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Sur le rôle de la méthode des moindres carrés

en mécanique et statique

Par A. Ansermet

Dans le numéro de septembre dernier a paru un article consacré à

des calculs géodésiques et statiques ainsi qu'à la corrélation existant entre
eux. Le sujet est si vaste qu'il fut seulement introduit et traité dans le
plan; il y a lieu, dans les lignes qui suivent, de le développer plus à fond
et de l'étendre à l'espace. On aboutira notamment à des notions qui
paraissent nouvelles: les ellipses et ellipsoïdes d'erreur de la géodésie
subsistent, mais ce ne sont plus des erreurs; on peut parler de
déformations. Des cas concrets montreront en quoi consistent ces courbes et
surfaces.

En géodésie on justifie en général l'application de la méthode des
moindres carrés en s'aidant de la théorie des probabilités; certains
auteurs font aussi valoir que les poids sont amplifiés le plus fortement
grâce au principe des moindres carrés. C'est ce que l'on indique parfois
comme étant la seconde théorie de Gauss.

En mécanique et statique c'est différent: la condition [pvv]
minimum traduit mathématiquement un théorème fondamental, celui
relatif au travail de déformation A. Sous sa forme générale cette valeur
A est fonction des forces S exerçant leur action longitudinalement dans
les barres («Stabkräfte»), des moments et des forces transversales.

Dans la présente étude il ne sera question que de systèmes articulés
(«Stabfachwerke», «Stabverbände»); l'allongement ou le raccourcissement

d'une barre est exprimé par la formule connue:

~W dS ([31, P- 278, I} (1)

où s est la longueur de la barre, F la section transversale, E le module
d'élasticité; il faut prendre bien garde aux dimensions de ces éléments.
De plus:

Y~i S2s v^i f/ Ss \2 EF]A L 2ËF L{M ' "ar} Z (y2p) mÌnÌmUm (2)
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C'est la condition des moindres carrés sous la forme courante; la
somme est étendue à toutes les barres tandis que les p sont les poids;
ceux-ci interviennent par leurs valeurs relatives et non absolues. En
général on peut poser:

P F: s,

mais il faut tenir compte de la dimension de £ si £ constante.
Pour réaliser la condition du minimum on a souvent recours en

géodésie à une solution dite provisoire; c'est une première étape du
calcul qui fournit un réseau provisoire. En hyperstatique c'est en principe

la même chose; il faut connaître pour le système un état dit principal
ou fondamental («Grundsystem»). C'est précisément la face du problème
qui fut traitée trop sommairement en septembre dernier; l'exemple ci-
après fera mieux comprendre de quoi il s'agit:

Détermination d'une station spatiale ou

Calcul d'un pylône à quatre barres

Dans la figure 1 il faut considérer la moitié de gauche; il y a un
seul point ou nœud libre, le sommet 1 de la pyramide quadrangulaire.
Géodésiquement ce problème est tellement connu qu'il suffit de rappeler
sommairement les étapes du calcul. Il y a un élément surabondant.

¦jd-

Si.
7 ¦

Fig. 1

Désignons par x0, y0, z0 des coordonnées provisoires du sommet 1

et par dx, dg, dz les variations à faire subir à ces coordonnées pour
réaliser la condition [pvv] minimum. On a le système:

— fi y Vi ai dx y bi dy y c,- dz (ai2 y h2 1) (3)

/,- étant le terme absolu: distance provisoire - distance mesurée.
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En d'autres termes les v sont fractionnés algébriquement:

v — (valeur provisoire — valeur mesurée) +
+ (valeur compensée — valeur provisoire)

i 1, 2, 3, 4 poids: p;

Sous forme implicite, les équations normales sont:

[pav] 0, [pbv] 0, [pcv] 0, [pff] > [pvv]

m2 iû [pvv] : r (r éléments surabondants; ici r 1)

(4)

(5)

On sait que cette formule ne peut pas être établie rigoureusement; elle
est fondamentale, joue aussi un rôle en statique en changeant le mot
erreur contre un autre (déformation).

