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Fortbildungskurs,
der Montag, 24., und Dienstag, 25. April 1961, stattfinden wird.
Das provisorische Programm sieht vor:

Montag, 24. April 1961

in Lausanne: Praktische Probleme der Photogrammetrie und Ein-
fiihrung der elektronischen Rechnungsmethoden in die verschie-
denen Zweige unserer Berufstitigkeit (Grundbuchvermessung,
Bauwesen, insbesondere Bau der AutostraBen, Bodenverbesse-
rungen).

Dienstag, 25. April 1961
in Lausanne:

Probleme der Bodenverbesserungen:

Aufnahme des alten Besitzstandes mit Hilfe der Photogrammetrie.
Die im Kanton Waadt angwandten Methoden fiir die Durchfiihrung
von Bodenverbesserungen im Rahmen des Baus der Autobahn
Genf-Lausanne mit Besichtigung jener Guterzusammenlegung, die
lings dieser Autobahn durchgefiihrt wird.

In der Miarznummer wird das endgiiltige Programm mit Einschreibe-
bogen und weitern Angaben folgen.

Untersuchung iiber die Konvergenz eines Niherungs-
verfahrens zum Ausgleichen von eingeschnittenen
Punkten

Von Richard Kéchle, Dipl.-Ing., Ziirich
(SchluB)

ZusammengefapPt:

Das Verfahren konvergiert beim Riickwirtseinschneiden aus n
Festpunkten dann und nur dann nicht, wenn der Neupunkt und alle
Festpunkte auf dem gefihrlichen Kreis liegen.

Da das Verfahren bei der gefihrlichen Konfiguration versagt, ist zu
erwarten, dafl} fir angenédhert gefihrliche Konfigurationen die Konver-
genz schlecht ist. Eine genauere Untersuchung zeigt nun, daB fir das
reine Riickwirtseinschneiden das Verfahren leider in ziemlich weiten
Bereichen schlecht konvergiert, selbst wenn die Punktbestimmung an
und fiir sich noch verhéltnismaBig gut ist.

Zwischen dem Konvergenzfaktor C und den Fehlerellipsen besteht
ein enger Zusammenhang. Ausgehend von den Gleichungen (3.2”) und
(3.4) bildet man den Ausdruck

D’ [aa] [b]* — 2 [ab] [a] [b] + [bb] [a]?

D = T n({aal [bb) — (b))
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Der Subtrahend auf der rechten Seite ist gleich dem Konvergenzfaktor
C, also darf man schreiben:

D’ D’
— =1—0C oder C=1-——,
D D

Die Grolen D und D’ kann man einfach durch die Halbachsen der ent-
sprechenden Fehlereinheitsellipsen ausdriicken. Nach Gleichung (3.1) gilt
(laa] + [bB])* — W2 4 ([aa] [bB] —[ab]>) 1

4 D? N 4 D? D

(AB)® = A?B® =

und analog nach Gleichung (3.3)

1
A'B)? = .
( ) DI

Unter Verwendung dieser Beziehungen wird

AB 2
C=1— — 1.

Da die Flidche F der Fehlerellipse F = 7 AB ist, kann man auch schreiben

C zl—( F)g. (6.6)

Der Konvergenzfaktor C ist also gleich der Einheit minus dem Quadrat
des Quotienten aus den Flichen der Fehlereinheitsellipsen fiir reines
Vorwirts- und reines Riickwirtseinschneiden bei gleicher Punkt-
konfiguration.

Mit dieser Beziehung hat man ein einfaches Mittel in der Hand, um
rasch die Konvergenz abzuschitzen. Man zeichnet nach einem gra-
phischen Verfahren die Fehlerellipse fiir das reine Vorwirtseinschneiden
und das reine Riickwirtseinschneiden. Dann berechnet man nach der
angegebenen Formel den Konvergenzfaktor C und kann sofort entschei-
den, ob sich das Verfahren der sukzessiven Niherung lohnt oder nicht.
Wenn C > } ist, wird man besser zur strengen analytischen Ausglei-
chung greifen. An Stelle der Ellipsenflichen darf man einfacher die
Fliachen irgendeines Tangentenparallelogramms mit Seiten parallel zu
konjugierten Durchmessern nehmen, wie durch eine affine Abbildung
der Ellipse in einen Kreis eingesehen werden kann.

