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Fortbildungskurs,
der Montag, 24., und Dienstag, 25. April 1961, stattfinden wird.

Das provisorische Programm sieht vor:

Montag, 24. April 1961

in Lausanne: Praktische Probleme der Photogrammetrie und Ein¬
führung der elektronischen Rechnungsmethoden in die verschiedenen

Zweige unserer Berufstätigkeit (Grundbuchvermessung,
Bauwesen, insbesondere Bau der Autostraßen, Bodenverbesserungen).

Dienstag, 25. April 1961

in Lausanne:
Probleme der Bodenverbesserungen:
Aufnahme des alten Besitzstandes mit Hilfe der Photogrammetrie.
Die im Kanton Waadt angwandten Methoden für die Durchführung
von Bodenverbesserungen im Rahmen des Baus der Autobahn
Genf-Lausanne mit Besichtigung jener Güterzusammenlegung, die
längs dieser Autobahn durchgeführt wird.

In der Märznummer wird das endgültige Programm mit Einschreibe-
bogen und weitern Angaben folgen.

Untersuchung über die Konvergenz eines Näherungsverfahrens

zum Ausgleichen von eingeschnittenen
Punkten

Von Richard Köchle, Dipl.-Ing., Zürich
(Schluß)

Zusammengefaßt:

Das Verfahren konvergiert beim Rückwärtseinschneiden aus n
Festpunkten dann und nur dann nicht, wenn der Neupunkt und alle
Festpunkte auf dem gefährlichen Kreis liegen.

Da das Verfahren bei der gefährlichen Konfiguration versagt, ist zu
erwarten, daß für angenähert gefährliche Konfigurationen die Konvergenz

schlecht ist. Eine genauere Untersuchung zeigt nun, daß für das
reine Rückwärtseinschneiden das Verfahren leider in ziemlich weiten
Bereichen schlecht konvergiert, selbst wenn die Punktbestimmung an
und für sich noch verhältnismäßig gut ist.

Zwischen dem Konvergenzfaktor C und den Fehlerellipsen besteht
ein enger Zusammenhang. Ausgehend von den Gleichungen (3.2*) und
(3.4) bildet man den Ausdruck

D' [aa] [b]2 — 2 [ab] [a] [b] + [bb] [a]2

D n (laa) [bb] — [ab]2)
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Der Subtrahend auf der rechten Seite ist gleich dem Konvergenzfaktor
C, also darf man schreiben:

D' D'
— 1 — C oder C 1
D D

Die Größen D und D' kann man einfach durch die Halbachsen der
entsprechenden Fehlereinheitsellipsen ausdrücken. Nach Gleichung (3.1) gilt

.iT*.t Atm- ([öa] ± [bb])2 — W° - 4 Aggi W] — W) _
1

(AB) -AB - - ^^ - _ - —

und analog nach Gleichung (3.3)

(A'B')2
1

D7'

Unter Verwendung dieser Beziehungen wird

C-1- ¦ A*
A'ß'

Da die Fläche F der Fehlerellipse F itAB ist, kann man auch schreiben

C=l-(^-V- (6.6)

Der Konvergenzfaktor C ist also gleich der Einheit minus dem Quadrat
des Quotienten aus den Flächen der Fehlereinheitsellipsen für reines
Vorwärts- und reines Rückwärtseinschneiden bei gleicher
Punktkonfiguration.

Mit dieser Beziehung hat man ein einfaches Mittel in der Hand, um
rasch die Konvergenz abzuschätzen. Man zeichnet nach einem
graphischen Verfahren die Fehlerellipse für das reine Vorwärtseinschneiden
und das reine Rückwärtseinschneiden. Dann berechnet man nach der
angegebenen Formel den Konvergenzfaktor C und kann sofort entscheiden,

ob sich das Verfahren der sukzessiven Näherung lohnt oder nicht.
Wenn C > £ ist, wird man besser zur strengen analytischen Ausgleichung

greifen. An Stelle der Ellipsenflächen darf man einfacher die
Flächen irgendeines Tangentenparallelogramms mit Seiten parallel zu
konjugierten Durchmessern nehmen, wie durch eine affine Abbildung
der Ellipse in einen Kreis eingesehen werden kann.

