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Die geodiitischen Probleme der kiinstlichen Satelliten
(Satellitengeodiisie)

Von K. Ledersteger, Wien
(Fortsetzung)

Die reine Keplerbewegung ist durch 6 Elemente vollstindig be-
stimmt. Die Bahnform ist durch die gro3e Halbachse a und die numeri-
sche Exzentrizitdt definiert. Die Bahnebene, welche durch den Erd-
schwerpunkt geht, kann durch zwei Elemente beziiglich des Aquators
festgelegt werden, nimlich durch den Abstand 3 des aufsteigenden Kno-
tens vom Friihlingspunkt und durch die Neigung i, den Winkel, welchen
die Bahnebene mit der Aquatorebene in der Knotenlinie einschlieBt. Die

Lage der Ellipse in der Bahnebene wird durch das Argument w des Peri-
gdums, dem in der Bewegungsrichtung gezihlten Winkelabstand des
Perigdums vom aufsteigenden Knoten, fixiert, womit die Apsidenlinie
festliegt. SchlieBlich wird die Beziehung zur Zeit durch den augenblick-
lichen Winkelabstand des Satelliten vom Perigiium, die wahre Anomalie
v, festgestellt (Figur 3). Die Sechszahl der Elemente erklirt sich leicht
aus der Notwendigkeit der zweimaligen Integration der drei Bewegungs-
gleichungen, welche fiir das System Erde-Satellit lauten:

d? ¢ 3 o dEy Cdary {

e 2 e s 2 1_ 2 o P g
T TRES =0, — L +BES=0; 2+ ES =0, (16

wobei ¢, 7, { die rechtwinkligen Koordinaten des Satelliten beziiglich des
Erdschwerpunktes sind. ‘

Sind Radiusvektor ¢, Poldistanz & und Rektaszension a die geozen-
trischen Polarkoordinaten des Satelliten, so gilt bei Beriicksichtigung der
Massefunktionen J die vektorielle Differentialgleichung 2.0.
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worin noch wegen der angenommenen Rotationssymmetrie oU/da ver-
schwindet. Wiewohl diese drei Differentialgleichungen die Bewegung des
Satelliten vollstidndig beschreiben, sobald aus den Beobachtungen die
notwendigen Anfangsbedingungen vorliegen, ist ihre Integration mit
sehr groBen Schwierigkeiten verbunden. Ahnlich wie beim Mehrkérper-
problem der klassischen Himmelsmechanik werden nimlich die Bahn-
elemente Funktionen der Zeit; das heiBt, sie unterliegen sédkularen und
periodischen Stérungen, so daB man mit dem Begriff der «oskulierenden
Bahnellipse» operiert. Letztere ist per definifionem jene Keplerellipse,
welche der Satellit beschreiben wiirde, wenn der augenblickliche Orts-
und Geschwindigkeitsvektor die Ausgangsdaten fiir eine stérungsfreie
Bewegung um die im Schwerpunkt vereinigt gedachte gesamte Erdmasse
liefern wiirden. Die Entwicklungen der klassischen Storungstheorie sind
aber auf die kiinstlichen Satelliten wegen der ganz anders gearteten Gro-
Benverhiltnisse der storenden Krifte und auch wegen der moglichen
groen Bahnneigungen nicht anwendbar., Das Problem der Satelliten-
bahnen wurde von verschiedenen Astronomen eingehend studiert; die
entwickelten Methoden sind keineswegs einheitlich und unterscheiden
sich in erster Linie hinsichtlich des Grades der Anniherung.

Sieht man vom Einflul des Luftwiderstandes und von den Stérun-
gen durch Sonne und Mond ab, so sind die Bahnstérungen fast aus-
schliellich durch die mit den zonalen Kugelfunktionen verkniipften
Massefunktionen J; verursacht. Es sei gleich an dieser Stelle betont, dai
wegen der rapiden Abnahme der J; eine Mitnahme der tiber J, hinaus-
gehenden Massefunktionen ziemlich illusorisch erscheint. Aus den weni-
gen Andeutungen, welche iiber die Bewegungsgleichungen und ihre Inte-
gration gemacht wurden, kann selbstverstédndlich kein klares Bild iiber
die Wirkungsweise der verschiedenen Massefunktionen gewonnen wer-
den. Daher geniige die Feststellung, daB sie sidkulare, langperiodische und
kurzperiodische Anderungen der Bahnelemente zur Folge haben. Siku-
larer Natur ist die Drehung der Bahnebene oder der Knotenlinie, wie sie
dhnlich von der Priizessionsbewegung der Erdachse bekannt ist. Als lang-
periodisch diirfen wir den Umlauf des Perigdums oder die Drehung der
Apsidenlinie bezeichnen, wihrend Anderungen von der Periode des Um-
laufs des Satelliten in seiner Bahn als kurzperiodisch gelten. Geoditisch
verwertbar sind natiirlich nur jene Stérungen, die mit einem solchen Ge-
nauigkeitsgrad beobachtet werden konnen, daf} sie einen sicheren Riick-
schlufl auf die verursachenden Massefunktionen gestatten.
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Die geraden Massefunktionen bewirken nun die Drehung der Bahn-
ebene, also die Anderung der Rektaszension des aufsteigenden Knotens
d§i/dt und die Drehung der Apsidenlinie, das heit die Anderung des
Arguments des Perigiums dw/df. Man kann sie in die emheltllche Form
bringen: :

Q = e dy + 0y + ey Js ...
@ = d21J2 + dyJ? + dyJy+ ..,

worin die Koeffizienten Funktionen der Bahnelemente a, e und i sind.
Demgegeniiber bewirken die zonalen Glieder mit ungeradem Index pe-
riodische Stérungen der Flemente §é, w, eund i; die Periode ist der Apsi-
denumlauf.
Fiihrt man die aus dem dritten Keplergesetz folgende mittlere Be-
wegung n des Satelliten in seiner Bahn ein:
k2 E

2 —
n aa

(19)

(72)

und tberdies den Halbparameter p = a (1 — e?) der Bahnellipse, so er-
hilt man nach Merson? und King-Hele® folgende bis einschliefllich der
Glieder 4.0. entwickelten Ausdriicke fiir die sikularen und langperiodi-
schen Stérungen:
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2 R.H. Merson, «The Motion of a Satellite in an Axisymmetric Gravitational
Field», Geophysical Journal, Vol. 4, London 1961, S. 17-52.