7. Beziehungen zwischen den Fehlerellipsen
fiir das Vorwdrts- und das Riickwdrtseinschneiden

Aus Gleichung (6.6) folgt das interessante Resultat: Bei gleicher
Punktkonfiguration und bei gleicher Mel3genauigkeit ist die Fliche der
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Fehlerellipse fiir das Riickwirtseinschneiden immer gréBer oder hoch-
stens gleich derjenigen fiir das Vorwirtseinschneiden.
Es gilt ja nach Gleichung (6.6) und (6.3)

F 2
T (—) >0,
)=

F 2
also (F’)<1 und F < F’,

Diese Formel, die fiir den mittleren Richtungsfehler m =1 giiltig ist,
behilt ihre Giiltigkeit fiir einen beliebigen mittleren Fehler, solange er
fir beide Ellipsen den gleichen Wert hat.

Damit ist nichts iiber die Form der Fehlerellipsen ausgesagt. Es 1a(3t
sich aber zusétzlich beweisen, dal unter den oben gemachten Voraus-
setzungen die Fehlerellipse fiir das Vorwirtseinschneiden immer inner-
halb der Fehlerellipse fiir das Riickwirtseinschneiden verliduft oder diese
hoéchstens beriihrt,

Fiir den mittleren Punktlagefehler mg, in einer beliebigen Richtung
¢ besteht die allgemeine Beziehung [2]

my? = cos?¢ * Qzz + 25in¢g cos¢ Quy + sin? ¢ Qyy.

Dies ist die Gleichung der FuBpunktkurve der Fehlerellipse in Polar-
koordinaten. Die Koeffizienten Qg, Qzy, Qyy nehmen fiir das Vorwirts-
einschneiden die Werte an

[bb] [ab] _ [aq]

Qxx = T: Qa:y :—“"‘ ny = D

Fiir das Riickwirtseinschneiden gelten die entsprechenden Beziehungen
mit den gestrichenen Gréflen a’, b’, D’.

Der Beweis der obenstehenden Behauptung lduft im wesentlichen
darauf hinaus, zu zeigen, dall m,"? > m,? ist, unabhéngig vom Winkel ¢.
Man kann den Beweis fithren, indem man das xy-System festhilt und
den Winkel ¢ variiert; einfacher ist es aber, das xy-System zu drehen
und den Winkel ¢ = const. = 0 zu wiihlen.

‘Es ist erlaubt, das Koordinatensystem zu verdrehen, weil die
Fehlerellipse eine Invariante von x und y ist. Mit ¢ = 0 geht m, 2 iiber in

bb
Hip¥ == Lf)l fiir das Vorwirtseinschneiden
. o] . P :
und Il = o fiir das Riickwirtseinschneiden

~ mit variabeln Richtungskoeffizienten a und b, je nach der Richtung der
x-Achse in bezug auf die Festpunktstrahlen.
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Dann wird

_[p'd] [6b] D [b'b’] — D’ [bb]

D D D’'D

Nach Einsetzen der Ausdriicke fiir [b'0’] und D’ im Zihler nach Glei-

chungen (2.12) und (3.4) und Ausmultiplizieren heben sich verschiedene
Glieder weg, und es bleibt schlieBlich

([a] [bb] — [®] [ab])*
 n-D'D )

Der Zihler ist als reines Quadrat immer positiv oder Null, der Nenner
nD’D > 0, wie frither gezeigt wurde. Damit ist bewiesen:

my’? — my?

(7.1)

my'? — my? =

Mg’ — mg? > 0. ‘ (7.2)

Die Fullpunktkurve fiir das Riickwirtseinschneiden lduft also ganz
auBerhalb oder héchstens auf der Fullpunktkurve fiir das Vorwirts-
einschneiden. Die Normalen auf die mg-Richtungen durch die Fu3punkte
sind Tangenten an die zugehorigen Fehlerellipsen, entsprechend der
Definition der Fu3punktkurve. Man darf darum das Ergebnis so formu-
lieren: Zieht man eine zu einer beliebigen Richtung parallele Tangente
tr an die Fehlerellipse fiir das Riickwirtseinschneiden (RE) und {y an
die Fehlerellipse fiir das Vorwirtseinschneiden ( VE), so ist der Abstand
von {g zum Mittelpunkt immer gréfler oder héchstens gleich dem Ab-
stand von ¢y zum Mittelpunkt.

ty

Abb. 6

Ausgehend von diesem Satz 148t sich folgern, dal VE nie auflerhalb
von RE verlduft. Anders formuliert, darf eine vom gemeinsamen Ellip-
senmittelpunkt ausgehende beliebige stetige Kurve die RE nie vor der
VE schneiden.

