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Sur le réle de la méthode des moindres carrés
en mécanique et statique

Par A. Ansermet

Dans le numéro de septembre dernier a paru un article consacré a
des calculs géodésiques et statiques ainsi qu’a la corrélation existant entre
eux. Le sujet est si vaste qu’il fut seulement introduit et traité dans le
plan; il y a lieu, dans les lignes qui suivent, de le développer plus a fond
et de I'étendre & l'espace. On aboutira notamment a des notions qui
paraissent nouvelles: les ellipses et ellipsoides d’erreur de la géodésie
subsistent, mais ce ne sont plus des erreurs; on peut parler de défor-
mations. Des cas concrets montreront en quoi consistent ces courbes et
surfaces.

En géodésie on justifie en général I’application de la méthode des
moindres carrés en s’aidant de la théorie des probabilités; certains
auteurs font aussi valoir que les poids sont amplifiés le plus fortement
griace au principe des moindres carrés. C’est ce que 1’on indique parfois
comme étant la seconde théorie de Gauss.

En mécanique et statique c’est différent: la condition [pvv] =
minimum traduit mathématiquement un théoréme fondamental, celui
relatif au travail de déformation A. Sous sa forme générale cette valeur
A est fonction des forces S exercant leur action longitudinalement dans
les barres («Stabkrifte»), des moments et des forces transversales.

Dans la présente étude il ne sera question que de systémes articulés
(«Stabfachwerke», «Stabverbinde»); I’allongement ou le raccourcisse-
ment d’une barre est exprimé par la formule connue:

LIS (3], p. 278, I )

ou s est la longueur de la barre, F la section transversale, E le module
d’élasticité; il faut prendre bien garde aux dimensions de ces éléments.
De plus:

s* Ss \* EF
A Z ; E; s Z{(Ef;) : 2?“} — 3 (*p) = minimum  (2)
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C’est la condition des moindres carrés sous la forme courante; la
somme est étendue A toutes les barres tandis que les p sont les poids;
ceux-ci interviennent par leurs valeurs relatives et non absolues. En
général on peut poser:

p =F:s,

mais il faut tenir compte de la dimension de E si E = constante.

Pour réaliser la condition du minimum on a souvent recours en
géodésie a une solution dite provisoire; c’est une premiére étape du
calcul qui fournit un réseau provisoire. En hyperstatique c’est en prin-
cipe la méme chose; il faut connaitre pour le systéme un état dit principal
ou fondamental («Grundsystem»). C’est précisément la face du probléme
qui fut traitée trop sommairement en septembre dernier; I’exemple ci-
aprés fera mieux comprendre de quoi il s’agit:

Détermination d’une station spatiale ou

Calcul d’un pyléne a quatre barres

Dans la figure 1 il faut considérer la moitié de gauche; il y a un
seul point ou nceud libre, le sommet 1 de la pyramide quadrangulaire.
Géodésiquement ce probléme est tellement connu qu’il suffit de rappeler
sommairement les étapes du calcul. Il y a un élément surabondant.

Fig. 1

Désignons par x,, Yo, Z, des coordonnées provisoires du sommet 1
et par drx, dy, dz les variations a faire subir a ces coordonnées pour
réaliser la condition [pyy] = minimum. On a le systéme:

— i + vi = aqpdx + bidy + c;dz (a® + bi* + ¢ =1) (3)
fi étant le terme absolu: distance provisoire — distance mesurée.
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En d’autres termes les v sont fractionnés algébriquement:

v = (valeur provisoire — valeur mesurée) -+
+ (valeur compensée — valeur provisoire)

i =1,2,3,4 poids: p;
Sous forme iﬁlplicite, les équations normales sont:
[pav] =0, [pbv] =0, [pev] =0, [pff] > [pov] (4)
m? @ [pvv]:r (r éléments surabondants; ici r = 1) (9)

On sait que cette formule ne peut pas étre établie rigoureusement; elle
est fondamentale, joue aussi un role en statique en changeant le mot
erreur contre un autre (déformation).