On a de plus la matrice des équations normales et sa réciproque:

(6)
[paa] [pab] [pac] «11 «12 Gis
[pba] [pbb] [pbc] «21 «22 G23

[pca] [pcb] [pcc] «31 «32 G33

Si les matrices sont diagonales, on a:

[paa] Q„ 1 [pbb] Q22 1 [pcc] G33

Les Q„, Q22, Q33 sont les coefficients de poids des inconnues.

Une solution consiste aussi à éliminer les inconnues dx, dy, dz dans
le système d'équations (3); grâce aux calculatrices électroniques, ce
mode de faire peut être envisagé. On obtient:

[Av] 0

D'une manière générale le raisonnement qui précède est applicable
en statique sauf en ce qui concerne la formation des termes absolus /,¦;
il en sera question plus loin.

Ellipsoïdes de déformation

Avec les méthodes usuelles de l'hyperstatique on ne peut guère
calculer de telles surfaces dont l'intérêt est manifeste. Dans le plan on a
des ellipses qu'il ne faut pas confondre avec les ellipses d'élasticité de
Culmann et W. Ritter; rappelons ici que trois professeurs Ritter ont
fait bénéficier la statique de leurs recherches. Considérons la position
définitive du sommet 1, définie par les coordonnées: x0 + dx, y0 + dy,
z„ + dz.

Ce point est choisi comme origine d'un nouveau système de
coordonnées dont les axes sont parallèles à ceux des x, y, z. Il en résulte que
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les coefficients a,-, bu c,- subsistent, les nouvelles coordonnées étant £, rj, tp,

et on aura des v'i au lieu des i>;:

v'i — ai f + 6,- tj + Cj ^ + y£ (8)

et, à cause des équations (4):

[pv'v'] [pvv] + [paa] f2 + 2[pab] £» y 2[pac] Ç<p + [pbb] v2 +
ou [pv'v'] [pw] + (QT), (9)

(QT) étant une forme quadratique ternaire à 6 termes en £, r/, $o. Le
problème devient plus simple si dans la matrice réciproque (6) les coefficients
quadratiques sont seuls différents de zéro; c'est donc le cas particulier (7),
les matrices (6) étant diagonales:

[paa] p.+ [pbb] v2 y [pcc] tp2 -§- y -f- + -£- m2 (10)
«11 «22 «33

C'est l'ellipsoïde dit moyen qui intéresse les géodésiens mais aussi les

staticiens; on peut concevoir d'autres termes absolus. Le travail de
déformation est constant si le nœud ou sommet (1) se déplace sur une telle
surface dont le centre répond à la condition [pvv] minimum. Une
solution plus générale sera développée ci-après, basée sur d'autres
considérations.

Formation des termes absolus fi

Considérons toujours le pylône 1, 2, 3, 4, 5 qui se déforme jusqu'à
réaliser la condition [pvv] minimum. On peut y parvenir si l'on
connaît un état intermédiaire. Il y a une ou des forces extérieures qui
ne sont pas indiquées sur la figure; les forces S des formules ou équations
(1), (2) ne sont pas connues. Cette étape du calcul est traitée à fond dans
la littérature hyperstatique et il n'y a donc pas lieu de s'y attarder. Une
barre est coupée fictivement, ce qui rend le système statiquement déterminé,

donc calculable facilement en exprimant que le système est en
équilibre. L'action exercée par la barre est remplacée par une force
inconnue X ou variable hyperstatique; la valeur cherchée X répondra
à la condition du minimum. Provisoirement on attribue à cette force une
valeur choisie arbitrairement; il en résulte un état provisoire dont on
déduit les fi. Un professeur lausannois, dans une publication qui fut très
remarquée (voir [2]), montra qu'un système spatial pouvait être calculé
dans le plan; les déformations sont déterminées graphiquement. La
méthode de Williot est généralisée.

