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Untersuchung iiber die Konvergenz eines Niherungs-
verfahrens zum Ausgleichen von eingeschnittenen
Punkten

Von Richard Kdchle, Dipl.-Ing., Ziirich

Inhalt: In diesem Aufsatz wird ein bekanntes halbgraphisches Ver-
fahren zum Ausgleichen von eingeschnittenen Punkten auf seine Kon-
vergenz hin untersucht. Es wird ein Konvergenzfaktor hergeleitet und
in Beziehung zu den Fehlerellipsen gebracht. Der Konvergenzfaktor
wird fiir zwei spezielle Konfigurationen in geschlossener Form angegeben
und in einem Graphikon dargestellt. In einem besondern Abschnitt sind
einige allgemeine Eigenschaften der Fehlerellipsen eines aus denselben
Strahlen vorwirts und riickwirts eingeschnittenen Punktes aufgefiihrt.

1. Beschreibung des halbgraphischen Verfahrens schrittweiser Ndherung

Neben dem strengen analytischen Verfahren zum Ausgleichen von
eingeschnittenen Punkten gibt es eine ganze Reihe graphischer Losungs-
wege. Unter ihnen ist das Verfahren mit der fehlerzeigenden Figur dank
seiner Einfachheit und Anschaulichkeit sehr beliebt. Die gemessenen
Strahlen werden dabei in der Umgebung des Neupunktes in groBlem
Ma@stab aufgetragen und der ausgeglichene Punkt meist von Auge ein-
geschiitzt. Wihrend beim reinen Vorwirtseinschneiden (nur #uflere, auf
den Festpunkten orientierte Visuren) die Methode, abgesehen vom mehr
oder weniger willkiirlichen Einschitzen des Punktes, im ersten Schritt
die strenge L.osung liefert, tritt beim Riickwirtseinschneiden (nur innere,
nicht orientierte Richtungen) eine Komplikation auf. Neben den beiden
Koordinaten des Neupunktes muf3 als weitere Unbekannte die Orientie-
rung des gemessenen Satzes auf dem Neupunkt eingefiihrt werden. Um
dennoch mit der Fehlerfigur arbeiten zu kénnen, bedient man sich eines
Verfahrens schrittweiser Ndherung, das — unter gewissen Einschriankun-
gen — eine Entsprechung in einem Verfahren zum Riickwiirtseinschneiden
auf dem Meftisch hat und im folgenden beschrieben werden soll [1].

Man bestimmt zuerst aus drei giinstig gelegenen Festpunkten nach
irgendeiner der bekannten Berechnungsmethoden zum Riickwirts-
einschneiden einen ersten Niherungspunkt, den wir im folgenden als
Ausgangspunkt bezeichnen wollen. Damit wird es moglich, dem ge-
messenen Satz eine erste Ndherungsorientierung zu geben und eine erste,
noch nicht korrekte Fehlerfigur zu zeichnen. In diese Fehlerfigur wird
sodann wie beim Vorwirtseinschneiden ein Punkt eingeschitzt, der
wegen der fehlerhaften Orientierung im allgemeinen noch nicht der aus-
geglichene Punkt ist. Dieser Punkt wird als besserer Niherungspunkt
betrachtet und das beschriebene Verfahren so oft wiederholt, bis die
Folge der Nadherungspunkte oder, was auf dasselbe hinausliuft, die
Folge der Niherungsorientierungen stehen bleibt.



Der ausgeglichene Punkt wird also in zwei verschiedenen, sich wie-
derholenden Schritten sukzessiv approximiert, wobei in jedem Schritt
einzeln nach der Methode der kleinsten Quadrate ausgeglichen wird.
Uberwiegt die Genauigkeit der Zentrierung bedeutend iiber die Genauig-
keit der Winkelmessung, gleicht man nach dem Prinzip [vv] = Min. aus,
im umgekehrten Fall nach [gq] = Min. (v = Verbesserung an der ge-
messenen Richtung, ¢ = Querabweichung des ausgeglichenen Punktes
von einem fehlerzeigenden Strahl). In diesem Artikel wird nur der Fall
[vv] = Min. behandelt.