On a de plus la matrice des équations normales et sa réciproque:

[paa]l [pab] [pac]| Qu Qi Qu
[pba] [pbb] [Pbc] 0 Qs Qs (6)
|[pca] [peb] [pec]] Q1 Que Qus

Si les matrices sont diagonales, on a:

[paa] Q,; =1 [pbb] Qp, =1 [pee] Qsz = 1 (7)

Les Q,1, Qs Q33 sont les coefficients de poids des inconnues.

Une solution consiste aussi a éliminer les inconnues dx, dy, dz dans
le systeme d’équations (3); grace aux calculatrices électroniques, ce
mode de faire peut étre envisagé. On obtient:

[Av] + w =0 (7)

D’une maniére générale le raisonnement qui précéde est applicable
en statique sauf en ce qui concerne la formation des termes absolus f;;
il en sera question plus loin.

Ellipsoides de déformation

Avec les méthodes usuelles de I'hyperstatique on ne peut guére
calculer de telles surfaces dont l'intérét est manifeste. Dans le plan on a
des ellipses qu’il ne faut pas confondre avec les ellipses d’élasticité de
Culmann et W. Ritter; rappelons ici que trois professeurs Ritter ont
fait bénéficier la statique de leurs recherches. Considérons la position
définitive du sommet 1, définie par les coordonnées: x, + dx, y, + dy,
Ze + dz.

Ce point est choisi comme origine d’un nouveau systéme de coor-
données dont les axes sont paralléles 4 ceux des z, y, z. Il en résulte que
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les coeflicients a;, b;, ¢; subsistent, les nouvelles coordonnées étant &, n, ¢,
et on aura des v’; au lieu des v;: '

Vi=a;i & +bim+cig + i (8)

et, & cause des équations (4):

[pv'v’] = [pov] + [paa] £ + 2[pab] &y + 2[pac] §¢ + [pbb] 9* + ...
ou [pv'v’] = [pvv] + (QT), (9)

(QT) étant une forme quadratique ternaire a 6 termes en ¢, 5, ¢. Le pro-
bléme devient plus simple si dans la matrice réciproque (6) les coefficients
quadratiques sont seuls différents de zéro; c’est donc le cas particulier (7),
les matrices (6) étant diagonales:
. 52 7]2 902
[paa] £+ [pbb] n* + [pee] ¢* = + + —
Qll Q22 Q33

m:  (10)

C’est I'ellipsoide dit moyen qui intéresse les géodésiens mais aussi les
staticiens; on peut concevoir d’autres termes absolus. Le travail de dé-
formation est constant si le nceud ou sommet (1) se déplace sur une telle
surface dont le centre répond & la condition [prr] = minimum. Une
solution plus générale sera développée ci-aprés, basée sur d’autres consi-
dérations.

Formation des termes absolus f;

Considérons toujours le pylone 1, 2, 3, 4, 5 qui se déforme jusqu’a
réaliser la condition [prv] = minimum. On peut y parvenir si 1'on
connait un état intermédiaire. Il y a une ou des forces extérieures qui
ne sont pas indiquées sur la figure; les forces S des formules ou équations
(1), (2) ne sont pas connues. Cette étape du calcul est traitée 4 fond dans
la littérature hyperstatique et il n'y a donc pas lieu de s’y attarder. Une
barre est coupée fictivement, ce qui rend le systéme statiquement déter-
miné, donc calculable facilement en exprimant que le systéme est en
équilibre. L’action exercée par la barre est remplacée par une force
inconnue X ou variable hyperstatique; la valeur cherchée X répondra
a la condition du minimum. Provisoirement on attribue a cette force une
valeur choisie arbitrairement; il en résulte un état provisoire dont on
déduit les f;. Un professeur lausannois, dans une publication qui fut treés
remarquée (voir [2]), montra qu’un systeme spatial pouvait étre calculé
dans le plan; les déformations sont déterminées graphiquement. La mé-
thode de Williot est généralisée.