Analytiquement les déformations revêtent la forme d'un binôme
avec un terme indépendant de X et un terme variant linéairement avec
X. La valeur X 1 caractérise l'état dit fondamental («Grundsystem»).
En général il y a autant d'inconnues hyperstatiques X„ X2, X3 que
d'éléments surabondants; le travail de déformation est aussi exprimé en
fonction de ces inconnues.
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En géodésie on compare les m2 sa [pvv]:r d'un réseau à l'autre; en
statique on fera de même entre les systèmes.

L'application de la méthode des moindres carrés en statique se
justifie surtout quand le nombre des éléments surabondants est élevé; le
calcul peut être fractionné, ce qui est courant en géodésie. La méthode
aux variations de coordonnées a fait ses preuves en géodésie; dans
certains cas elle fera aussi ses preuves en hyperstatique des systèmes
articulés et spatiaux.

La différence ([pff] — [pvv]), qui n'est jamais négative, est calculée
à double à titre de contrôle.

Détermination d'une paire de stations spatiales ou

Calcul d'un double pylône

Ainsi que le montre la figure 1, c'est le même problème, mais en
géodésie les poids ne sont pas les mêmes qu'en statique. Les côtés
mesurés, au nombre de neuf, deviennent des barres. Il y a deux nœuds
libres les sommets 1 et 6, donc six variations de coordonnées. Il faut
couper trois barres sur les neuf pour rendre le système statiquement
déterminé; ce calcul, avec six barres, fut traité par A. Föppl dans
«Vorlesungen über technische Mechanik» (Tome II) et dans [2], p. 41. Cette
seconde solution porte sur la représentation plane du système spatial; il
n'y a pas lieu de s'y arrêter car, pour le moment, la méthode des moindres
carrés ne joue pas de rôle.

On a donc, pour la suite: m2 iâ [pvv] : 3

—fi + Vi at dx1 + bi dyt + c; dz, + a'i dx6 + b't dy6 + c'i dzs (11)

(poids pi) i < 9

Admettons des valeurs numériques simples et de nature à réaliser
une certaine symétrie; voici le tableau des coefficients:

barre i di bi Ci a'i b'i Ci Pi

1-2 1 + 0,557 + 0,575 + 0,60 0 0 0 1

1-3 2 + 0,557 —0,575 +0,60 0 0 0 1

1-5 3 —0,557 +0,575 +0,60 0 0 0 1

1-4 4 —0,557 —0,575 +0,60 0 0 0 1

1-6 5 + 1,00 0 0 —1,00 0 0 0,6
6-10 6 0 0 0 +0,557 + 0,575 +0,60 1

6-7 7 0 0 0 + 0,557 —0,575 +0,60 1

6-9 8 0 0 0 —0,557 + 0,575 +0,60 1

6-8 9 0 0 0 —0,557 —0,575 +0,60 1

Pour les équations normales et les coefficients de poids des inconnues,
on a les matrices mutuellement réciproques:

413



1,84 0 0 —0,60 0
0 1,32 0 0 0
0 0 1,44 0 0

—0,60 0 0 1,84 0
0 0 0 0 1,32
0 0 0 0 0

0,610 0 0 + 0,20 0
0 0,758 0 0 0
0 0 0,694 0 0

0,20 0 0 0,610 0
0 0 0 0 0,758
0 0 0 0 0

0
0
0
0
0

1,44

0
0
0
0
0

0,694

Le seul coefficient ou élément non diagonal différent de zéro exprime
la corrélation existant entre les dx des nœuds 1 et 6. Les axes des
ellipsoïdes de déformations pour les sommets libres 1 et 6 sont parallèles aux
axes de coordonnées et dans le rapport:

Vo^610: V0,758 : a/0,694

La suite du calcul ne présente pas d'intérêt spécial; on pourrait éliminer
les inconnues dans le système (11) d'où les équations:

[Av] y w, 0 [Bv] + w2 0 [Cv] y w3 0 (12)

Théoriquement ce système (12) aurait pu être établi à priori.