2. Die strenge analytische Ausgleichung beim Riickwdrilseinschneiden

Die Ergebnisse des bekannten analytischen Ausgleichverfahrens
sollen kurz so weit zusammengestellt werden, als in den spiter folgenden
Ableitungen darauf zuriickgegriffen wird. Es werden hier die folgenden
Bezeichnungen verwendet (siehe Abb. 1):

a; Azimut vom ausgeglichenen Neupunkt P zum Festpunkt A;

l; gemessene Richtung auf P nach A;

v; Verbesserung an der Messung [/;, um auf den ausgeglichenen Wert zu
gelangen

o  Orientierungsunbekannte des Satzes

z, y Koordinaten des ausgeglichenen Punktes P.

Der Index 0 bezeichnet Ndherungswerte. Wie iiblich werden nicht
direkt die Unbekannten z, y, o gesucht, sondern die kleinen Differenzen
gegeniiber Nidherungswerten. ,

E=2—2xp M=Y—VYo» {=0—0 (2.1)

X

A; Festpunkt

P ausgeglichener Punkt

P, Naherungspunkt

d; Distanz

—_— > Y
P, ¢
Abb. 1

Das Problem wird nach der Methode der vermittelnden Ausgleichung
behandelt. ' :
Die Beobachtungsgleichungen lauten

ai =0 + l; + v; | (2.2)



Ersetzt man die unbekannten Azimute a; mit Hilfe der Gleichungen

sin a; COS a;j
ai = agi + daj, da; 2§ ——-}-{%P —7 d: !
i i

p (2.3)

durch die Unbekannten £ und % und o durch o, + {, so lauten die Beo-
obachtungsgleichungen

sin a; COS a;

agi + € d; p—n di“P=00+€+lf+Ui (2.4)

und die Fehlergleichungen

sin a; COS a;

4 P g, p—IL+ agi— (00 + i) (2.5)

oder mit den iiblichen Abkiirzungen

sin a; coS a;

a; = —p bi=— ps fi = agi— (0 + 1i) (2.6)
d; di
vi =a; &+ bin— L+ i (2.7
i=1,2,3...n n = Anzahl der Visuren.

Die Fehlergleichungen stellen ein System von n Gleichungen mit den
n + 3 Unbekannten v, v,, ... vp, &, 7, { dar.
Die Bedingung [v; v;] = Min. liefert die drei weiteren Gleichungen

[aivi] =0, [bivy] =0, [v;] =0 (2.8)

und ermdéglicht damit im allgemeinen eine eindeutige Bestimmung der
Unbekannten. Setzt man in die letzten drei Beziehungen die Groflen v;
aus (2.7) ein, entsteht das System der Normalgleichungen

¢ [ad] + 7 [ab] — {[a] + [af] =0 (2.9
§[ab] + n [bb] — L[b] + [bf] =0 (2.97)
—&lal —q] +{-n—[fl =0 (2.9)

Dieses System wird meist nicht direkt nach den Unbekannten &, », {
aufgelost, sondern man eliminiert vorgingig die Orientierungsunbekannte
{. Eine gebrduchliche Art ist die Eliminierung nach Gauss. Man fiithrt die

neuen Richtungskoeffizienten '

a;i’ = aj— [ai], by’ = bj— [bi], fi' = ff—-m (2.10)
n n )

ein und gelangt zu einem dem Vorwirtseinschneiden analogen System
Ela’a’l + nla’d] + [a’f] =0 (2.11%)
Ela’b] + q[b°D7] + [b'f] =0 (2.117)
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Wir bilden noch die fiir spiter wichtigen Ausdriicke

@ =0  @l=0 11 = 0
@] = [aq) — 12
o) = (o] — (2.12)
] — (A0
‘n

3. Elemente der Fehlerellipse [2]

Die Konvergenz des Nidherungsverfahrens steht in engem Zusam-
menhang mit der Fehlerellipse. Es werden darum hier die wichtigsten
Elemente der Fehlerellipse angefiihrt. Es soll angenommen werden, alle
Strahlen seien gleich genau beobachtet worden. Der mittlere Fehler an
einer beobachteten Richtung werde zu m =1 angenommen, weil die
absolute Grife der Ellipse hier nicht interessiert.