3 D.GQ. King-Hele, «<The Earth’s Gravitational Potential, deduced from tha
Orbits of Artificial Satellites», Geophysical Journal, Vol. 4, London 1961, S. 3-16.
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Die Formeln, welche die Autoren fiir die Drehung der Bahnebene und der
Apsidenlinie geben, sind keineswegs vollstdndig iibereinstimmend, teils
wegen der verschiedenen Vernachliissigungen bei der Entwicklung, teils
wegen der ginzlich verschiedenen Methoden, auf die wir hier unmaoglich
eingehen konnen.

Langperiodische Anderungen erfahren auch die Neigung i der Bahn-
ebene und die Exzentrizitiit e oder die Perigdumsdistanz rp, was gleich-
bedeutend ist, weil die Halbachse a — immer abgesehen vom Luftwider-
stand! — konstant bleibt:

i =i, + 57 ) cos i sin w + TS A
2 2

eJ; R 15 J, e® (R)2
P

1— Isin?i , _
. ——sin2i(1—-cos2w)

1— 3 sin?i

(21)
e 15eJ, Rsin?i
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3
R 1—7Fsin?i

i
p 1_—%sin2i- (1 —cos2 w)

TPZI'P()_I‘

Hierin beziehen sich i, und rp, auf w = 0.
Schliefllich kann der Wert der Halbachse a aus der Knotenperiode
T vermoge -
R 2
{ 1—3J, (77) (7cos?i—1) (22)

a3
kK*E

T =2~

abgeleitet werden. In all diesen Gleichungen sind die Bahnelemente e
und i nicht als oskulierende, sondern als mittlere Elemente zu nehmen.
King-Hele! hat auch recht brauchbare Niherungsformeln fiir die
sikularen Stérungen im Knoten und im Argument des Perigdums an-
gegeben:
. i R\35
§6 =—110,00 (?) cos i] °/d

(23)

B R 3,5
fr = m%?)@mw—n}m

die aus den Gleichungen (20) unter Beachtung von (7a) leicht abzuleiten
sind. Die Drehung der Bahnebene verschwindet also bei der Bahnneigung
90°, was nur natiirlich ist, da die zonalen Glieder bei Polbahnen kein Dreh-

moment erzeugen. & ist ein Maximum fiir i = 0, was selbstverstidndlich nur
einen Grenzwert darstellt, weil dann die Definition des Knotens ihren Sinn
verliert. Der Knoten bewegt sich riickldufig, also in westlicher Richtung, so-

4 D.@. King-Hele, «The Effect of the Earth’s Oblateness on the Orbit of a
Near Satellite», Proc. Roy. Soc. A, 247, S. 49-72, 1958.
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lange die Neigung kleiner als 90° ist. Dies war bisher stets der Fall, weil
man die Satelliten gerne im Sinne der Erddrehung auf ihre Bahn bringt, um
die Rotationsgeschwindigkeit der Erde, rund 460 m/s im Aquator, mit
auszuniitzen. Mit zunehmendem Halbparameter p oder auch mit wach-
sender Perigdumshohe nimmt die Drehung der Bahnebene rasch ab. Es
sei aus (23) folgende kleine Tabelle fiir die Knotenwanderung, ausge-
driickt in Graden pro Tag, berechnet:

p-R
\ 300 km = 600 km 900 km
%

0° —8,51 — 7,30 —6,30
30° — 7,37 —6,32 — 5,46
60° — 4,26 —3,66 —3,15
90° 0,00 0,00 0,00
Die Anderung des Argumentes w verschwindet fiir cos? i = 1/, das

heifit fiir i = 63° 26" und 116° 34’. Man hat es also in der Hand, durch
geeignete Wahl der Neigung die Drehung der Apsidenlinie zum Ver-
schwinden zu bringen. Analog zur vorhergehenden sei auch fiir w folgende
Tabelle gegeben:

p-B ‘ '
\ - 300 km 600 km 900 km
?

0°| + 17,00 -+ 14,60 + 12,60
30° | 4 11,71 <+ 10,04 + 8,66
60° | + 1,06 4+ 0,91 <+ 0,79
90° | — 4,26 — 3,65 — 3,15

Fiir den Umlauf der Apsidenlinie ergeben sich also bei einer Perlgaums-
héhe von 300 km Perioden zwischen 21 Tagen und co.

Abschlieflend sei noch die Frage der lingenabhingigen Glieder ge—
streift, welche in (15) unterdriickt wurden. Diese bewirken im allgemei-
nen wegen der Rotation der Erde nur kurzperiodische Stérungen, das
heiflit Storungen von der Periode der Erdrotation und der Satelliten-
revolution, die nur schwer erfaB3bar sind. In gewissen Resonanzfillen
konnen, wie Cook® zeigt, wohl auch sidkulare und langperiodische St-
" rungen auftreten; aber auch in diesen Fillen diirften die Absolutbetrige
hart an der Grenze, wenn nicht unter der Beobachtungsgenauigkeit
liegen.

f) Die Bestimmung der Massefunktionen J;

Da wir uns meines Erachtens grundséitzlich auf die Massefunktionen
J,, J; und J, beschrinken diirfen, ergibt sich aus der Prizessionsglei-