Coupole d'après Zimmermann (type «Reichstag»)

Ce cas sera traité uniquement quant au rôle joué par la méthode des
moindres carrés. Le système statiquement déterminé comprend 24 barres
et 12 nœuds, soit 36 coordonnées (voir [2]), mais 12 de ces coordonnées
ne sont pas susceptibles de varier. En fait on a 12 liaisons simples en ce
sens que les variations dz sont nulles pour les 8 nœuds de 5 à 12; en
outre, comme la figure 2 le montre, on a de plus:

dx6 dx10 =0 et dys dy12 0

Il y aura donc quatre ellipsoïdes de déformation aux nœuds 1, 2, 3, 4

et quatre ellipses aux nœuds 5, 7, 9, 11, mais seulement de petits
segments linéaires en 6, 8, 10, 12. En ajoutant des barres, ce qui rend le
système hyperstatique, le théorème sur le travail minimum de déformation

devient applicable. Voici les coordonnées en mètres, les valeurs étant
positives:
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nœuds x g z

1 11,5 20,88 14,9
2 24,7 20,88 14,9
3 24,7 9,12 14,9
4 11,5 9,12 14,9
5 0,0 20,88 0,0
6 11,5 30,0 0,0

œuds x y z

7 24,7 30,0 0,0
8 36,2 20,88 0,0
9 36,2 9,12 0,0

10 24,7 0,0 0,0
11 11,5 0,0 0,0
12 0,0 9,12 0,0

Fig. 2

Considérons les deux diagonales surabondantes 1-3 et 2-4; on peut
en concevoir d'autres:

— /is + v13 — 0,747 (dx, — dx3) y 0,665 (dy, — dy3)

0,7472 + 0,6652 1

— /21 + v2i + 0,747 (dx2 — dx,) y 0,665 (dy2 — dyt)

En statique les coordonnées des nœuds ne servent qu'à calculer les

coefficients; pour la diagonale 4-5 on a:

-/« 0,52 (dx, — dx5) — 0,53 (dy, — dy5)
0,67 (dz, — dz.)

mais dze

0,522 + 0,532 + 0,672

Le calcul des ellipsoïdes d'erreur est moins simple que précédemment,

car les axes principaux ne sont plus parallèles aux axes de coordonnées;

ce problème fut déjà traité dans cette Revue (voir [4]). Ici encore
les forces extérieures ne sont pas indiquées sur la figure.

Le problème des liaisons

L'application de la méthode des moindres carrés permet aisément
de tenir compte de liaisons en statique, et il y a même plus d'une solution.

Dans la figure 1, par exemple, le sommet 1 est astreint à une liaison;
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il en résulte, entre les inconnues, une équation nouvelle qui vient s'ajouter

aux systèmes (3) ou (11). Une solution, assez courante, consiste à

fractionner le calcul; dans une première étape on fait abstraction de la
liaison, mais les valeurs obtenues pour les inconnues subissent des
corrections lorsqu'on effectue la seconde phase, ultérieurement. On pourrait
croire que c'est une complication, mais ce mode de calculer, par
fractionnement, a fait ses preuves.

Considérations générales et finales

En hyperstatique, comme en géodésie, si on applique le procédé aux
variations de coordonnées, il faut déterminer des éléments dits
provisoires; en statique on a recours à des coupures fictives et à des forces de
remplacement pour rendre le système statiquement déterminé. On
obtient une structure, un état que l'on peut calculer (voir [2]); c'est un état
initial permettant d'aboutir à l'état final. La notion de travail ou d'énergie
de déformation intervient, ce qui justifie le rôle de la méthode des
moindres carrés.