Fiir das Vorwirtseinschneiden lauten die Elemente der Fehler-
einheitsellipse:

[aa] + Jbb] + W

grole Halbachse A: A% = 2D (3.1
bb] — W
kleine Halbachse B: B? = Lac] +2[ D] o Ll

Verdrehungswinkel zwischen grofler Halbachse und z, y-Koordinaten-
system

— 2 [ab]
o 8 . S 3.1
82 6) = g — (o) )
Die Abkiirzung W steht fir
W = V/([aa] — [bb])? + 4 [ab]? (3.2
und D fir
D = [aa] [bb] — [ab]? ' (3.2")

Fiir den Riickwirtseinschnitt aus denselben n Strahlen lauten die
Ausdriicke entsprechend

o [a’a’] i—”[b’b’] + W’ N — 2 [a’D’] B
A == 2D, tg(z@) _—([a’a’]—[b’b’])
: (3.3)

. 2DI



D’ = [aa][b'b]—[ab]

g b]? bl \2
- ([aa] _ ) (1201 — lni) — ([ab] __Lelln] ])

[aa] [b]® — 2 [ab] [a] [8] + [bD] [a]?
n

= [aa] [bb] — [ab]? —

_ [aa] [b]* — 2 [ab] [a] [®] + [0b] [a]®
n

D" =D

(3.4)

4. Analytische Behandlung des Ndherungsverfahrens

Das Néiherungsverfahren liefert an Stelle des ausgeglichenen
Punktes P eine Punktfolge P,, P,, P,, P, ..., die, wenn das Verfahren
brauchbar sein soll, hinreichend rasch gegen P konvergieren muf.

In der folgenden analytischen Herleitung wird der Punkt in der
Fehlerfigur streng nach der Methode der kleinsten Quadrate berechnet,
im Unterschied zum praktischen Vorgehen, wo er nur eingeschiitzt wird.
Es ist aber darauf hinzuweisen, daB3 auch die Einschitzung nach Ge-
sichtspunkten der kleinsten quadratischen Abweichungen geschieht. Die
Differenzen zwischen strengem und geschitztem Wert diirfen nur klein
sein, soll das Verfahren eine brauchbare Losung liefern. Wie die Erfah-
rung zeigt, ist unser Auge im allgemeinen geschickt im Einschétzen nach
dem Minimumsprinzip. In praktischen Beispielen liegt der geschitzte
Punkt meist sehr gut.

Die Fehlergleichungen sind der Ausdruck der geometrischen Be-
ziehungen zwischen den Beobachtungswerten ! und deren Verbesserun-
gen v einerseits und den — vorliufig variabeln — Unbekannten z, y, o
(bezogen auf genidherte Werte x,, y,, 0,) andererseits. Die Unbekannten
und die Verbesserungen kénnen im Rahmen der Fehlergleichungen be-
liebige Werte annehmen. Erst die Ausgleichungsbedingung ([vv] = Min.
unter Variation einiger oder aller Unbekannten) legt eindeutige Werte
fest. Wenn alle Unbekannten wvariiert werden, fithrt die Minimums-
bedingung auf die streng ausgeglichenen Werte, variiert man nur eine
oder einige der Unbekannten, ergeben sich Werte, die noch von den frei
wiahlbaren, nicht variierten Unbekannten abhéngig sind (im anschlieend
beschriebenen Verfahren die Niherungswerte auf den verschiedenen
Approximationsstufen).

Zum Zwecke der theoretischen Untersuchung des Verfahrens
schrittweiser Ndherung ist es vorteilhaft, die KorrekturgréBien ¢, 2, ¢
anstatt auf beliebige Bezugswerte x,, y,, 0, direkt auf die streng aus-
geglichenen Werte zu beziehen. Um Verwechslungen vorzubeugen,
werden in diesem Abschnitt alle aus der strengen Ausgleichung resultie-
renden GréBen mit einem Querstrich versehen: x, §, 6, v;. Sie diirfen
durch die ganze Ableitung hindurch als feste Grofien angesehen werden,
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man kann sie sich zum Beispiel vorgingig des Approximationsverfahrens
nach der strengen Methode berechnet denken. Stehen die Grélen x, y,
0, v; ohne Querstrich, sollen sie als Variable aufgefafit werden. ¢, n, {
bedeuten dann nach dem vorhin Gesagten die Abweichungen der Va-
riablen z, y, o von den ausgeglichenen Werten x, ¥, 0. Die ersten, in
gewissen Grenzen beliebigen Niherungskoordinaten &,, n, wollen wir als
Ausgangswerte bezeichnen, eigentliche Nidherungswerte wollen wir die

GroBen {y, &1, My o &35 M ... auf den einzelnen Approximationsstufen
nennen.
Ausgangspunkt-
Po @
R S
|
Bo g,
R o
¥ [
RT P ausgeglichener Punkt
Abb, 2