5 A.H. Cook, «Resonant Orbits of Artificial Satellites and Longitude Terms
in the Earth’s External Gravitational Potential», Geophysical Journal, Vol. 4,
London 1961, S. 53-72.
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~ chung eines einzigen Satelliten die Massefunktion J,, wenn man fiir J,
und J,? ausreichende Niherungen einfithren kann, wihrend dabei J,
vernachlissigt werden darf, falls, wie wir es fiir geoditische Satelliten
gefordert haben, die Bahnexzentrizitit klein ist. Aus Prézession und
Apsidendrehung eines Satelliten erhilt man #hnlich J, und J,, wobei
-man aber-entweder einen recht guten Wert fiir J; benétigt oder sich auf
ein Zeitintervall beschrinken muf}, in welchem sin w klein ist, damit der
Faktor (sin i:e) in der zweiten Gleichung (20) nicht zu gro8 wird. Ub-
rigens ist zu bedenken, dafl die Apsidendrehung namentlich bei Bahnen

geringer Exzentrizitit nur wesentlich ungenauer als cQ) aus den Beobach-

tungen hervorgeht und daBl & natiirlich nur in Verbindung mit {2 be-
stimmbar ist, weil ja das Argument des Perigiums vom Knoten ab ge-
zahlt wird. Hat man die Prazession von n Satelliten beobachtet, so
kénnen im Ausgleichswege J, und J, bestimmt werden, wenn sich nur
die Bahnen hinreichend in der Neigung, eventuell auch im Parameter p.
unterscheiden. Blofle Variation von a und e bei gleicher Neigung, wie sie
etwa durch den Luftwiderstand im Leben eines einzigen Satelliten her-
vorgerufen wird, geniigt nicht. Ist die Zahl der Satelliten grof}, so kénnen
grundsitzlich neben J, und J, auch einige hohere Massefunktionen J,;
bestimmt werden, wobei allerdings nur bei sehr hoher Genauigkeit der
Elemente verliBliche Resultate zu erwarten sind. Auf diesem Wege diirfte
sich in naher Zukunft héchstwahrscheinlich die rapide Abnahme der
Massefunktionen J,; empirisch bestétigen lassen. Die Hauptschwierigkeit
fiir die nétige Genauigkeitssteigerung liegt in der sicheren Erfassung des
Luftwiderstandes.

Die starke Konvergenz der geraden Massefunktionen J,; gegen Null
gestattet noch keinen sicheren Schlul3 auf das Verhalten der ungeraden
Massefunktionen, welche allein durch die Abweichungen vom hydrosta-
tischen Gleichgewicht bedingt sind. Es muf3 daher keineswegs J, seiner
GroBlenordnung nach in der Mitte zwischen J, und J, liegen; viel wahr-
scheinlicher ist sogar, dal J; die Gréenordnung von J, besitzt. Dennoch
darf bei der Bestimmung von J; aus (21) J, unterdriickt werden, weil es
gegeniiber J; beide Male mit dem Faktor e multipliziert ist, der zumindest
bei den geoditischen Satellitent sehr klein sein wird. Uberdies erzeugt .J,
ein Glied mit der Periode 2 w. Wir kénnen also mit vollig ausreichender
Genauigkeit ansetzen:.

1 J; R 1 J; R - ‘
Si=— "' _ecosisinw; 8¢ =—— —> —sinisinw. (24)
2 J, p 2 J, a

Ungerade Massefunktionen J; konnen nur bei einer Asymmetrie zwischen
der Nord- und Siidhalbkugel der Erde auftreten. So hat man aus der pe-
riodischen Schwankung des Perigdumsabstandes von Vanguard I mit
einer Amplitude von etwa 4 km fiir J, den Wert —2,4 - 10-% berechnet
und hieraus geschlossen, daB die nérdliche Polarhalbachse der Erde um
" etwa 16 m groBer, die siidliche um denselben Betrag kleiner sei als der
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Mittelwert. Hier das Wort «Birnenform» zu gebrauchen, scheint reich-
lich irrefiithrend.

King-Hele® hat aus den Satelliten Sputnik 2, Vanguard I und Ex-
plorer 7 eine Neuberechnung der geraden Massefunktionen vorgenom-
men. Ohne auf weitere Einzelheiten einzugehen, sei bemerkt, dafl er fol-
gende Zusammenstellung der bisherigen Bestimmungen der Massefunk-
tionen J,—J; gibt:

J, = (+ 1082,79 -+ 0,15) - 10-6

Jg=(— 2,4 40,3)-10°
Jy=(— 14 40,2)-10°
Jy=(— 01 40,1)-10°

Js=(+ 09 +08)-10F¢

Sofort fallt auf, dal die mittleren Fehler von J; und J; gleich grof3 sind
wie die ausgewiesenen Werte. Hinzu kommt, dall} King-Hele selbst etwas
frither aus einem anderen Satelliten (Explorer 4) fiir J; den Wert J, =
(—0,1 4+ 1,5) - 10" gefunden hat, wihrend Kozai fast gleichzeitig mit
der Neubestimmung von King-Hele fiur J; = (— 2,3 4+ 0,2) - 10-¢ be-
rechnet hat. Dies erweckt wohl berechtigte Zweifel, ob die Bestimmun-
gen von J; und Jg iiberhaupt noch als reell bezeichnet werden diirfen.
Unsere spiteren theoretischen Betrachtungen werden zeigen, dal3 J; nur
von der GroBenordnung 1 - 1073 sein kann und sich daher wohl end-
giiltig einer empirischen Bestimmung entzieht.

Aber auch der ausgewiesene Wert fiir J, ist keineswegs so sicher, als
" man aus dem mittleren Fehler der Bestimmung erwarten diirfte. Es
‘wire sonst kaum denkbar, daB Schongolowitsché, gleichfalls 1960, aus
Sputnik 2, Sputnik 3 und dessen Rakete J, = (— 4,1 -+ 0,7) - 10-% ab-
leiten konnte.

Die obige kleine Tabelle hat iibrigens King-Hele zu der Frage an-
geregt, ob die Massefunktionen J; fiir i > 3 annidhernd von derselben
Groflenordnung sind oder ob sie, wie Jefireys vermutet, zumindest so
rasch wie 1/i abnehmen. Meines Erachtens ist diese Fragestellung nicht
einwandfrei. Man muf3 vielmehr scharf zwischen den geraden und un-
geraden Massefunktionen unterscheiden und vorerst die Abnahme der
geraden Massefunktionen im Falle des hydrostatischen Gleichgewichtes
untersuchen. Die ungeraden Massefunktionen, die, wie schon erwihnt,
aus den verhiltnisméfig geringen Abweichungen vom hydrostatischen
Gleichgewicht resultieren, werden dann vermutlich immer von der Gro-
Benordnung der nichstfolgenden geraden Massefunktion sein. Es diirfte
somit vollkommen berechtigt sein, die héheren Massefunktionen zu ver-
nachlissigen, und zwar nicht erst ab i = 7, wie es King-Hele vorschléigt,
sondern bereits ab i = 5.