7. Beziehungen zwischen den Fehlerellipsen
für das Vorwärts- und das Rückwärtseinschneiden

Aus Gleichung (6.6) folgt das interessante Resultat: Bei gleicher
Punktkonfiguration und bei gleicher Meßgenauigkeit ist die Fläche der
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Fehlerellipse für das Rückwärtseinschneiden immer größer oder höchstens

gleich derjenigen für das Vorwärtseinschneiden.
Es gilt ja nach Gleichung (6.6) und (6.3)

C 1-(~F^°'

also —T < 1 und F < F'.

Diese Formel, die für den mittleren Richtungsfehler m 1 gültig ist,
behält ihre Gültigkeit für einen beliebigen mittleren Fehler, solange er
für beide Ellipsen den gleichen Wert hat.

Damit ist nichts über die Form der Fehlerellipsen ausgesagt. Es läßt
sich aber zusätzlich beweisen, daß unter den oben gemachten
Voraussetzungen die Fehlerellipse für das Vorwärtseinschneiden immer innerhalb

der Fehlerellipse für das Rückwärtseinschneiden verläuft oder diese
höchstens berührt.

Für den mittleren Punktlagefehler mv in einer beliebigen Richtung
tp besteht die allgemeine Beziehung [2]

m/ cos> • Qxx +2sm.<p cos ip Qxy + sin2^ Qyy.

Dies ist die Gleichung der Fußpunktkurve der Fehlerellipse in
Polarkoordinaten. Die Koeffizienten Q^, Qxy, Qyy nehmen für das
Vorwärtseinschneiden die Werte an

n -^L n [q&] [aa]
\txx —

j-. > \!xy — n ' "ï» ~~
ry '

Für das Rückwärtseinschneiden gelten die entsprechenden Beziehungen
mit den gestrichenen Größen a', V, D'.

Der Beweis der obenstehenden Behauptung läuft im wesentlichen
darauf hinaus, zu zeigen, daß mv'2 > m92 ist, unabhängig vom Winkel <p.

Man kann den Beweis führen, indem man das xy-System festhält und
den Winkel <p variiert; einfacher ist es aber, das xy-System zu drehen
und den Winkel ip const. 0 zu wählen.

Es ist erlaubt, das Koordinatensystem zu verdrehen, weil die
Fehlerellipse eine Invariante von x und y ist. Mit <p 0 geht m^2 über in

[bb]

D
für das Vorwärtseinschneiden

[b'b']
und mx'2 für das Rückwärtseinschneiden

D'

mit variabeln Richtungskoeffizienten a und b, je nach der Richtung der
x-Achse in bezug auf die Festpunktstrahlen.
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Dann wird
[b'b']
D'

[bb] _ D[b'b'] — D'[bb]
~D~ WD

Nach Einsetzen der Ausdrücke für [b'b'] und D' im Zähler nach
Gleichungen (2.12) und (3.4) und Ausmultiplizieren heben sich verschiedene
Glieder weg, und es bleibt schließlich

— mx
([a] [bb] - [b] [ab])2

n ¦ D'D (7.1)

Der Zähler ist als reines Quadrat immer positiv oder Null, der Nenner
nD'D Ty 0, wie früher gezeigt wurde. Damit ist bewiesen:

mx2 > 0. (7.2)

Die Fußpunktkurve für das Rückwärtseinschneiden läuft also ganz
außerhalb oder höchstens auf der Fußpunktkurve für das
Vorwärtseinschneiden. Die Normalen auf die m^-Richtungen durch die Fußpunkte
sind Tangenten an die zugehörigen Fehlerellipsen, entsprechend der
Definition der Fußpunktkurve. Man darf darum das Ergebnis so formulieren:

Zieht man eine zu einer beliebigen Richtung parallele Tangente
tR an die Fehlerellipse für das Rückwärtseinschneiden (RE) und ty an
die Fehlerellipse für das Vorwärtseinschneiden (VE), so ist der Abstand
von tn zum Mittelpunkt immer größer oder höchstens gleich dem
Abstand von tv zum Mittelpunkt.

REVE

Abb. 6

Ausgehend von diesem Satz läßt sich folgern, daß VE nie außerhalb
von RE verläuft. Anders formuliert, darf eine vom gemeinsamen
Ellipsenmittelpunkt ausgehende beliebige stetige Kurve die RE nie vor der
VE schneiden.