Wenn man die Formeln fiir v;
vi =a; €&+ bin—1L + i (2.7)

auf den ausgeglichenen Punkt P bezieht, werden die Gréflen f; nach
(2.6) und (2.2)

fi=ai— (0 + L) = b
Damit gehen die Formeln fiir v; iiber in
vi =a;i§ +bin—1C + Ui

Fir den Fall der strengen Losung missen § =n ={ =0 und v; = v;
werden, wie man mit den Normalgleichungen bestidtigen kann, deren
Absolutglieder nach (2.8) verschwinden und deren triviale Losung lautet
§=n=0=0

Nach der Vorschrift beim Niherungsverfahren werden aber die
GroBen &, 7, { nicht in einem GuB ausgeglichen. Vielmehr werden
zuerst die Koordinaten ¢ = £, n = 7, festgehalten und ein erster Wert,
{, fur {, gesucht. Nachher wird die erste Niherungsorientierung, ¢,
festgehalten und die Koordinaten £, y nach dem Prinzip [vv] = Min.
variiert, was auf die ersten Niherungswerte ¢, 5, fithrt; diese werden
hinwiederum konstant gehalten und nach [vv] = Min. die zweite Na-
herungsorientierung, {,, bestimmt usw.

8



a) Variation von {
Die Fehlergleichungen haben die Gestalt
vi =a;i & + bine—{ + vy

Daraus entsteht nach dem Prinzip der kleinsten Quadrate und bei
variablem ¢ eine Normalgleichung

0 [vv]
z - ¥

=—[v] =—[a é—I[b]n +n-{—[v] =0

und wegen [p;] = 0 (Gleichung 2.8) erhilt man den Wert

_ [a] & + [8] mo
n

&

(4.1)

b) Variation von ¢ und 5
Die Fehlergleichungen lauten
vi=a; &+ bin—4 + i

Daraus entstehen bei variablem ¢ und 5 die Normalgleichungen

1 0[vv] _ _ o .
5% P [av] = [aa] € + [ab]ly —[a] §; = 0O
1.0 ) — (el € + (5Bl — (81 £, = 0
2 0On

Die Glieder [av] = 0, [bv] = 0 verschwinden auch hier nach (2.8). Aus
den Normalgleichungen berechnen wir die Unbekannten zu

| [a] [65] — [b] [ab]
[aa] [bb] — [ab]?

§1 = ) Cl (4-2’)

(6] [aa] — [a] [ab]
[aa] [bb] — [ab]?

m = - & (4.2")

Die Gleichungen (4.1) und (4.2) kann man allgemein fiir die k-te Appro-
ximationsstufe schreiben:

e = [a] k-1 + [B] mpe1
p o

- - (4.3’

_ [a] [bb] — [0] [ab] ”
& = “aa][bh] —[abr )
_ [0] [aa] —[a] [ab] 4 (4.3")

[aa] [bb] — [ab]?



5. Die Lage der Ndherungspunkite

Nach den Gleichungen (4.3) konnte es scheinen, als ob die Nihe-
rungspunkte von den Beobachtungen unabhingig wiren, weil diese in
den Formeln nicht explizit auftreten. Die Beobachtungsgréfien [; sind
aber implizit in den Groflen &, und %, enthalten, als den Koordinaten-
differenzen zwischen Ausgangspunkt P, und ausgeglichenem Punkt P.
P wird ja als aus der strengen Ausgleichung berechnet gedacht. Es kon-
nen hingegen andere Gréflen angegeben werden, die unabhingig von den
Beobachtungen sind und nur von der geometrischen Konfiguration der
Bestimmungsstrahlen abhédngen.

Als erstes wollen wir fragen, welches der geometrische Ort der
Niherungspunkte &4, mg-q ist, die auf eine konstante Niherungs-
orientierung {;, fithren.