8 I1.D. Schongolowitsch, «Ein Versuch, bestimmte Parameter des Erdschwere-
feldes aus den Beobachtungsresultaten der Satelliten 1957 32, 1958 B1 und 1958 32
abzuleiten», Bull. der Stationen fiir optische Beobachtung der kiinstlichen Erd-
satelliten, Nr. 2, 1960, 8. 1-24,
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In diesem Zusammenhang erscheint auch die Deutung etwas irrig,
dafl die hoheren Massefunktionen eine Auswirkung der regionalen und
lokalen Anomalien darstellen. Die geraden Massefunktionen J,; belie-
biger Ordnung treten auch in der Kugelfunktionsentwicklung der hydro-
statischen Gleichgewichtsfiguren auf, also beim Fehlen jeglicher Anoma-
lien. Man mii3te dann in der Lage sein, diese Funktionen in einen nor-
malen und einen Stérungsanteil zu zerlegen. Es hat somit den Anschein,
daf} die kiinstlichen Satelliten derzeit mangels einer ausreichenden theo-
retischen Kontrollmdéglichkeit sozusagen «iiberfordert» werden. Zur Ent-
scheidung dieser Frage miissen wir zuerst die theoretische Kontrolle ent-
wickeln.

g) Die Grundziige der Theorie der Gleichgewichtsfiguren

Im folgenden sei in groflen Ziigen eine Theorie der hydrostatischen
Gleichgewichtsfiguren entwickelt, welche im Gegensatz zur klassischen
Theorie ganzlich auf dem AuBenraumpotential begriindet ist. Dies ist
moglich, sobald drei Prinzipien nachgewiesen sind. Erstens mufl das
Dichtegesetz der Gleichgewichtsfiguren streng individuell sein, damit die
Unbestimmtheit des Stokesschen Satzes aufgehoben ist. Zu jeder vor-
gegebenen Figur, die als freie Oberfliche und gleichzeitig Niveauflache
von unendlich vielen Massenanordnungen denkbar ist, gibt es, wenn
iberhaupt, so nur eine einzige Massenanordnung im hydrostatischen
Gleichgewicht. Dabei kann bekanntlich die Bedingung des Gleich-
gewichtes so formuliert werden, daB3 die inneren Niveauflichen mit den
Flachen gleicher Dichte zusammenfallen, wobei lediglich aus Stabilitiits-
griinden zusé#tzlich gefordert wird, daf3 die Dichte nach innen niemals
abnimmt. Damit ist gleichzeitig die freie Oberfliche die oder eine der
Flichen der geringsten Dichte. Um ferner vom Aulenraum her jede be-
liebige innere Niveaufliche mit all ihren geometrischen und physika-
lischen Daten bestimmen zu kénnen, ist das Prinzip der Entblidtterung
erforderlich, welches besagt, dal man die Niveauflichen Schale fiir
Schale abheben kann, wodurch eine Reihe von Gleichgewichtsfiguren
mit abnehmenden Dimensionen und abnehmender Masse entsteht. Dies
ist jedoch nur moglich, wenn jede zwischen zwei Niveauflichen einer
beliebigen Gleichgewichtsfigur eingeschlossene Masse auf den Innenraum
der kleineren der beiden Niveauflichen keinerlei Anziehungskraft aus-
iibt. Die beiden genannten Prinzipe lassen sich ziemlich leicht aus den
Wavreschen Schichtungssitzen beweisen. SchlieBllich mufl es noch mog-
lich sein, die freie Oberfliche aus der Schar der duBeren Niveauflichen
herauszuheben. Dies ist tatsichlich der Fall. Vergleicht man diese
Niveaufldche mit ihren achsengleichen Rotationsellipsoiden, so 1483t sich
ihre Gestalt durch Achse, Abplattung und einen oder mehrere Form-
parameter kennzeichnen, welche die Abweichungen vom achsengleichen
Ellipsoid beschreiben. Zumindest der erste Formparameter, eine stets
negative Grofle von der Ordnung des Quadrates der Abplattung, ist nun
an der Oberfliche in seinem Absolutbetrag ein Minimum.
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Es ist bekanntlich iiblich, das Aullenraumpotential W des tatsich-
lichen Erdkérpers in einen Normal- und einen Stérungsteil zu zerlegen:
W = U + T. Wihlt man fiir U die Kugelfunktionsentwicklung einer
schwach abgeplatteten hydrostatischen Gleichgewichtsfigur, welche
durch Rotationssymmetrie und Symmetrie zur Aquatorebene aus-
gezeichnet ist:

k2 E o R\2i w2 R / r\3
= | e oY P . Bl P
Ue == [1 iflJﬂ( : ) Py (cos 8) + g7 ( R) 1—r 2)], (25)

so kann man durch «Regularisierung», das heit durch die Herstellung
des hydrostatischen Gleichgewichtes, die Restfunktion 7 exakt zum
Verschwinden bringen.