Würde an irgendeiner Stelle die VE über die RE hinaustreten (Abb. 6),
so ließen sich immer zwei parallele Tangenten so finden, daß die Tangente
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tv den größern Abstand vom Mittelpunkt hat als die Tangente tR, was
im Widerspruch mit dem vorhin bewiesenen Satz steht.

Der ausführliche Beweis dazu läßt sich folgendermaßen führen:
Wir nehmen an, die VE trete zwischen den Punkten Sj und S2 über die
RE hinaus. Nach dem Satz von Rolle aus der Differentialrechnung lassen
sich auf beiden Kurven zwischen S± und S2 parallele Tangenten zur
Sekante s finden. Wir ziehen vom Mittelpunkt M eine Kurve kj, so, daß
sie die beiden Ellipsen in den Tangentenberührungspunkten schneidet.
Nach der Annahme muß kt RE vor VE schneiden und damit auch tn vor
tv- Wenn die Kurve Arx tn vor ly schneidet, gilt dasselbe für irgendeine von
M ausgehende und die beiden parallelen Geraden (^und tv schneidende
Kurve, speziell für die Normale n. Das würde heißen m^2 > m9'2, was
der Gleichung (7.2) widerspricht. Die Annahme VE außerhalb von RE
muß darum verworfen werden.

RE

VE

Abb. 7

Es gilt also der Satz:
Bei gleicher Punktkonfiguration und bei gleicher Meßgenauigkeit

aller Visuren verläuft auf dem Neupunkt die Fehlerellipse für das reine
Vorwärtseinschneiden immer innerhalb der Fehlerellipse für das reine
Rückwärtseinschneiden, berührt sie höchstens oder fällt im Grenzfall
mit ihr zusammen.

Der Grenzfall tritt ein, wenn die Flächen F F', das heißt C 0.

Dazu muß der Zähler von C verschwinden, und das ist zum Beispiel der
Fall, wenn [a] [b] 0, speziell zum Beispiel bei rotationssymmetrischen

Anordnungen (n gleich lange, über den ganzen Kreis gleichmäßig

verteilte Strahlen).
Man kann noch die Frage aufwerfen: Haben die VE und die RE -

immer unter den gemachten Voraussetzungen - für jede beliebige Fest-
punktkonfiguration gemeinsame Berührungspunkte?

Für einen Berührungspunkt B müßte mx mx sein. Es gilt auch
die Umkehrung: Wenn mx mx', dann ist die Gerade mit dem Abstand
mx vom Mittelpunkt Tangente (t) an den gemeinsamen Berührungspunkt

B. Würde nämlich die Gerade t die VE und die RE in zwei
verschiedenen Punkten berühren, so könnte die VE nicht ganz innerhalb der
RE verlaufen.
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mx mx führt nach (7.1) auf die Bedingung [a] [bb] — [b] [ab] 0.
Dieser Ausdruck tritt auch als Nenner des Steigungsfaktors fr auf (5.4).
Wird er zu Null, wird fr co (Gerade g2 in Abb. 4). fr wird unendlich
im Koordinatensystem, dessen x-Achse senkrecht auf g2 steht. Die
gemeinsame Tangente t ist darum parallel zu g2. Der Berührungspunkt
ist der Durchstoßpunkt des konjugierten Durchmessers zu g2 mit den
Fehlerellipsen. Nach Abschnitt 5 ist das der Durchmesser mit dem
Steigungsfaktor fr (g1 in Abb. 4).

Damit ist bewiesen:
Bei gleicher Punktkonfiguration und bei gleicher Meßgenauigkeit

haben die Fehlerellipsen für das Vorwärts- und Rückwärtseinschneiden
immer wenigstens zwei gemeinsame Berührungspunkte. Es sind dies die
Schnittpunkte mit dem Durchmesser vom Steigungsfaktor — [a]/[6].

Im System der konjugierten Durchmesser g1 und gt heißen die
Gleichungen der VE und der RE

Xi Ui* xJ y,2
VE: y~ + -^- 1 RE: -î- + — 1.

r2 rxa r2 r22

r ist der gemeinsame konjugierte Halbmesser auf gu rx und r2 sind die
konjugierten Halbmesser auf g2. Für ein beliebiges festes x verhalten

y» r2sich die u-Koordinaten wie — —.
Ui rx

Die beiden Ellipsen sind somit zueinander affin. Die Gerade gt ist die
Affinitätsachse, g2 die Affinitätsrichtung, und das Affinitätsverhältnis
hat den Betrag

'
Ui F

'D_^ _1

8. Behandlung des kombinierten Einschneidens

Für das kombinierte Vor- und Rückwärtseinschneiden läßt sich eine
entsprechende Formel für C ableiten.