Nach Gleichung (4.3%)

1
= (la] éx-1 + [b] pr1) = & = const.

ist das die Gerade

[a] 4
Nk-1 =_W§k1+ [b]c (5.1)
: : . d
mit der Steigung B =— W (5.2)
und dem Achsabschnitt auf der y-Achse n['b]c‘i.
Speziell ergeben die Niaherungspunkte auf der Geraden g,:
[a]
1 =— = €k (5.1%)
K (0]

die Orientierungsunbekannte {, = 0. Liegt der Ausgangspunkt zufillig
auf dieser Geraden durch den ausgeglichenen Punkt, so liefert das Ver-
fahren sofort die exakte Ldsung. Gelinge es, diese Gerade zu finden, so
wiirde man im ersten Schritt auf den streng ausgeglichenen Punkt stolen.
Nun ist es sehr leicht, die Richtung dieser Geraden anzugeben, ihre Lage
setzt aber die Kenntnis des ausgeglichenen Punktes bereits voraus.

Der Wert der Unbekannten {j, ist dem Abstand s;_; des Ndaherungs-
[a]

punktes Pj_4 von der Geraden n = _—W ¢ direkt proportional, denn
aus dem rechtwinkligen Dreieck in Abb. 3 geht hervor

n - L
Skl = — " . cos v

[2]
10



und weil

la] . n - g (0]
tgy = py =— ——, ist sjq = g -
g 4 g’ ok (6] V]a]? + [b]?
oder |

r = VAP + 1o

k = n k-1+

£

A

Fe-1
gk-l
p
P 2 3 ?
Y

Abb. 3

Weiter soll der geometrische Ort des Punktes Py ({x, i) untersuchi
werden, fiir alle Werte der Nédherungsorientierung {;. Aus den Glei-
chungen (4.3”) und (4.3""") folgt

_ [b][aa] —[a] [a]]

= - €p 5.3
“ 7 a (0] — 1wl o

Der Punkt Pj lduft auf einer Geraden g, durch den ausgeglichenen
Punkt. Der Abstand von Py zum ausgeglichenen Punkt P ist proportional
zu {. Alle Naherungspunkte, P,, P,, P; ..., liegen demzufolge auf einer
Geraden durch den ausgeglichenen Punkt mit dem Steigungsfaktor

_ [b] [aa] — [a] [ab]
¥ ™ a] [bb] — [b] [ab] °

(5.4)

Nur der willkiirliche Ausgangspunkt P, macht davon eine Ausnahme.
Die Geraden Gleichung (5.1°) und (5.3) haben die Richtungen von
konjugierten Durchmessern in den Fehlerellipsen fiir das reine Riick-
wirtseinschneiden wie auch fiir das reine Vorwirtseinschneiden aus den
n gegebenen Strahlen.
Um den Beweis fiir den Vorwirtseinschnitt zu fithren, schreiben wir

11



alle Formeln im Hauptachsensystem der zugehérigen Fehlerellipse. Im
Hauptachsensystem ist

_ 2 [ab] .
826 = [aa] —[bb]
woraus folgt [ab] = 0.

Die beiden Steigungsfaktoren sind dann

[a] [6] [aa]
M M T gy
Das Produkt wird
[aa]
M1 g = — ‘W-

Sollen u, und p, die Richtungen von konjugierten Durchmessern sein,
muf} im System der Hauptachsen gelten

A2

M ° B2 = B

Im speziellen System wird

A — [aa] + [bb] + [aa] — [bD] [aa]

2D =D (5.59)
, _ laal + [bb] —[aa] + [bD] [bb] “
B2 = 5D =5 (5.5")
A2
und — 32 e —[Tg]] = U * Mo d.e€.d.

Fiir das Riickwirtseinschneiden fiihrt die Bedingung
tg(20) =0 auf [a’d] =0

: __ [al[?]
oder nach Gleichung (2.12) auf [ab] = .

Die Steigungsfaktoren werden nach Gleichungen (5.2) und (5.4)

[a]® [b]
- [b] [aa] —— =
P = — 7 M2 = 2
[5] - _[b]n[g]_
und
[aa] — [a]?
B " g = — T
[(bb] — (8]

12



Es wird analog den Gleichungen (5.5)

A [a’a’], B (6D’
D’ D’
und
2
(aq] — 1
A" [a’a n qe.d
- . B =—7—-————=’L1'.u.2, .. U,
B,2 blbl b 2

Die Abb. 4 zeigt an einem durchgerechneten Beispiel die LLage der beiden
Geraden und die Fehlerellipsen. In der Figur ist auch dargestellt, wie die
Niherungspunkte auf einer Geraden gegen den ausgeglichenen Punkt
zulaufen. Sobald das Gesetz der Annidherung bekannt ist, kann man
Aussagen uber die Giite der Konvergenz machen. _