Die ecinfachsten Gleichgewichtsfiguren sind die ©co? homogenen
MacLaurinschen Ellipsoide. Sie haben keinen Formparameter und kon-
nen daher auch als «nullparametrige» Gleichgewichtsfiguren bezeichnet
werden. Jedes homogene Ellipsoid ist fiir einen bestimmten Wert der
Rotationsgeschwindigkeit im Gleichgewicht; dann gehort die Oberflache
der Schar der inneren Niveauflichen an, welche stets homothetische
Ellipsoide sind, und es ist die MacLaurinsche Gleichgewichtsbedingung
erfiillt:

R 4 29
ik O R Y ST I %6
E= g “ 5 " THpY T (26)

Es folgen die co® einparametrigen, heterogenen Gleichgewichtsfigu-
ren, deren Oberflichen durch Aquatorachse, Abplattung a und den er-
sten und einzigen Formparameter f, gegeben ist, wobei der Index an-
deutet, dal3 es sich um eine Grof3e 4.0. handelt. Jede dieser Figuren ist,
was lbrigens auch ganz allgemein gilt, durch die Masse und die Gestalt
der Oberflache, also durch [E, R, a, f,], bestimmt. Selbstverstidndlich
lassen sich die drei geometrischen Bestimmungsstiicke auch ganz oder
teilweise durch physikalische Parameter ersetzen. Im Hinblick auf (25)
empfiehlt sich besonders die Definition der einparametrigen Gleich-
gewichtsfiguren durch [E, R, w, J,]. Grundsitzlich ist auch die Fest-
legung durch die drei Konstanten des streng individuellen, stetigen und
differenzierbaren Dichtegesetzes

P = Pmax |:1 —V (%)2]23 (27)

also durch [E, R, pmax, ] moglich. In (26) ist ppax die Dichte im Schwer-
punkt und x der Aquatorradius der laufenden inneren Niveaufldche.
Hilt man je zwei Parameter fest, zum Beispiel (w, R), so entstehen
lineare Reihen von Gleichgewichtsfiguren, die stets mit einem homogenen
Ellipsoid beginnen und bei fortgesetzt zunehmender Massenkonzentra-
tion schlieBlich in einem «Sphéiroid der gréollten Massenkonzentration»
enden. Bei diesen Grenzfiguren erfiillt die Oberflichendichte gerade die
Poincarésche Gleichung:
 w? =27k ppin- (28)
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Speziell fir die Rotationsgeschwindigkeit der Erde ist p;,, = 0,013.
Der Koeffizient v des Dichtegesetzes ist fiir die homogenen Ellipsoide
Null, wihrend er fiir die Sphiroide der grofiten Massenkonzentration
knapp unter 1 liegt. Um auch einen Einblick in die Zunahme der Ma-
ximaldichte zu gewinnen, fithren wir das Verhéltnis n = (pmax ! pm) €in,
unter p,, die mittlere Dichte der Figur verstanden. Demnach ist n = 1
fiir die MacLaurinschen Ellipsoide, wihrend fiur die Sphéiroide der
groBten Massenkonzentration n iiber 4 liegt. Setzt man ferner f, =
— — ka?, so erreicht « bei den Grenzfiguren den Maximalbetrag 1,5.

Setzt man in Verallgemeinerung der MacLaurinschen Bedingung
‘ g = xa | 'ya2, ' ' (29)

so wichst in jeder einparametrigen Figurenreihe x von 0,8 bis auf 1,4583
an, wihrend y in Funktion von x durch die Gleichung

29 95 435

gegeben ist. Damit nimmt zum Beispiel fiir die Sphiroide der groB3ten
Massenkonzentration die Gleichgewichtsbedingung die Gestalt an:

£ = 1,4583 a 4 0,0592 a2 (31)

Im allgemeinen Falle, das hei3t im Falle der mehrparametrigen Gleich-
gewichtsfiguren, bei denen héhere Formparameter (fg, f; . ..) auftreten,
mul} die fehlende Gleichgewichtsbedingung dank unserem dritten Prin-
zip durch die charakteristische Eigenschaft df/da = 0 an der Oberflache
ersetzt werden. _ _

Beschrinkt man das Problem der Gleichgewichtsfiguren auf die
Niherung 4.0., vernachlissigt also die Glieder 6.0., was sich wegen deren
Geringfiigigkeit als einzig sinnvoll erweist, so treten neben der Gesamt-
masse E folgende Parameter auf: K

a) die Bestimmungsstiicke der geometrischen Gestalt: Aquator-
radius R, Abplattung a und der erste Formparameter f,; '

b) die Bestimmungsstiicke der theoretischen Schwere: Aquator-
schwere y,, Schwereabplattung 8 und der Koeffizient 8, von 4.0.;

¢) die Massegroflen: mittlere Dichte p, und die beiden Massefunk-
tionen J, und J,; : :

d) die Rotationsgeschwindigkeit w, der Potentialwert W, der freien
Oberfliche und das Verhiltnis & von Fliehkraft zur Schwere am Aquator
oder die Grofle &.

Die genannten Parameter lassen sich durch 9 Gleichungen verbin-
den, so daf}, wie es fiir die Ndherung 4.0. sein mul}, drei Bestimmungs-
stiicke bedingt frei gewihlt werden konnen; mit dem Worte «bedingt»
ist dabei ausgedriickt, dafl die Wahl der freien Parameter weder in ihrer
Kombination noch in ihren Zahlwerten ginzlich willkiirlich ist. Man
findet folgendes Gleichungssystem:
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Diese Gleichungen sind also Naherung 4.0. sowohl fiir die einparame-
trigen wie auch fiur alle mehrparametrigen Gleichgewichtsfiguren.

Verschwindet die zu U, gehirige Restfunktion 7, so stellt der
Potentialausdruck

k*E R \? R\ w!R3 [ r\3

samtliche denkbare Gleichgewichtsfiguren und deren &uBere Niveau-
flichen in Annidherung 4.0. dar. Jede der oo® Flichen S (R, a, f,) ist
iiberdies fiir einen bestimmten Wert der Rotationsgeschwindigkeit in
aller Strenge eine einparametrige Gleichgewichtsfigur; das heifit, alle
hiéheren Formparameter sind exakt Null. Damit verschwinden aber na-
tiirlich nicht auch die héheren Massefunktionen J,, J,, ... Weil aber
das Dichtegesetz (27) der einparametrigen Figuren bekannt ist, konnen
bei entsprechender Weiterentwicklung iiber U, hinaus die hdéheren
Massefunktionen eindeutig berechnet werden. Ist aber dieselbe Figur
blo3 Nédherung 4.0. irgendeiner mehrparametrigen Gleichgewichtsfigur,
so miil3ten die héheren Massefunktionen empirisch ermittelt werden, was
mit Hilfe der kiinstlichen Satelliten wohl theoretisch, kaum aber prak-
tisch mdoglich ist. Mithin lassen sich mehrparametrige Figuren offen-
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sichtlich nur mit Hilfe der Konstanten ihres streng individuellen Dichte-
gesetzes berechnen.