Die Fehlergleichungen lauten in diesem Fall:

Pi öi t +brV + /i
Vi as t + h V + U f äußere Richtungen

vr art + br Tj + fr

vr+i ar+11 + br+1 tj — £ + fr+i

Vn a„ t + b„V — £ + fn

Dabei können einige oder alle Richtungen gegenseitig beobachtet
sein.
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Abgekürzt kann man auch schreiben

Vi att y biTj — Cit, + fi
mit Ci 0 für i =r= 1,2, r,

et + 1 für i r + 1, r + 2, n.

Man wird für die innern Richtungen wieder £ nach Gauss vorgängig
eliminieren und kommt auf die reduzierten Fehlergleichungen

Vi' ai t + by y fi' für i r + 1, r + 2, n,

aarta n > n ^ * I. ' h W^1 * > / ^+lwo a,- a; — bi bi — fi /,¦ —
n — r /t — r n — r

Um die Formel für den Konvergenzfaktor abzuleiten, verwenden wir die
unreduzierte Form. Analog wie beim reinen Rückwärtseinschnitt heißen
die Fehlergleichungen auf den ausgeglichenen Punkt bezogen

vi ai t y bi 7] — et £ + Vi

mit c,- 0 für i =1,2 r,
c; 1 für i=r + l, r+2...n.

Wird wieder nur £ geändert und to und Vo festgehalten, bekommt man
in einem ersten Schritt aus der Bedingung

8 \vv\ n- i -~ zT [pi]?+i o
à £

für £ den ersten Näherungswert

y _
[a]?+i to y [b]r+i Vo

und in einem zweiten Schritt unter Festhalten von £t die ersten
Näherungswerte für | und aus den Bedingungen

8 \vv] n 8 \vv]
\ ¦ -TJ- [av]\ =0, \ ¦ J J

[bv]S 0
81 07]

?1
[aa] [M>] — [a&]2

' '

[b]" i [aa]—[a]"+i[afr]
1,1

[aa] [bb] — [ab]2
' iv

Beim Summieren von 1 nach n sind der P^infachheit halber die Summa-
tionsindizes nach der eckigen Klammer weggelassen. Der zweite
Näherungswert für £ heißt

a. _ [«Ai t, y [b]"+i ' Vi
n — r
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Daraus läßt sich C berechnen zu

c (MrVi)2 [bb] — 2 [<+1 [/j]?+1 [ab] + ([b]?,t)2 [aa]

(n — r)([aa][bb]—[ab]2)

Um einen einfachen Ausdruck für C zu finden, berechnen wir auch hier
wieder die Größen

D [aa] [bb] — [ab]2

für reinen Vorwärtseinschnitt und

D' ([aa][ + [a'at+1) ([bb][ + [b'b']?+1) — ([ab]rt + [a'b']?+1)2

für das kombiniert Einschneiden.
Unter Benutzung der Beziehungen

r „n e ,n ([«]r+l)2
[a'a']r+1 [aa]r+1 n_y

[b b ]r+1 [bb]r+1 n_r (2.12)

ISh'ln r„Mn [alr+ l [b]r+l
[a b ]r+1 [ab]r+1

n — r
wird D' zu

jy ([aa] «^ ([», - ggff _ ([flft] '* * ^V
Multipliziert man aus und vereinfacht, so entsteht schließlich die
Gleichung

D'=D—[aa] m^lY —
2 [ab] la]"+1 [b]"+1 + m ([a]"+l)2

n —r
D — CD

und

C l-^l=l-f-^V£> VF'

Diese Gleichung verknüpft den Konvergenzfaktor auf dieselbe Weise
mit der Fläche der Fehlerellipsen wie beim reinen Rückwärtseinschneiden.

Dabei ist F die Fläche der Fehlerellipse, wenn alle Richtungen,
äußere wie innere, nur von außen beobachtet wären, wobei gegenseitige
Richtungen doppelt zu zählen sind und F' die Fläche der Fehlerellipse
für den tatsächlich beobachteten Fall des kombinierten Einschneidens.