Analytiquement les déformations revétent la forme d’un bindéme
avec un terme indépendant de X et un terme variant linéairement avec
X. La valeur X = 1 caractérise I’état dit fondamental (« Grundsystem »).
En général il y a autant d’inconnues hyperstatiques X,, X,, X; ... que
d’éléments surabondants; le travail de déformation est aussi exprimé en -
fonction de ces inconnues.
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En géodésie on compare les m? @ [pvv]:r d’un réseau a I’autre; en
statique on fera de méme entre les systémes. -

L’application de la méthode des moindres carrés en statique se jus-
tifie surtout quand le nombre des éléments surabondants est élevé; le
calcul peut étre fractionné, ce qui est courant en géodésie. La méthode
aux variations de coordonnées a fait ses preuves en géodésie; dans cer-
tains cas elle fera aussi ses preuves en hyperstatique des systémes ar-
ticulés et spatiaux.

La différence ([pff] — [pvv]), qui n’est jamais négative, est calculée
a double a titre de contréle.

Détermination d’une paire de stations spatiales ou

Calcul d’un double pyléne

Ainsi que le montre la figure 1, c’est le méme probléme, mais en
géodésie les poids ne sont pas les mémes qu’'en statique. Les cotés me-
surés, au nombre de neuf, deviennent des barres. Il y a deux nceuds
libres les sommets 1 et 6, donc six variations de coordonnées. Il faut
couper trois barres sur les neuf pour rendre le systéme statiquement dé-
terminé; ce calcul, avec six barres, fut traité par A. Féppl dans «Vor-
lesungen iiber technische Mechanik» (Tome II) et dans [2], p. 41. Cette
seconde solution porte sur la représentation plane du systéme spatial; il
n’y a pas lieu de s’y arréter car, pour le moment, la méthode des moindres
carrés ne joue pas de role. '

On a donc, pour la suite: m? « [pov]:3

—fi + vi =ajdx, + bidy, + cidz, + a’;dxg + b'; dys + ¢’; dzg (11)
' (poids p;) <9

Admettons des valeurs numériques simples et de nature a réaliser
une certaine symétrie; voici le tableau des coefficients:

barre i = a; b; Ci a’; b’ 'y Pi
1-2 1 40,557 +0,575 +0,60 0 0 0 1
1-3 . 2 40,567 —0,575 40,60 0 0 0 1
1-5 3 —0,557 +0,575 +0,60 0 0 0 1
1-4 4 —0,557 —0,575 +0,60 0 0 0 1
1-6 5 +1,00 0 0 —1,00 0 0 0,6
6-10 6 0 0 0 +0,557 40,575 40,60 1
6—7 7 0 0 0 +0,557 —0,575 40,60 1
6-9 8 0 0 0 —0,657 +0,575 +0,60 1
6-8 9 0 0 0 —0,567 —0,575 +0,60 1

Pour les équations normales et les coefficients de poids des inconnues,
on a les matrices mutuellement réciproques:
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1,84 0 0 —060 0 0
0 132 0 o 0 0
0 0 1,44 o 0 0
—0,60 0 0 1,84 0 0
0o 0 0 0 1,32 0
0o 0 0 0 0 1,44
0,610 0 0 020 0 0 |
0 0,758 0 0 0 0
0 0 0,694 0 0 0
+0,20 0 0 0,610 0 0
0 0 0 0 0,758 0
0 0 0 0 0 0,694

Le seul coefficient ou élément non diagonal différent de zéro exprime
la corrélation existant entre les dxr des nocuds 1 et 6. Les axes des ellip-
soides de déformations pour les sommets libres 1 et 6 sont paralléles aux
axes de coordonnées et dans le rapport:

4/0,610: V0,758 : V0,694

La suite du calcul ne présente pas d’intérét spécial; on pourrait éliminer
les inconnues dans le systéme (11) d’ou les équations:

[Av] + w, =0 [Bv] + wy, =0 [Cv] + wy =0 12)

Théoriquement ce systéme (12) aurait pu étre établi a priori.

