlichen Erde gegeben, falls man die Masse E bereits kennt. Mit
den Werten (35) für E und K2 und mit der dynamischen Abplattung (40)
findet man:

K2E (C — A) 263,34 • IO4» g cm2;

C =(C — A): H 80473 • IO40 g cm2.

Mit diesem Trägheitsmoment kann man das homogene Ellipsoid [E, w,
C] berechnen und findet in der zugehörigen Reihe (co, C) folgende Figur
mit der Achse a 6 378 290 m:

K2 43663,3 • IO1» cm2; J2 10 7327 ¦ IO"8;
(43)

H 32 4267 • IO"8; a 33 3681 • IO"8 1:299,69.
v '

Diese Rechnung ist sicherlich exakter als die Verwendung einer
klassischen Näherungsformel für C, mit welcher Henriksen8 und J. O'Keefe9
die Abplattung 1:300 beziehungsweise 1:299,8 gefunden haben.

Es geht jedoch nicht an, hieraus den Schluß zu ziehen, diese
Abplattung wäre die richtige «hydrostatische» Abplattung, und im Gegensatz

dazu den Wert (35) : a — 1 : 298,25 als «tatsächliche» Abplattung
des Erdkörpers zu bezeichnen. Vielmehr sind alle drei Lösungen (35),
(41) und (43) hydrostatische Gleichgewichtsflguren, jedoch mit dem
Unterschied, daß nur die erste allgemein gilt, während die beiden letzten
an die Voraussetzung einer einparametrigen Figur gebunden sind. Wäre
das Normalsphäroid der Erde einparametrig, so würden die drei Lösungen

zusammenfallen. Die Diskrepanz beweist also bloß, daß die Normal-
figur der Erde mehrparametrig ist.

Wir wollen noch die Frage des Unterschiedes zwischen der tatsächlichen

und der hydrostatischen Abplattung prüfen. Hierzu benötigen wir
aber noch die Massefunktion J4, für welche die empirischen Werte
zwischen — 4,1 • 10_6< J4< — 1,1 • IO-6 schwanken. Mit den Daten
[E, w, R, J2, J4] kann das von Helmert für die allgemeinen Niveau-
sphäroide aufgestellte Gleichungssystem aufgelöst werden, und man findet

ohne die Voraussetzung des Gleichgewichtes für das zum Geoid
gehörige Niveausphäroid die «tatsächliche» Abplattung zwischen den
Grenzen :

298,29 > o-1 > 298,12, (44)

womit gezeigt ist, daß die tatsächliche und die hydrostatische Abplattung

(35) innerhalb der Unsicherheit ihrer Bestimmung völlig
zusammenfallen.

8 S.W. Henriksen, «The Hydrostatic Flattening of the Earth», Annals of
IGY 12, S. 197-198, 1960.

9 J.A. O'Keefe, A.Eckels, R.K. Squires, «The Gravitational Field of the
Earth», Astr. Journal 64, 1959; «Discussion of a Paper by W. A. Heiskanen »,

Journal of Geophysical Besearch 66, 1992/3, 1961.
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Oben wurde bereits festgestellt, daß der theoretische Wert von J4
höchstens um wenige Prozente vom tatsächlichen Wert verschieden sein
kann und sich daher recht gut zur Überprüfung der empirischen Bestimmung

von J4 aus den künstlichen Satelliten eignet. Ähnlich ist es von
Interesse, die Größenordnung von J6 zu untersuchen und damit die
Frage zu klären, ob überhaupt eine empirische Bestimmung noch möglich

ist. Hierzu ist natürlich eine Entwicklung bis einschließlich der
Glieder 6.0. notwendig. Ein derartiges System kann derzeit nur für die
einparametrigen Gleichgewichtsflguren aufgestellt werden. Bedenkt man
jedoch die geringen Unterschiede, wie sie zum Beispiel in (44) für die
Abplattung in Erscheinung getreten sind, so ist klar, daß die Beschränkung

auf den einparametrigen Fall die Größenordnung nicht mehr
berührt. Man findet für die einparametrigen Gleichgewichtsflguren das
erweiterte Gleichungssystem:

3J,= 2a
13 25

a +T4aë+TGë

Ji

539 2156

1621

2156
ere ¦

1745
2156"