Die Formel für den reinen Rückwärtseinschnitt ist ein Grenzfall
dieser allgemeinen Formel, ebenso geht daraus der reine Vorwärtseinschnitt

hervor zu

c-i -(!)'= 0.
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Zum Schluß sei noch der Fall des kombinierten Einschneidens, mit
allen Visuren gegenseitig beobachtet, dem Fall des reinen Rückwärts-
einschneidens gegenübergestellt. Nach Formel (8.1) wird C für diesen
speziellen Fall

([af)2 ¦ 2 [bb][ — 2 [af [bf ¦ 2 [abf + ([b][)2 ¦ 2 [aaft
Lk

r (2 [aaft ¦ 2 [bbf — 4 ([ab][)2)

weil 2r n, [a]"+1 [aft, [aa]" 2 [aaf usw.

und nach Vergleich mit Cn für reinen Rückwärtseinschnitt

Ck=Ì Cr- (8.2)

Für diesen speziellen Fall des kombinierten Einschneidens
(vollständiges Einschneiden) ist der Konvergenzfaktor halb so groß wie beim
Rückwärtseinschneiden. Das Verfahren der sukzessiven Näherung
konvergiert daher bedeutend besser. Im besondern konvergiert das
Verfahren imitier, weil wegen Cn <. 1 der Wert Ck < i werden muß.

9. Behandlung zweier Spezialfälle

a) Rückwärtseinschneiden: Alle Visuren gleich lang und gleiche
Zwischenwinkel.

Die Distanz d kürzt sich im Ausdruck für C im Zähler und Nenner
weg, sie darf darum zu 1 angenommen werden

a,- sina,- b{ —cosa;.
C wird dann

[sina]2 [cos2a] — 2 [sina] [cosa] [sina cosa] + [cosa]2 [sin2a]

n ([sin2a] [cos2a] — [sina cosa]2)

Die Formel für C muß gegen eine Drehung des Koordinatensystems
invariant sein, wie die Bedeutung von C vermuten läßt und wie auch aus
Formel (6.6) ersichtlich ist. Man darf deshalb die Nullrichtung des
Satzes so legen, daß die Formeln möglichst einfach werden. In unserm
Fall hier legen wir sie, wie in Abb. 8 angegeben ist.

Man läßt am besten den gesamten Winkelbereich nicht vom ersten
bis zum letzten Strahl gehen, sondern erweitert auf beide Seiten um den

<P yWinkel - -—. Dies führt im Falle von einem rotationssymmetrischen

Richtungssatz auf die logischere Bezeichnung, wo der erste und
der letzte Strahl keinen vollen Winkel einschließen, 0 dann aber 360°
wird.

Für die Summenausdrücke in der Formel von C lassen sich
geschlossene Formeln in Abhängigkeit von <P und n angegeben, die man
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zum Beispiel erhält, wenn man für die trigonometrischen Funktionen
die komplexe Schreibweise einführt und nach Real- und Imaginärteil
trennt.

Ä2 "3 a
\ A

/

2 \ / Z

0\ '/ Abkürzung -^- » f

Abb. 8

Man kommt dann zu folgenden Beziehungen:

»G"
-, * sin2 —

v~i IV \ 1 — cos $ 2
[sina] \ sin/-|-(2/c —1)J

fe=i
y y2 sin — sin ~—

0 0n ¦
__ sin — cos —\-i / y \ sin 0 2 2

[cosa] \ cosi— (2k —1)1
TT 2 sin-— sin —*=i 2 2

v-i / y JV\ n sin 2 0
sin2a] \ sin2 -L- (2k—1)/ J \ 2 /2 4 siny

k l

\~\ y \ n sin 2 0
[cos2a] > cos2 Tr (2k—1) — + —¦/ i \ 2 7 2 4 sin y

fe=i

[Sina cosa] V sin (T- (2k—1) j • cos -|- (2/c — 1)

fc=i

1 — cos 2 0 _
sin2 0

sin y sin y
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Diese Ausdrücke, in die Formel für C eingesetzt, führen nach
Vereinfachungen und Zusammenfassung auf die Schlußformel

oder auch

c 2siny(l—cos0)
n (1 — cosy) (n ¦ siny -f sin0)

0
4 • sin2 —

C
2

(9.1")
yn • tg-— (n • siny + sin<Z>)
iL

In Diagramm 9 sind die Formeln für einige Werte von n graphisch
dargestellt, zusammen mit dem Grenzfall n co. Dieser Fall kommt
natürlich praktisch nicht vor, da man ja selten über acht Richtungen
mißt, er wurde aber des Interesses halber doch aufgetragen. Die Formel
dafür leitet man als Grenzwert aus (9.1") her.