Wiirde an irgendeiner Stelle die VE {iber die RE hinaustreten (Abb. 6),
so lieBen sich immer zwei parallele Tangenten so finden, daf3 die Tangente
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ty den groflern Abstand vom Mittelpunkt hat als die Tangente {g, was
im Widerspruch mit dem vorhin bewiesenen Satz steht.

Der ausfiihrliche Beweis dazu 148t sich folgendermaBen fiihren:
Wir nehmen an, die VE trete zwischen den Punkten S, und S, tiber die
RE hinaus. Nach dem Satz von Rolle aus der Differentialrechnung lassen
sich auf beiden Kurven zwischen S; und S, parallele Tangenten zur
Sekante s finden. Wir ziehen vom Mittelpunkt M eine Kurve k, so, dai
sie die beiden Ellipsen in den Tangentenberiihrungspunkten schneidet.
Nach der Annahme muf} k; RE vor VE schneiden und damit auch i vor
ty. Wenn die Kurve k, g vor {y schneidet, gilt dasselbe fiir irgendeine von
M ausgehende und die beiden parallelen Geraden {g und {y schneidende
Kurve, speziell fiir die Normale n. Das wiirde heilen my? > m,"%, was
der Gleichung (7.2) widerspricht. Die Annahme VE aullerhalb von RE
muf3 darum verworfen werden.

Abb. 7

Es gilt also der Satz: .

Bei gleicher Punktkonfiguration - und bei gleicher Mefgenauigkeit
aller Visuren verlduft auf dem Neupunkt die Fehlerellipse fiir das reine
Vorwirtseinschneiden immer innerhalb der Fehlerellipse fiir das reine
Riickwirtseinschneiden, beriihrt sie hochstens oder fillt im Grenzfall
mit ihr zusammen.

Der Grenzfall tritt ein, wenn die Fliachen F = F’, das heillt C = 0.
Dazu muf3 der Zihler von C verschwinden, und das ist zum Beispiel der
Fall, wenn [a] = [b] = 0, speziell zum Beispiel bei rotationssymme-
trischen Anordnungen (n gleich lange, iiber den ganzen Kreis gleich-
maillig verteilte Strahlen).

Man kann noch die Frage aufwerfen: Haben die VE und die RE —
immer unter den gemachten Voraussetzungen - fiir jede beliebige Fest-
punktkonfiguration gemeinsame Berithrungspunkte?

Fiir einen Berithrungspunkt B miiite m, = m; sein. Es gilt auch
die Umkehrung: Wenn m, = m,’, dann ist die Gerade mit dem Abstand
m, vom Mittelpunkt Tangente (f{) an den gemeinsamen Beriihrungs-
punkt B. Wiirde ndmlich die Gerade ¢ die VE und die RE in zwei ver-
schiedenen Punkten beriihren, so konnte die VE nicht ganz innerhalb der
RE verlaufen. '
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m, = m,’ fiihrt nach (7.1) auf die Bedingung [a] [bb] — [b] [ad] = 0.
Dieser Ausdruck tritt auch als Nenner des Steigungsfaktors u, auf (5.4).
Wird er zu Null, wird u, = co (Gerade g, in Abb. 4). u, wird unendlich
im Koordinatensystem, dessen x-Achse senkrecht auf g, steht. Die ge-
meinsame Tangente { ist darum parallel zu g,. Der Beriihrungspunkt
~ist der DurchstoBpunkt des konjugierten Durchmessers zu g, mit den
Fehlerellipsen. Nach Abschnitt 5 ist das der Durchmesser mit dem
Steigungsfaktor u, (g, in Abb. 4).

Damit ist bewiesen:

Bei gleicher Punktkonfiguration und bei gleicher MeBgenauigkeit
haben die Fehlerellipsen fiir das Vorwirts- und Riickwirtseinschneiden
immer wenigstens zwei gemeinsame Beriihrungspunkte. Es sind dies die
Schnittpunkte mit dem Durchmesser vom Steigungsfaktor — [a]/[?].

Im System der konjugierten Durchmesser g, und g, heilen die
Gleichungen der VE und der RE

2 2 x 2 2
vE: 2 My g &L B
r* £t re ry?