Wir definieren daher die mehrparametrigen Gleichgewichtsfiguren
am besten folgendermallen:

1. Die mehrparametrigen Gleichgewichtsfiguren bestehen aus ver-
schiedenen Teilen, die gegeneinander durch Niveaufldchen begrenzt sind.

2. Jeder Teil ist entweder homogen oder hat ein Dichtegesetz der
‘Gestalt (27), jedoch eine andere Abplattungsfunktion als die entspre-
chende einparametrige Figur.

3. An den Trennungsflichen der aufeinanderfolgenden Teile tritt ein
Wechsel des Dichtegesetzes ein, wobei ein Dichtesprung nicht aus-
geschlossen ist (Diskontinuititsflichen der Dichte).

4. Bei Entblidtterung bis zur innersten Trennungsfliche resultiert
ein null- oder einparametriger Kern.

5. Aus Stabilititsgriinden kann die Dichte nach innen niemals ab-
nehmen.

Damit ist der Stufenaufbau der komplizierteren Gleichgewichts-
figuren bereits vorgezeichnet. Die co* zweiparametrigen Figuren mit den
Oberflichen S (R, a, [, f¢) haben ein Dichtegesetz mit 4 Konstanten. Es
handelt sich also um die sogenannten Wiechertschen Modelle, bestehend
aus einem homogenen Kern und einem ebensolchen Mantel. Die co®
dreiparametrigen Figuren S (R, a, f4, fe» fs) haben ein Dichtegesetz mit
5 Konstanten; das heillt, sie konnen wegen 5 = 2 4 3 nur aus einem
homogenen Mantel und einem heterogenen Kern oder umgekehrt be-
stehen. Das allgemeinste zweiteilige Modell ist somit vierparametrig
(6 =3 + 3), usw.

h) Das Normalsphdroid der Erde

Ohne Zweifel wird die Normalfigur der Erde am besten als hydro-
statische Gleichgewichtsfigur definiert und in Niherung 4.0. aus [E,
w, R, J,] bestimmt, wie es gemiall (32) am natirlichsten erscheint. Die
Potentialentwicklung der tatsichlichen Erde weist nun eine Restfunk-
tion T auf, welche durch die sichtbaren und unsichtbaren Massenunregel-
méiligkeiten bedingt ist, von denen gewdhnlich angenommen wird, daf3
sie auf die Kruste beschrinkt sind. Heben wir daher die gesamte Kruste
ab, so haben wir sie zwecks «Regularisierung» zweiteilig aus einer homo-
genen Wasserhiille und einer heterogenen festen Kruste aufzubauen, und
zwar iiber der Oberfliche des Mantels, die wir als idealisierte Mohoro-
vicic-Fliche betrachten diirfen. Fiir diesen Aufbau ist also ein Dichte-
gesetz mit 5 Konstanten erforderlich, von denen aber nur drei, nimlich
der Aquatorradius R der Gesamtfigur, die Dicke der Wasserhiille, welche
identisch ist mit der mittleren Tiefe der Lithosphire, und die Dichte des
Wassers (p = 1,028), empirisch vorgegeben sind. Mithin kénnen die zwei
spezifischen Konstanten des Dichtegesetzes der festen Kruste so gewiihlt
werden, daf3 die Anteile der gesamten Kruste an den Tridgheitsmomenten
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der Erde, genauer gesagt am Haupttriagheitsmoment C um die Rotations-
achse und am mittleren dquatorialen Trigheitsmoment (A + B)/2, bei
der Regularisierung nicht geindert werden. Nebenbei bemerkt, ermog-
licht dies eine Verfeinerung der isostatischen Reduktion. Unsere Forde-
rung ist nicht nur mdéglich, sondern offenbar auch die beste, weil ja der
Drehimpuls w C des in sich geschlossenen Massesystems der Erde unver-
dndert bleiben muf.

Mithin gibt es eine Gleichgewichtsfigur, welche mit der wirklichen
Erde alle vier obigen Bestimmungsstiicke gemeinsam hat, was besonders
fiir die «statische Abplattung»

Jy = == K, (33)

wichtig ist. Das «Massenmoment K,» 2.0. ist die durch die Erdmasse
dividierte Differenz der Trigheitsmomente. Erst seit wir die statische
Abplattung mit der nétigen Genauigkeit aus den kiinstlichen Satelliten
ableiten kénnen, ist eine Berechnung des Normalsphiroides in Ndherung
4.0. ohne eine Voraussetzung iliber die Parameterzahl oder iiber das
Dichtegesetz mdoglich. Nur miissen wir die primér unbekannte Erdmasse
durch die empirisch gut bekannte Aquatorschwere v, ersetzen. Mit den
Ausgangsdaten :

Yo = 978,037 gal; w? = 5,317496 - 10 sec;

(34)
R — 6378290 m; J, — 10 8310 - 10-3
finden wir aus (32) das Normalsphéroid:

E = 5976,32 - 10 g; a = 335289 - 10-8 = 1:298,25;
f, = —426-10-% B — 530379 -10-8; B, = - 3613 - 10-¢;
e = 346782 - 10°%; & = 346147 - 10°%; pm = 5,5168 (35)
K, — 44063,3 - 10 cm?; J, — — 332 - 10°8