Weil nach Gleichungen (4.3”’) und (4.3""") ¢ und n; proportional zu
{) sind, gilt das auch fiir den Abstand PP = p, (k + 0). Man darf
darum schreiben

ki1 Praa P pra

Lk Py P Pk

Es geniigt also, die Folge ¢, ,, {; ... auf Konvergenz zu untersuchen.
Dazu ersetzen wir in der Gleichung

[a] &k + [B] 7
n )

{1 =

die GroBen & und ni durch die Gleichungen (4.3”) und (4.3”") und
erhalten ;
for, _ lal?[08] —2[a) [b] [ad] + [B]* [aa]
i n ([aa] [bb] — [ab]?)

e

Das Verhiiltnis {x1/{x ist unabhiingig vom Index k.
i1/l = const. = C firk =1,2,3...

Eine Folge mit dieser Eigenschaft heifit eine geometrische IFolge mit
dem Konvergenzfaktor C. Man kann auch schreiben {1 = C* - ;.

C ist eine Grofle, die nur von der Konfiguration der Festpunkte
und des Neupunktes abhingt und nicht von der Lage des Ausgangs-
punktes, denn a; und b; sind die Richtungskoeffizienten und n die An-
zahl der Richtungen.

13



Affinitdtsrichtung

Q92

As

g, Affinitdtsachse

Affinitats-
verhdltnis
K3P
g,: Y == -%— 3 t= KsP
(bl [aq] - [d} [ab] Konvergenzfaktor
9 Y " bbbt ,
¢ =1-- =073

Abb. 4. Fehlerellipsen und Ndherungspunkie.

A, Ay Ag, Ay, Ay Festpunkte, P Neupunkt

P, Ausgangspunkt. P,, P,, P, P,, Pg .... Néherungspunkte
VE Fehlerellipse fiir das Vorwértseinschneiden

RE Fehlerellipse fiir das Riickwartseinschneiden

6. Untersuchung und anschauliche Deutung des Konvergenzfaktors C

Der Konvergenzfaktor

_ [a]*[bb] —2[a] [¥] [ab] + [b]* [aq]

. 7 ({aa] [bb] — [ab]?)

(6.1)

charakterisiert die Giite der Konvergenz vollstindig. Je nachdem C > 1,
=1, < 1 ist, divergiert die Folge der Niherungspunkte, bleibt sie
stehen oder konvergiert sie.

Eine allgemeine Aussage 146t sich sofort mit Hilfe der Determinante
des Normalgleichungssystems (2.9) machen, die in der Theorie der
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Matrizen als Gramsche Determinante bekannt ist. Im vorliegenden Fall
ist es speziell eine Gramsche Determinante dritter Ordnung (siehe [3]). Als
Determinante einer GauBschen Transformationsmatrix besitzt sie die
Eigenschaft G > 0. Ausfiihrlich geschrieben, lautet die Bedingung

[aa] [a)]  —I4d]
G = [ab] (58] — [8] =
—lad  —I0] n

= n[aa] [bb] + 2 [a] [b] [ab] — [a]® [bb] — [D]® [aa] — n[ab]* > O,
und daraus folgt sofort

[a]? [bb] — 2 [a] [b] [ad] + [B]? [ad]

= (C<1. 6.2
n ({aa] [95] — [ab]") = (6:2)

Weiter 140t sich zeigen, dal C > 0.

Der Nenner wird nach (3.2”) mit nD abgekiirzt. D ist die Normal-
gleichungsdeterminante fiir das reine Vorwirtseinschneiden und damit
eine Gramsche Determinante zweiter Ordnung. Es gilt darum D > 0,
welche Beziehung auch unter dem Namen Schwarzsche Ungleichung
bekannt ist. Weil n ganz und positiv ist, gilt fiir den Nenner allgemein
nD > 0,

Den Zahler
Z = [a]*[bb] — 2 [a] [b] {ab] + [b]? [aq]
vergleichen wir mit dem Ausdruck
Q = [a]* [60] — 2 [a] [5] V]aa] V/[bb] + [b]* [aa].
Dieser laBt sich zu dem reinen Quadrat
Q = ((a] V[bb] —[b] V]aa])* > 0

umformen und ist darum nie negativ.
Man mufl nun die beiden Fille unterscheiden:

1. — 2[a] [b] [ab] > O

2. —2[a][b] [ab] <O } -in der Zahlenrechnung.