= 1,

r ist der gemeinsame konjugierte Halbmesser auf g,, r; und r, sind die

konjugierten Halbmesser auf g,. Fiir ein beliebiges festes x verhalten
r
sich die y-Koordinaten wie L R Sty
)Y ry
Die beiden Ellipsen sind somit zueinander affin. Die Gerade g, ist die
Affinitdtsachse, g, die Affinitidtsrichtung, und das Affinititsverhiltnis

hat den Betrag
f_yg_F’_l/D_ 1
0 F D’ vi—C .

8, Behandlurig des kombinierten Einschneidens

Fiir das kombinierte Vor- und Riickwirtseinschneiden 148t sich eine
entsprechende Formel fiir C ableiten.
Die Fehlergleichungen lauten in diesem Fall:

v, =af +bn + 5
U:a =a ¢ + by + fa dullere Richtungen
v =ar§ + bey + Ir

Vry1 = @1+ bran—C + fria
‘ innere Richtungen

ovn =ané + bany — L + fa

Dabei kénnen einige oder alle Richtungen gegenseitig beobachtet
sein,
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Abgekiirzt kann man auch schreiben
vi =a;§ +bin—eil + fi
mit g = 0 fir i =1, 2, _
ci=+1far i =r +1,r 4+ 2,
Man wird fiir die innern Richtungen wieder { nach Gauss vorgangig

eliminieren und kommt auf die reduzierten Fehlergleichungen

v =a ¢+ b’y +fi7 tiri=r+1,r+2,...n,

n n n
b :
wo a; = a [a], 1’ by = By — [ ]r-{—ﬂl, i = P [f]r::l

n—r n—r n—r

Um die Formel fiir den Konvergenzfaktor abzuleiten, verwenden wir die
unreduzierte Form. Analog wie beim reinen Riickwirtseinschnitt hei3en
die Fehlergleichungen auf den ausgeglichenen Punkt bezogen

vi=aié +bin—cil + v
mit ci=0 fir i=3,2 x:ixr
g =1 I I=r4L,rFr4+2...48

Wird wieder nur { geindert und §, und %, festgehalten, bekommt man
‘in einem ersten Schritt aus der Bedingung

y o [vv]
—t 5y

fiir { den ersten Ndherungswert

= [Ui]fﬂ =0

[a]r+1 fo T [b r+1 Mo
I'l*-"l'

y =

und in einem zweiten Schritt unter Festhalten von {, die ersten Nihe-
rungswerte fir £ und » aus den Bedingungen

1 @ [vo] _ i 1 ?Ep]_ — n
booogy —lwlf =0, b St (bl =
g _ lali 1 1061 —[ls1 [ab)
! [aa] [bb] — [ab]? !
[b]r 1 laa] ~—[a]m1[ab] Ly
T aa] [bb) — [ab]? -

Beiim Summieren von 1 nach n sind der Einfachheit halber die Summa-
tionsindizes nach der eckigen Klammer weggelassen. Der zweite Nihe-
rungswert fiir { hei3t

7 — r+1 f] + [b]r-i 1" "
s = :
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Daraus 1i48t sich C berechnen zu

_ ([a)rs1)* [65) — 2 [alry1 [Blr 1 [ab] + (B]F+1)* [aa]

8.1
(n— 1) ((aa] [6b] — [ab]%) (8:1)

c

Um einen einfachen Ausdruck fiir C zu finden, berechnen wir auch hier

wieder die Gréllen »
D = [aa] [bb] — [ab]?

fiir reinen Vorwirtseinschnitt und
D’ = ([aal] + [@' @Tr1) ([(B0]] + [B°B']rt1) — ([@b)] + [@’'b']r1)?

fiir das kombiniert Einschneiden.
Unter Benutzung der Beziehungen

[@ a1 = [aa]ris — —([;la—]?_ﬂr)i
['8]r 1 = [bblr1 — %% a(r;ai(;g)
Q¥R = fabjtyy — el

wird D’ zu

D ([aa] %) <[bb] - (lzli’%lr)z ) - ([ab] B '[a]f;‘: I_Eb,].;tﬂ )2.

Multipliziert man aus und vereinfacht, so entsteht schlielich die Glei-
chung

_ [ad] (817 1)* — 2 [@b] [alr 11 [Bri1 + [80] ((a]rs1)?
n—r

D'= D

=D—CD
und

’ 2
C=1--~—£=1—(F).
D F

Diese Gleichung verkniipft den Konvergenzfaktor auf dieselbe Weise
mit der Fliche der Fehlerellipsen wie beim reinen Riickwirtseinschnei-
den. Dabei ist F die Flidche der Fehlerellipse, wenn alle Richtungen,
duflere wie innere, nur von au3en beobachtet wiren, wobei gegenseitige
Richtungen doppelt zu zidhlen sind und F’ die Fliche der Fehlerellipse
fiir den tatsidchlich beobachteten Fall des kombinierten Einschneidens.