Coupole d’aprés Zimmermann (type «Reichstag»)

Ce cas sera traité uniquement quant au réle joué par la méthode des
moindres carrés. Le systeme statiquement déterminé comprend 24 barres
et 12 nceuds, soit 36 coordonnées (voir [2]), mais 12 de ces coordonnées
ne sont pas susceptibles de varier. En fait on a 12 liaisons simples en ce
sens que les variations dz sont nulles pour les 8 nceuds de 5 a 12; en
outre, comme la figure 2 le montre, on a de plus:

dxﬁ == d.’L'm = O et dys - dy12 == O

Il y aura donc quatre ellipsoides de déformation aux noeuds 1, 2, 3,4 °
et quatre ellipses aux nceuds 5, 7, 9, 11, mais seulement de petits seg-
ments linéaires en 6, 8, 10, 12, En ajoutant des barres, ce qui rend le
systéme hyperstatique, le théoréme sur le travail minimum de déforma-
tion devient applicable. Voici les coordonnées en métres, les valeurs étant
positives:
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noceuds x y z nceuds T y Z
1 11,5 | 20,88 | 14,9 7 24,7 | 30,0 0,0
2 24,7 | 20,88 | 14,9 8 36,2 | 20,88 | 0,0
3 24,7 9,12 | 14,9 9 36,2 9,12 | 0,0
4 11,5 9,12 | 14,9 10 24,7 0,0 0,0
5 0,0 | 20,88 0,0 11 11,5 0,0 0,0
6 11,5 | 30,0 0,0 12 0,0 9,12 | 0,0
& 7
1
3
7. 2 B
o~
_ ¢/’ \.3
g
4
]
z o I7; /0
Fig. 2

Considérons les deux diagonales surabondantes 1-3 et 2-4; on peut
en concevoir d’autres:

— f13 + 033 = — 0,747 (dx; — dx;) + 0,665 (dy, — dy;)
0,7472 4 0,6652 = 1
— fa + Uy = + 0,747 (dx, — dxy) + 0,665 (dy, — dy,)

En statique les coordonnées des naceuds ne servent qu’a calculer les
coefficients; pour la diagonale 4-5 on a:

— fas + vy = — 0,52 (dx, — dx;) — 0,53 (dy, — dys) +
+ 0,67 (dz, — dz;)
mais dz; =0

0,52® + 0,53 + 0,672 = 1

Le calcul des ellipsoides d’erreur est moins simple que précédem-
ment, car les axes principaux ne sont plus paralléles aux axes de coordon-
nées; ce probléeme fut déja traité dans cette Revue (voir [4]). Ici encore
les forces extérieures ne sont pas indiquées sur la figure.

Le probléme des liaisons

L’application de la méthode des moindres carrés permet aisément
de tenir compte de liaisons en statique, et il y a méme plus d’une solu-
tion. Dans la figure 1, par exemple, le sommet 1 est astreint a une liaison;
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il en résulte, entre les inconnues, une équation nouvelle qui vient s’ajou-
ter aux systémes (3) ou (11). Une solution, assez courante, consiste a
fractionner le calcul; dans une premieére étape on fait abstraction de la
liaison, mais les valeurs obtenues pour les inconnues subissent des cor-
rections lorsqu’on effectue la seconde phase, ultérieurement. On pourrait
croire que c’est une complication, mais ce mode de calculer, par frac-
tionnement, a fait ses preuves.

Considérations générales et finales

En hyperstatique, comme en géodésie, si on:applique le procédé aux
variations de coordonnées, il faut déterminer des éléments dits provi-
soires; en statique on a recours a des coupures fictives et a des forces de
remplacement pour rendre le systéme statiquement déterminé. On ob-
tient une structure, un état que ’on peut calculer (voir [2]); ¢’est un état
initial permettant d’aboutir &4 I’état final. La notion de travail ou d’énergie
de déformation intervient, ce qui justifie le réle de la méthode des
moindres carrés. _