W, = 62638,5 - 107 cm?sec

Aus dieser hydrostatischen Gleichgewichtsfigur ergibt sich sofort ein
wichtiger Schluf3 fiir die Massefunktion J,. Bei der Regularisierung der
Erdkruste kann sich wohl J, geringfiigig indern. Jedoch ist es ziemlich
evident, dal} die Anderung kaum mehr als 39 ~ 1.10~7 betragen kann.
Mithin stellt das theoretische Ergebnis eine sehr gute Kontrolle der em-
pirischen Bestimmung dar. Tatsichlich liegen die empirischen Bestim-
mungen zwischen — 1,4 und — 4,1 - 10°%; es hat demnach den An-
schein, daBl das Ergebnis von Schongolowitsch der Wahrheit am néchsten
kommt.
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Fir einparametrige Gleichgewichtsfiguren gilt die Identitit der
Reihen
(w, K,) = (w, C) = (w, H), (36)

wenn wir unter H die dynamische Abplattung verstehen:
H=(C—A):C (37)

Wiire also unser Normalsphiroid (35) eine einparametrige Gleichgewichts-
figur, so kénnten wir am homogenen Ausgangsellipsoid der zugehorigen
Reihe (w, K,):

ap = 5812413 m; ap = 32 6598 - 1078, (38)

trotzdem dessen Achse um rund 566 km kleiner ist, die Trigheits-
momente der wahren Erde ablesen: '

C = 2 Eap® = 80762 - 10% g em?; H = 326065 - 108

39

C—A = 263,34 - 10% g cm?. ()

Dieses Ergebnis steht nun in krassem Widerspruch zu der aus der Pri-
zessionskonstante empirisch abgeleiteten dynamischen Abplattung:

H = 327237 - 108, (40)

welcher numerische Wert von Bullard” im Jahre 1948 ermittelt wurde.
Statt aber hieraus den SchluB} zu ziehen, daf3 die Erde nicht einparametrig
sein kann, hat man wiederholt erklirt, diese auffallende Diskrepanz
zwischen der statischen und dynamischen Abplattung beweise, da3 die
wirkliche Erde stirker vom hydrostatischen Gleichgewicht abweiche, als
man frither vermutet hat, und da3 es daher nicht zweckentsprechend
wire, dem Problem des Geoides ein hydrostatisches Normalsphéroid
als Vergleichsfliche zugrunde zu legen.

Diese Diskrepanz hat aber noch einen verhingnisvolleren IFehl-
schlul3 gezeitigt. Vor den kiinstlichen Satelliten konnte die statische Ab-
plattung nur mit sehr méagiger Genauigkeit aus den Ungleichheiten der
Mondbewegung abgeleitet werden, weshalb man es stets vorzog, lieber
von der dynamischen Abplattung auszugehen. Mit den Ausgangsdaten
[ves ws R, H] findet man in indirekter Rechnung iiber das homogene Aus-
gangsellipsoid der zugehérigen Reihe (w, H) die einparametrige Gleich-
gewichtsfigur:

E = 5976,26 - 102 g; a = 6378290 m; a = 33 6267 - 108 = ]
= 1:297,38; J, = 108960 - 10-8; K, = 44327,6 - 10'° cm?; (41)
C = 80955 - 10% g cm?; (C — A) = 264,91 - 10 g cm?. [

7 E.C. Bullard, «The Figure of the Earth», Monthly Not. Roy. Astr. Soc.,
Suppl. Vol. V, N. 6, 1948.
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Durch die gleichzeitige empirische Bestimmung der statischen und
dynamischen Abplattung sind schliellich beide Triagheitsmomente der
. tatsachlichen Erde gegeben, falls man die Masse E bereits kennt. Mit
den Werten (35) fiir E und K, und mit der dynamischen Abplattung (40)

findet man:
K, E =(C— A) = 263,34 - 10 g cm?;

(42)

C =(C— A): H =280473 - 10 g cm?®.
Mit diesem Trigheitsmoment kann man das horhogene Ellipsoid [E, w,
C] berechnen und findet in der zugehorigen Reihe (w, C) folgende Figur

mit der Achse ¢ = 6 378 290 m:
K, = 43663,3 - 10" cm?; J, = 10 7327 - 108,

43
H =324267 - 10°%, a = 333681 - 10% = 1:299,69. G

Diese Rechnung ist sicherlich exakter als die Verwendung einer klas-
sischen Niherungsformel fiir C, mit welcher Henriksen® und J. O’Keefe?®
die Abplattung 1:300 beziehungsweise 1:299,8 gefunden haben.

Es geht jedoch nicht an, hieraus den Schlufl zu ziehen, diese Ab-
plattung wire die richtige «hydrostatische» Abplattung, und im Gegen-
satz dazu den Wert (35) : a = 1 : 298,25 als «tatsichliche» Abplattung
des Erdkorpers zu bezeichnen. Vielmehr sind alle drei Losungen (35),
(41) und (43) hydrostatische Gleichgewichtsfiguren, jedoch mit dem
Unterschied, daf3 nur die erste allgemein gilt, wiahrend die beiden letzten
an die Voraussetzung einer einparametrigen Figur gebunden sind. Wiire
das Normalsphiroid der Erde einparametrig, so wiirden die drei Losun-
gen zusammenfallen. Die Diskrepanz beweist also blo3, daf3 die Normal-
figur der Erde mehrparametrig ist.

Wir wollen noch die Frage des Unterschiedes zwischen der tatsich-
lichen und der hydrostatischen Abplattung priifen. Hierzu benétigen wir
aber noch die Massefunktion J,, fiir welche die empirischen Werte zwi-
schen —4,1 -10%<J,<—1,1-10"°% schwanken. Mit den Daten
[E, w, R, J,, J,] kann das von Helmert fiir die allgemeinen Niveau-
sphiroide aufgestellte Gleichungssystem aufgelost werden, und man fin-
det ohne die Voraussetzung des Gleichgewichtes fiir das zum Geoid ge-
horige Niveausphiroid die «tatsidchliche» Abplattung zwischen den
Grenzen: )

298,29 > a7 > 298,12, (44)

womit gezeigt ist, daB die tatsédchliche und die hydrostatische Abplat-
tung (35) innerhalb der Unsicherheit ihrer Bestimmung vollig zusam-
menfallen.