Die Formel fiir den reinen Riickwirtseinschnitt ist ein Grenzfall
dieser allgemeinen Formel, ebenso geht daraus der reine Vorwaérts-

einschnitt hervor zu
F 2
C=1—{—])=0.
(%)
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Zum Schluf} sei noch der Fall des kombinierten Einschneidens, mit
allen Visuren gegenseitig beobachtet, dem Fall des reinen Riickwirts-
einschneidens gegeniibergestellt. Nach Formel (8.1) wird C fiir diesen
speziellen Fall

([a]D? - 2 [bb]] — 2 [a]1 [B]1 - 2 [ad]] + ([B]})? - 2 [aa]}

Ck = r r r
r(2[aaly - 2 [65]1 — 4 ([ab]1)?)

weil 2r = n, [alr11 = [a], [aa]f = 2 [aa]y ... usw.
und nach Vergleich mit Cg fiir reinen Riickwirtseinschnitt
Ck = % Cg. (8.2)

Fiur diesen speziellen Fall des kombinierten Einschneidens (voll-
stindiges Einschneiden) ist der Konvergenzfaktor halb so grof3 wie beim
Riickwiirtseinschneiden. Das Verfahren der sukzessiven Niherung kon-
vergiert daher bedeutend besser. Im besondern konvergiert das Ver-
fahren imrher, weil wegen Cr < 1 der Wert Cx < 4 werden mul.

9. Behandlung zweier Spezialfdille

a) Rilckwirtseinschneiden: Alle Visuren gleich lang und gleiche Zwi-
schenwinkel.

Die Distanz d kiirzt sich im Ausdruck fiir C im Zihler und Nenner
weg, sie darf darum zu 1 angenommen werden

a; = sina; bj = — cosa;.
C wird dann

[sina]? [cos?a] — 2 [sina] [cosa] [sina cosa] + [cosa]? [sin2a]
n ([sin2a] [cos%a] — [sina cosa]?) )

Die Formel fiir C mul3 gegen eine Drehung des Koordinatensystems in-
variant sein, wie die Bedeutung von C vermuten 148t und wie auch aus
FFormel (6.6) ersichtlich ist. Man darf deshalb die Nullrichtung des
Satzes so legen, dafl die Formeln moéglichst einfach werden. In unserm
Fall hier legen wir sie, wie in Abb. 8 angegeben ist.

Man 1403t am besten den gesamten Winkelbereich nicht vom ersten
bis zum letzten Strahl gehen, sondern erweitert auf beide Seiten um den

P
Winkel on = ; Dies fithrt im Falle von einem rotationssymmetri-
n

schen Richtungssatz auf die logischere Bezeichnung, wo der erste und
der letzte Strahl keinen vollen Winkel einschlieBen, @ dann aber 360°
wird. ' ‘

Fiur die Summenausdriicke in der Formel von C lassen sich ge-
schlossene Formeln in Abhéingigkeit von @ und n angegeben, die man
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zum Beispiel erhilt, wenn man fiir die trigonometrischen Funktionen
die komplexe Schreibweise einfithrt und nach Real- und Imaginirteil
trennt.

Man kommt dann zu folgenden Beziehungen:

n Sin2 R

1— (] 2
[sina] = Z sin (;’ 2 k—1)) _ s cos®
.Y . Y
k=1 2 sm? sin —-
n sin (1) cos @
’ ) %8
[cosa] = Z cos ('y (Zk—l)) _ .o =
2 .y .
k1 2 sm-ué— sin 5
- ¢
in 2
[sin?a] = Zsin2 (% (2k—1)) - ; _ '54%3?
k=1
n ) (D
2 — 2 —){— 2k—1 = -—Il ﬂg,,,,
[cos?al] Zcos (2 ( ) 5 + Ity
k=1 »
n
sina cosa] = sin (- 2k—1) | - cos X 2k—1)
2 2
k=1
. 1—cos20 sin? @
B sin y B sin y
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'

Diese Ausdriicke, in die Formel fiir C eingesetzt, fithren nach Ver-
einfachungen und Zusammenfassung auf die Schlu3formel

2 siny (1 — cos D)
( == i
n (1 —cosy) (n - siny 4 sin®) (19

oder auch

4w ink -
¢ = - (9.17)

n- tg—;—(n - siny + sin @)

In Diagramm 9 sind die Formeln fiir einige Werte von n graphisch
dargestellt, zusammen mit dem Grenzfall n = co. Dieser Fall kommt
natiirlich praktisch nicht vor, da man ja selten iiber acht Richtungen
mift, er wurde aber des Interesses halber doch aufgetragen. Die Formel
dafiir leitet man als Grenzwert aus (9.1”) her.