2050
a£2 + 2156

£3;

r6 - 4 5
"

— IT«2 — TTg25 14 + —a3-
5

3909

[l aC
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(45)

Für unseren Zweck genügt es vollkommen, mit den Näherungen 4.0. aus
(35) die Zusatzglieder 6.0. zu berechnen. Es ändern sich J4 um — 0,5 ¦ 10-8

und fi um + 3,3 • 10~8, während sich J6 + 0,9 • IO"8 ergibt. Damit
ist eindeutig die rapide Abnahme der Massefunktionen J2; erwiesen:
im Absolutbetrag ist J2 326 J4 und J4 353 J6. Also ist es tatsächlich

völlig hoffnungslos, wenn man aus den künstlichen Satelliten noch
J5 und J6 bestimmen will; dies würde eine empirische Genauigkeit von
1 • IO"8 erfordern.

Somit dürfte zur Genüge gezeigt sein, daß erst die neue Theorie der
Gleichgewichtsflguren ein Mittel in die Hand gibt, die Ableitungen der
verschiedenen Massefunktionen aus den Bahnstörungen der künstlichen
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Satelliten kritisch zu prüfen. Hinsichtlich weiterer Angaben darf auf
den Artikel von Hergenhahn10 verwiesen werden, der bis auf einige von
anderen Autoren übernommene irrige Deutungen ganz vorzüglich ist.

(Fortsetzung folgt.)

Kommission für Berufswerbung

Beschäftigung von Schülern als Ferienpraktikanten

Wie der gemeinsamen Kommission für Berufspropaganda des SVVK,
der Fachgruppe Kulturingenieure SIA und der beiden Konferenzen
bekannt ist, beschäftigen verschiedene unserer Ingenieur- und
Vermessungsbüros während der Ferien Sekundär- oder Mittelschüler als Volontäre.

Es scheint uns diese Maßnahme ein geeignetes Mittel der
Berufswerbung zu sein. Die jungen Leute bekommen dadurch Einblick in die
Tätigkeit der Meßgehilfen, Zeichner, Techniker und Ingenieure, und aus
dieser Kontaktnahme kann der Entschluß zur Ergreifung eines solchen
Berufes resultieren.

Wir empfehlen daher unsern Büroinhabern, in den kommenden
Sommerferien vermehrt Sekundär- oder Mittelschüler als Praktikanten zu
beschäftigen. Dabei kann auch def Austausch zwischen verschiedenen
Landesgegenden erwogen werden.

Rapport annuel du Comité central de la S.S.M.A.F.
pour l'année 1961

1. Généralités

L'activité de la Société depuis l'assemblée générale du 2 juin 1961
à Locarno a été, une fois encore, marquée par le souci que cause la question

de la formation professionnelle, question qui n'est pas encore résolue
à notre satisfaction.

Le travail de la Commission de propagande a été récompensé par un
très beau recrutement à la section VIII de l'Ecole polytechnique fédérale.

Sur le plan international la Société a organisé la session du Comité
permanent de la F. I. G., session qui s'est tenue à Berne du 8 au 14 juin
1961. De plus, le Comité s'est occupé très activement du Congrès de
Vienne, qui aura lieu du 24 août au 1er septembre prochains.

La Société a été représentée officiellement à plusieurs manifestations.

2. Mutations
Au cours de l'année sont décédés: 1 membre honoraire: M. le professeur

Dr F. Baeschlin Zollikon; 1 membre actif: M. Pastorelli Arturo à Lugano;
7 membres vétérans: MM. Amrein Hermann, Breganzona; Grossmann
Albert, Muri; Hartmann Julius, Lenzburg; Kormann Ernst, Langenthai;
Marcoli Emilio, Biogno-Beride; Raschie Hans, Bülach; Savary Henri,
Montlingen. Honneur à leur mémoire

Huit membres sont nommés membres vétérans. Ce sont: Büchi
Hermann, Winterthur; Hohloch Wilhelm, Wabern; Lattmann Hermann,

10 G. Hergenhahn-, «Die Bestimmung der Erdgestalt mit Hilfe künstlicher
Satelliten», Zeitschrift für Vermessungswesen, Stuttgart 1960, S. 342-371.
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