Im ersten Fall wird Z > 0, weil das erste und dritte Glied nie negativ
werden. Im zweiten Fall 140t sich wieder die Schwarzsche Ungleichung

anwenden:
[aa] [bb] — [ab]? > O

| Viaa] - V[bb] | > |[at]|

und daraus

| 2[a][b] - V]ada] - V[bb] | > |2[a] [] [a}] |
15



und also

Z
L£220>0, C=-—2>0. 6.3
>Q> o (6.3)

Mit 1 > C > 0 ist die Konvergenz des Verfahrens bewiesen, wobei im
Grenzfall von C = 1 der Prozel3 stehen bleibt.

Untersuchung des Grenzfalles C = 1

C =1 bedeutet G = 0. Aus der Matrizentheorie ist bekannt, dafl
die Gramsche Determinante dann und nur dann zu Null werden kann,
wenn die drei n-dimensionalen Spaltenvektoren

a, | [ b, | [ —1
a, b, —1
|_Qn _bn_ __—1

der Fehlergleichungsmatrix von Gleichung (2.7) untereinander linear
abhingig sind. Da fir das Riickwirtseinschneiden mindestens drei
Richtungen gebraucht werden, ist n > 3. Ein Kriterium fiir die lineare
Abhingigkeit ist das Verschwinden aller Unterdeterminanten vom
Range 3 der Fehlergleichungsmatrix. Fiir die ersten drei Zeilenvektoren
zum Beispiel lautet die Bedingung

sin a, cos a, 1
dl dl
al bl — 1 .
y 1 sin a, COSa, 1
az 9 T ] Wt = == 0
dy d,
sin a4 COS ag 1
Diese Determinante ausgerechnet ergibt
sin a; €oOS a, n sin az €OS a, sin a, €OS ag
d, d, d, dy d, dy
COS a, Sin a, COS a3 Sin a; COS a, Sin a4 0
d, d, d, ds d, d,
dy (sin a; €0S ay — €OS a; Sin a,)
+ d, (sin ag €c0S a; — €0S ay sin a;) (6.4)

+ d, (sin a; cos a;— c0S a, Sinag) = 0

Es 146t sich nun zeigen, dall diese Bedingung nur fiir vier auf einem
Kreis liegende Punkte erfiillt sein kann.
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Von den vier Punkten P, A,, A,, A; kann man unter Beriicksichtigung
von Gleichung (6.4) nur drei beliebig wihlen. Die einschrinkende Be-
dingung (6.4) erlaubt bei einmal getroffener Wahl von zum Beispiel P,

A,, A, nur noch, dal} sich der Punkt A; auf einer Kurve bewegen kann.
Die Gleichung dieser Kurve heifit in den Variablen a4, d, geschrieben
nach (6.4)

sin a4 (d; cos ag — d, cos a;) + cos a; (d, sin a; — d; sin a,)

3 sin a, cos a, — €OS a, Sin a,

Man darf abgekiirzt schreiben
d; = M sina; + N cos ag, (6.5)

wo M und N Konstanten sind. Durch eine Drehung der Nullrichtung
um den Winkel ag (sieche Abb. 5) 140t sich diese Gleichung immer in die
Form iberfithren d; = 2 R cos f8;, was die Gleichung eines Kreises mit
dem Radius R in Polarkoordinaten darstellt, wenn der Koordinaten-
ursprung auf der Peripherie liegt und die Nullrichtung mit dem Durch-
messer zusammenfillt.,

Substituiert man ndamlich a; = ar + Bi, heiit Gleichung (6.5)

d; = M (sinag cosf; + cosap sinfly) + N (cosar cosf; — sinapr sinfy)
= sinfBs (M cosar — N sinag) + cosB; (M sinar + N cosap).

. M
Wihlt man nun agr so, dal M cosar = N sinar oder tgap =N

geht daraus d; = 2 R - cos f; hervor, mit R = } (M sinag + N cosap).

Schlupfolgerung: Der Konvergenzfaktor C kann nur gleich 1 werden,
wenn die vier Punkte A, A,, A,, P auf einem Kreis liegen. (Gefidhrlicher
Kreis beim Riickwirtseinschneiden.) Wird P aus mehr als drei Punkten
A; bestimmt, gilt der Satz fiir irgendeine Kombination von Neupunkt P
und drei Festpunkten A4;. (Fortsetzung folgt)
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