Les forces de remplacement susmentionnées sont choisies arbitrairement;

les valeurs X„ X2, X3 qui répondent à la condition du
minimum, sont les inconnues du problème. En fonction de ces dernières on
peut exprimer l'énergie et former les dérivées de la fonction par rapport
à X„ X2, X3 ([5], p. 41). En les rendant nulles (théorème de Méné-
bréa), on obtient un système d'équations linéaires dites d'élasticité; cette
solution est séduisante, mais donne lieu parfois à des mécomptes en
pratique. Les coefficients des inconnues sont connus avec peu de précision,
et le déterminant relatif au système d'équations a souvent une valeur
très petite par rapport aux coefficients ([5], p. 68). Il y a donc ici autant
d'inconnues que d'éléments surabondants. La méthode aux variations
de coordonnées convient surtout quand le nombre des éléments
surabondants est relativement élevé; grâce au calcul électronique, cette
méthode prend de l'intérêt. Ici on a encore un état caractérisé par la valeur
[pvv] minimum, qui est l'état final, mais qui est précédé d'un autre
caractérisé par la valeur [pff] > [pvv]. Il y a analogie avec la géodésie;
le passage de l'expression [pff] à [pvv] est l'étape vraiment intéressante,
car c'est à ce moment-là que les coordonnées varient pour les nœuds du
système. Le calcul des ellipses ou ellipsoïdes de déformation est aisé.

En conclusion on constate que l'application en géodésie de la
méthode des moindres carrés n'est pas absolument exemple d'arbitraire; en
mécanique, en statique, cette méthode est l'expression mathématique du
théorème sur le travail de déformation minimum. On pourrait traiter le
cas où il y a des moments, les v étant alors des valeurs angulaires.
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Enquête concernant les influences
de la réunion parcellaire sur l'évolution structurelle

d'une commune rurale vaudoise

Par F. Quillet, ingénieur agronome, Lausanne

Introduites dans le canton de Vaud par la loi du 22 mai 1951, les
réunions parcellaires ont accéléré le processus de groupement de la
propriété foncière rurale. Elles ont permis, par leur coût modeste, de faire
profiter rapidement un grand nombre d'agriculteurs de l'avantage majeur
des remaniements intégraux: la diminution du nombre des parcelles et
leur rapprochement de la ferme. Stade transitoire avant le remaniement
intégral, la réunion parcellaire n'entre toutefois en ligne de compte que
pour un périmètre pourvu de bonnes dévestitures et ne nécessitant pas
de travaux d'assainissement.

Le but initial de cette enquête était de faire ressortir les incidences
de la réunion sur l'économie des exploitations paysannes, c'est-à-dire les
modifications de revenu ainsi engendrées. Devant la complexité de
l'interaction des différents facteurs influençant l'évolution des revenus
en agriculture, il est apparu impossible de déterminer rigoureusement,
par une étude rétrospective, la part de l'augmentation de revenu devant
être attribuée à la réunion parcellaire.

C'est pourquoi cette enquête est plus descriptive qu'analytique, le
principal objet en étant l'évolution technique de l'agriculture de
l'ensemble d'une commune, en rapport avec la réunion parcellaire.

La réunion parcellaire à Thierrens

A la croisée des routes menant de Moudon à Yverdon et de Lausanne
à Estavayer-le-Lac, le territoire de la commune de Thierrens est adossé

aux contreforts nord du Jorat, ancienne région tabulaire s'élevant
progressivement du nord-ouest au sud-est, dont l'érosion glaciaire a
modifié d'une façon considérable la forme primitive des sillons d'érosion
fluviale; des dépôts glaciaires, de leur côté, y ont produit des modifications

dans les formes extérieures des tronçons découpés par l'érosion.
Les sols y sont, par conséquent, assez variés, plutôt légers et peu
profonds, parfois caillouteux sur les crêtes, plus fertiles, parce que plus
lourds, dans le fond des vallonnements. Les terres cultivables se trouvent
à une altitude variant entre 700 et 800 mètres avec, comme extrêmes,
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