Les forces de remplacement susmentionnées sont choisies arbitraire-
ment; les valeurs X,, X,, X; ..., qui répondent a la condition du mi-
nimum, sont les inconnues du probléme. En fonction de ces derniéres on
peut exprimer 1’énergie et former les dérivées de la fonction par rapport
a X, X,, X5... (5], p- 41). En les rendant nulles (théoreme de Méné-
bréa), on obtient un systéme d’équations linéaires dites d’élasticité; cette
solution est séduisante, mais donne lieu parfois 4 des mécomptes en pra-
tique. Les coefficients des inconnues sont connus avec peu de précision,
et le déterminant relatif au systéme d’équations a souvent une valeur
trés petite par rapport aux coefficients ([5], p. 68). Il y a donc ici autant
d’inconnues que d’éléments surabondants. La méthode aux variations
de coordonnées convient surtout quand le nombre des éléments sur-
abondants est relativement élevé; griace au calcul électronique, cette mé-
thode prend de l’intérét. Ici on a encore un état caractérisé par la valeur
[pvv] = minimum, qui est I’état final, mais qui est précédé d’un autre
caractérisé par la valeur [pff] > [pvv]. 1l y a analogie avec la géodésie;
le passage de I'expression [pff] a [pvv] est 1’étape vraiment intéressante,
car c’est 4 ce moment-1a que les coordonnées varient pour les nceuds du
systeme. Le calcul des ellipses ou ellipsoides de déformation est aisé.

En conclusion on constate que 1’application en géodésie de la mé-
thode des moindres.carrés n’est pas absolument exemple d’arbitraire; en
mécanique, en statique, cette méthode est I’expression mathématique du
théoréme sur le travail de déformation minimum. On pourrait traiter le
cas ou il y a des moments, les v étant alors des valeurs angulaires.
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Enquéte coneernant les influences
de la réunion parcellaire sur I’évolution structurelle
d’une commune rurale vaudoise

Par F. Quillet, ingénieur agronome, Lausanne

Introduites dans le canton de Vaud par la loi du 22 mai 1951, les
réunions parcellaires ont accéléré le processus de groupement de la pro-
priété fonciére rurale. Elles ont permis, par leur coiit modeste, de faire
profiter rapidement un grand nombre d’agriculteurs de I’avantage majeur
des remaniements intégraux: la diminution du nombre des parcelles et
leur rapprochement de la ferme. Stade transitoire avant le remaniement
intégral, la réunion parcellaire n’entre toutefois en ligne de compte que
pour un périmeétre pourvu de bonnes dévestitures et ne nécessitant pas
de travaux d’assainissement.

Le but initial de cette enquéte était de faire ressortir les incidences
de la réunion sur ’économie des exploitations paysannes, c’est-a-dire les
modifications de revenu ainsi engendrées. Devant la complexité de
I'interaction des différents facteurs influencant 1’évolution des revenus
en agriculture, il est apparu impossible de déterminer rigoureusement,
par une étude rétrospective, la part de ’augmentation de revenu devant
étre attribuée a la réunion parcellaire.

C’est pourquoi cette enquéte est plus descriptive qu’analytique, le
principal objet en étant I’évolution technique de I’agriculture de I'en-
semble d’'une commune, en rapport avec la réunion parcellaire.

La réunion parcellaire a Thierrens

A la croisée des routes menant de Moudon & Yverdon et de Lausanne
a Estavayer-le-Lac, le territoire de la commune de Thierrens est adossé
aux contreforts nord du Jorat, ancienne région tabulaire s’élevant pro-
gressivement du nord-ouest au sud-est, dont I’érosion glaciaire a mo-
difié d’'une facon considérable la forme primitive des sillons d’érosion
fluviale; des dépdts glaciaires, de leur c6té, y ont produit des modifica-
tions dans les formes extérieures des troncons découpés par 1’érosion.
Les sols y sont, par conséquent, assez variés, plutét légers et peu pro-
fonds, parfois caillouteux sur les crétes, plus fertiles, parce que plus
lourds, dans le fond des vallonnements. Les terres cultivables se trouvent
4 une altitude variant entre 700 et 800 meétres avec, comme extrémes,
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