. sin? - iz P

- . 4 - sin 5 8 - sin 5 11 —cos®)
coO = _ . _ :

=0 gy tgg(n- Sing-{- sin@) @ (@ =+ Sln@) @(@+51n¢)

an " (9.2)

b) Riickwartseinschneiden: Ungerade Anzahl von Strahlen, gleiche
Zwischenwinkel, Mittelstrahl u-mal so lang wie alle iibrigen Strahlen.

Die Herleitung der Formel wird stark vereinfacht, wenn man von
der Eigenschaft Gebrauch macht, dall fiir axialsymmetrische Konfigu-
rationen die Fehlerellipse auch axialsymmetrisch liegt. Der Beweis dafiir
ist einfach zu fithren. Man bezieht alles auf das Koordinatensystem der
Symmetrieachse. Soll die Fehlerellipse dazu symmetrisch liegen, so muf}
der Winkel ® zwischen der grolen Achse und der Symmetrieachse 0°
oder 90¢ sein.

2 [ad] :
Wegen tg (2®9) = —————-— kann das nur der Fall sein, wenn
, [aa] — [bD]
[ab] = 0. Wir untersuchen zuerst fiir den Vorwairtseinschnitt, ob diese
Bedingung erfiillt ist. Weil

sina cosa
a = cp b =— .
d

und weil jedem Strahl aullerhalb der Mittelachse ein symmetrischer
Strahl entspricht, wird fiir diese Strahlen unter Benutzung der Be-
ziehungen

sin(—a) = —sina — a_=—a

cos(—a) = 4+ cosea — b_ = +0Db
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Abb. 9. Konvergenzfaktor C in Abhangigkeit vom Sektorwinkel @ und @’ fiir
einige spezielle Fille (Abschnitt 9, a und b).

@ ist der im Text definierte Winkel, @’ der Winkel zwischen den beiden duBersten
Strahlen des Sektors.

Hier bedeuten a_, b_ die Richtungskoeffizienten der symmetrischen
Strahlen zu a, b. Eingesetzt in [ab], ergibt sich fiir symmetrische Strahlen

[ab] = a_ b, +a,_b,  + ... + a;b; + a,b, + ...
= —a; b, — a,b, — e + a0y +agby, + ... =0.

Fir eine gerade Anzahl von Strahlen ist der Beweis damit gefiihrt. Ist
die Zahl der Strahlen ungerade, so gibt es einen Mittelstrahl m. Fiir
diesen gilt a, = 0, sina,;,, = 0, a, = 0, das heilit, auch der Summand
am by, verschwindet.

Beim Riickwirtseinschnitt muf3 man an Stelle von a, b

a’=a—ﬂ, b’ =1’3—ﬂ
n n

45



einsetzen. Aus Griinden der Symmetrie wird a’'_ = —a’und b'_ = + b’
und daraus folgt [a’d’] = 0.

Weil wir also fiir die zu untersuchende Konfiguration setzen diirfen
[ab] = 0 und weiter auch [a] = 0, vereinfacht sich C zu

o
= AT (9.3)

Ohne Einschrinkung der Allgemeinheit darf den Randstrahlen die
Linge 1 gegeben werden, der Mittelstrahl hat dann die Linge u. Die
Richtungskoeflizienten werden dann fiir den Mittelstrahl

1
a=0, b0 =——
u
und fir die ibrigen Strahlen
a = sina, b = — cosa.

Fiihrt man dem Fall a analoge Bezeichnungen ein und rechnet man die
Summenausdriicke explizit aus, gelangt man zu den Formeln

@ | 1
sin — —sin Y (1 -~>
2 2 u
(b = —— %/
sin R
2

1
sin-y(n% 1+ —2) + 3 sind
u

2
[bb] =

.Y Y

2. . et

sin 5 cos 5

und
(¢ 1 2
4{sin—+sinl. SR | }
C — 2 2 u

5 : (9.49)
n-tg %'_ {siny g (n I o —2) <+ sin@]

Fiir den Spezialfall u = 1 erhélt man die Formel (9.1").
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