8 S.W. Henriksen, «The Hydrostatic Flattening of the Earth», Annals of
IGY 12, 8. 197-198, 1960.

% J.A. O’Keefe, A. Eckels, R.K. Squires, «The Gravitational Field of the
Earth», Astr. Journal 64, 1959; «Discussion of a Paper by W. A. Heiskanen»,
Journal of Geophysical Research 66, 1992/3, 1961.
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Oben wurde bereits festgestellt, dal der theoretische Wert von J,
hochstens um wenige Prozente vom tatsichlichen Wert verschieden sein
kann und sich daher recht gut zur Uberpriifung der empirischen Bestim-
mung von J, aus den kiinstlichen Satelliten eignet. Ahnlich ist es von
Interesse, die Grolenordnung von J; zu untersuchen und damit die
Frage zu kliren, ob iiberhaupt eine empirische Bestimmung noch még-
lich ist. Hierzu ist natiirlich eine Entwicklung bis einschliellich der
Glieder 6.0. notwendig. Ein derartiges System kann derzeit nur fiir die
einparametrigen Gleichgewichtsfiguren aufgestellt werden. Bedenkt man
jedoch die geringen Unterschiede, wie sie zum Beispiel in (44) fiir die
Abplattung in Erscheinung getreten sind, so ist klar, dal die Beschrin-
kung auf den einparametrigen Fall die GréBenordnung nicht mehr be-
rithrt. Man findet fiir die einparametrigen Gleichgewichtsfiguren das er-
weiterte Gleichungssystem:

13 925 1621
3.]2: [20—'5‘—'32 +'izaé +€6—52]% 2156 a2 —
1745 2050
- Saasiiuby-
2156 2156
g Bt 5] 4 3000
T L 14 © 5 2695 © °
(45)
| o M5
539 ° 2156 ©°
8 340 200 125
J. — 43— 2 Shaip Y- P —— -
s 7% 231 Y% a3 162
b [P B 20 Lo 4T3, 75
I D T I 616 “ " 176 T 1232 &

Fiir unseren Zweck geniigt es vollkommen, mit den Ndherungen 4.0. aus
(35) die Zusatzglieder 6.0. zu berechnen. Es dndern sich J, um — 0,5-1078
und f, um 4+ 3,3 - 10°%, wihrend sich J; = 4 0,9 - 10-® ergibt. Damit
ist eindeutig die rapide Abnahme der Massefunktionen .J,; erwiesen:
im Absolutbetrag ist J, = 326 J, und J, = 353 J,. Also ist es tatsich-
lich vollig hoffnungslos, wenn man aus den kiinstlichen Satelliten noch
Js; und Jg bestimmen will; dies wiirde eine empirische Genauigkeit von
1 - 10°® erfordern.

Somit diirfte zur Geniige gezeigt sein, dal} erst die neue Theorie der
Gleichgewichtsfiguren ein Mittel in die Hand gibt, die Ableitungen der
verschiedenen Massefunktionen aus den Bahnstérungen der kiinstlichen
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Satelliten kritisch zu priifen. Hinsichtlich weiterer Angaben darf auf

den Artikel von Hergenhahn!'® verwiesen werden, der bis auf einige von

anderen Autoren iibernommene irrige Deutungen ganz vorziiglich ist.
(Fortsetzung folgt.)

Kommission fiir Berufswerbung

Beschdftigung von Schiilern als Ferienpraktikanten

Wie der gemeinsamen Kommission fiir Berufspropaganda des SVVK,
der Fachgruppe Kulturingenieure SIA und der beiden Konferenzen be-
kannt ist, beschaftigen verschiedene unserer Ingenieur- und Vermes-
sungsbiiros wihrend der Ferien Sekundar- oder Mittelschiiler als Volon-
tare. Es scheint uns diese Malnahme ein geeignetes Mittel der Berufs-
werbung zu sein. Die jungen Leute bekommen dadurch Einblick in die
Tatigkeit der MeBlgehilfen, Zeichner, Techniker und Ingenieure, und aus
dieser Kontaktnahme kann der Entschlufl zur Ergreifung eines solchen
Berufes resultieren.

Wir empfehlen daher unsern Biiroinhabern, in den kommenden Som-
merferien vermehrt Sekundar- oder Mittelschiiler als Praktikanten zu
beschiftigen. Dabei kann auch der Austausch zwischen verschiedenen
Landesgegenden erwogen werden.

Rapport annuel du Comité eentral de la S.S.M.A.F.
pour 1’année 1961

1. Généralités

I’activité de la Société depuis 1’assemblée générale du 2 juin 1961
a Locarno a été, une fois encore, marquée par le souci que cause la ques-
tion de la formation professionnelle, question qui n’est pas encore résolue
a notre satisfaction.

Le travail de la Commission de propagande a été récompensé par un
trés beau recrutement a la section VIII de I’Ecole polytechnique fédérale.

Sur le plan international la Société a organisé la session du Comité
permanent de la F. I. G., session qui s’est tenue a Berne du 8 au 14 juin
1961. De plus, le Comité s’est occupé trés activement du Congreés de
Vienne, qui aura lieu du 24 aolt au 1¢r septembre prochains.

La Société a été représentée officiellement a plusieurs manifestations.

2. Mutatfions

Au cours del’année sont décédés: 1 membre honoraire: M.le professeur
Dr F. Baeschlin Zollikon; 1 membre actif: M. Pasforelli Arturo a Lugano;
7 membres vétérans: MM, Amrein Hermann, Breganzona; Grossmann
Albert, Muri; Hartmann Julius, Lenzburg; Kormann Ernst, Langenthal;
Marcoli Emilio, Biogno-Beride; Raschle Hans, Biilach; Savary Henrli,
Montlingen. Honneur a leur mémoire!

Huit membres sont nommés membres vétérans. Ce sont: Biichi
Hermann, Winterthur; Hohloch Wilhelm, Wabern; Lattmann Hermann,

10 @, Hergenhahn, «Die Bestimmung der Erdgestalt mit Hilfe kiinstlicher
Satelliten », Zeitschrift fiir Vermessungswesen, Stuttgart 1960, S. 342-371.
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