4 • sin2 —- 8 • sin2 —- t„ ^2
_

2 _4(1—cos0)
°° ~ n™m <^7 * ,\ ~ 0 (0 + sin0)

~~
0(0 + sin0)n^°°n-tg — (n-sin h sin 01 v ' v '

(9.2)
tg — n ¦ sin 1- sin 0

2n\ n

b) Rückwärtseinschneiden: Ungerade Anzahl von Strahlen, gleiche
Zwischenwinkel, Mittelstrahl u-mal so lang wie alle übrigen Strahlen.

Die Herleitung der Formel wird stark vereinfacht, wenn man von
der Eigenschaft Gebrauch macht, daß für axialsymmetrische Konfigurationen

die Fehlerellipse auch axialsymmetrisch liegt. Der Beweis dafür
ist einfach zu führen. Man bezieht alles auf das Koordinatensystem der
Symmetrieachse. Soll die Fehlerellipse dazu symmetrisch liegen, so muß
der Winkel 0 zwischen der großen Achse und der Symmetrieachse 0°
oder 90° sein.

Wegen tg (2 0) kann das nur der Fall sein, wenn
[aa] — [bb]

[ab] 0. Wir untersuchen zuerst für den Vorwärtseinschnitt, ob diese
Bedingung erfüllt ist. Weil

sina cosa
a • p b • p

d v d r

und weil jedem Strahl außerhalb der Mittelachse ein symmetrischer
Strahl entspricht, wird für diese Strahlen unter Benutzung der
Beziehungen

sin (— a) — sin a -s- a_ — a

cos(—a) + cosa -> b_ + b
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n«5,u«4

_
4(slnj + (^-llsinft)
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Abb. 9. Konvergenzfaktor C in Abhängigkeit vom Sektorwinkel 0 und 0' für
einige spezielle Fälle (Abschnitt 9, a und b).

0 ist der im Text definierte Winkel, 0' der Winkel zwischen den beiden äußersten
Strahlen des Sektors.

Hier bedeuten a_, b_ die Richtungskoeffizienten der symmetrischen
Strahlen zu a, b. Eingesetzt in [ab], ergibt sich für symmetrische Strahlen

[ab] ax_ bt_ + a2_ />2_ -f
—al61 — a2b2 —

+ axbt + a2b2 +
+ aa.bj. + a2b2 + 0.

Für eine gerade Anzahl von Strahlen ist der Beweis damit geführt. Ist
die Zahl der Strahlen ungerade, so gibt es einen Mittelstrahl m. Für
diesen gilt am 0, sinam 0, am 0, das heißt, auch der Summand
ambm verschwindet.

Beim Rückwärtseinschnitt muß man an Stelle von a, b

a a
[«]

b' =b —
[b]
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einsetzen. Aus Gründen der Symmetrie wird a'_ — a' und b'_ + V
und daraus folgt [a'b'] 0.

Weil wir also für die zu untersuchende Konfiguration setzen dürfen
[ab] 0 und weiter auch [a] 0, vereinfacht sich C zu

[b]2
C

L J

(9.3)
n [bb]

Ohne Einschränkung der Allgemeinheit darf den Randstrahlen die
Länge 1 gegeben werden, der Mittelstrahl hat dann die Länge u. Die
Richtungskoeffizienten werden dann für den Mittelstrahl

1
a 0, b

u

und für die übrigen Strahlen

a sina, b — cosa.

Führt man dem Fall a analoge Bezeichnungen ein und rechnet man die
Summenausdrücke explizit aus, gelangt man zu den Formeln

* ¦ y T 1

sin sin — 1

[b]
2 *-i-Ji

sin -jL-
2

siny(-"-— +^r)+ i sin0
[M] lL_

y y2 • sin — cos —
2 2

und

J • * y /14 < sin 1- sin — ¦ I

¦ c— li » r i-
,9-4)

n • tg ^- siny • In + —- — 2 1 + sin0|

Für den Spezialfall u 1 erhält man die Formel (9.1").
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