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Untersuchung über die Konvergenz eines Näherungsverfahrens

zum Ausgleichen von eingeschnittenen
Punkten

Von Richard Köchle, Dipl.-Ing., Zürich

Inhalt: In diesem Aufsatz wird ein bekanntes halbgraphisches
Verfahren zum Ausgleichen von eingeschnittenen Punkten auf seine
Konvergenz hin untersucht. Es wird ein Konvergenzfaktor hergeleitet und
in Beziehung zu den Fehlerellipsen gebracht. Der Konvergenzfaktor
wird für zwei spezielle Konfigurationen in geschlossener Form angegeben
und in einem Graphikon dargestellt. In einem besondern Abschnitt sind
einige allgemeine Eigenschaften der Fehlerellipsen eines aus denselben
Strahlen vorwärts und rückwärts eingeschnittenen Punktes aufgeführt.

1. Beschreibung des halbgraphischen Verfahrens schrittweiser Näherung

Neben dem strengen analytischen Verfahren zum Ausgleichen von
eingeschnittenen Punkten gibt es eine ganze Reihe graphischer Lösungswege.

Unter ihnen ist das Verfahren mit der fehlerzeigenden Figur dank
seiner Einfachheit und Anschaulichkeit sehr beliebt. Die gemessenen
Strahlen werden dabei in der Umgebung des Neupunktes in großem
Maßstab aufgetragen und der ausgeglichene Punkt meist von Auge
eingeschätzt. Während beim reinen Vorwärtseinschneiden (nur äußere, auf
den Festpunkten orientierte Visuren) die Methode, abgesehen vom mehr
oder weniger willkürlichen Einschätzen des Punktes, im ersten Schritt
die strenge Lösung liefert, tritt beim Rückwärtseinschneiden (nur innere,
nicht orientierte Richtungen) eine Komplikation auf. Neben den beiden
Koordinaten des Neupunktes muß als weitere Unbekannte die Orientierung

des gemessenen Satzes auf dem Neupunkt eingeführt werden. Um
dennoch mit der Fehlerfigur arbeiten zu können, bedient man sich eines
Verfahrens schrittweiser Näherung, das - unter gewissen Einschränkungen

- eine Entsprechung in einem Verfahren zum Rückwärtseinschneiden
auf dem Meßtisch hat und im folgenden beschrieben werden soll [1].

Man bestimmt zuerst aus drei günstig gelegenen Festpunkten nach
irgendeiner der bekannten Berechnungsmethoden zum
Rückwärtseinschneiden einen ersten Näherungspunkt, den wir im folgenden als
Ausgangspunkt bezeichnen wollen. Damit wird es möglich, dem
gemessenen Satz eine erste Näherungsorientierung zu geben und eine erste,
noch nicht korrekte Fehlerfigur zu zeichnen. In diese Fehlerfigur wird
sodann wie beim Vorwärtseinschneiden ein Punkt eingeschätzt, der
wegen der fehlerhaften Orientierung im allgemeinen noch nicht der
ausgeglichene Punkt ist. Dieser Punkt wird als besserer Näherungspunkt
betrachtet und das beschriebene Verfahren so oft wiederholt, bis die
Folge der Näherungspunkte oder, was auf dasselbe hinausläuft, die
Folge der Näherungsorientierungen stehen bleibt.



Der ausgeglichene Punkt wird also in zwei verschiedenen, sich
wiederholenden Schritten sukzessiv approximiert, wobei in jedem Schritt
einzeln nach der Methode der kleinsten Quadrate ausgeglichen wird.
Überwiegt die Genauigkeit der Zentrierung bedeutend über die Genauigkeit

der Winkelmessung, gleicht man nach dem Prinzip [vv] Min. aus,
im umgekehrten Fall nach [qq] Min. (v Verbesserung an der
gemessenen Richtung, q Querabweichung des ausgeglichenen Punktes
von einem fehlerzeigenden Strahl). In diesem Artikel wird nur der Fall
[vv] — Min. behandelt.

2. Die strenge analytische Ausgleichung beim Rückwärtseinschneiden

Die Ergebnisse des bekannten analytischen Ausgleichverfahrens
sollen kurz so weit zusammengestellt werden, als in den später folgenden
Ableitungen darauf zurückgegriffen wird. Es werden hier die folgenden
Bezeichnungen verwendet (siehe Abb. 1):

at Azimut vom ausgeglichenen Neupunkt P zum Festpunkt A;
li gemessene Richtung auf P nach A;
Vi Verbesserung an der Messung Z,-, um auf den ausgeglichenen Wert zu

gelangen
o Orientierungsunbekannte des Satzes

x, y Koordinaten des ausgeglichenen Punktes P.

Der Index 0 bezeichnet Näherungswerte. Wie üblich werden nicht
direkt die Unbekannten x, g, o gesucht, sondern die kleinen Differenzen
gegenüber Näherungswerten.

f x — x0, v =y — y0, £ o (2.1)

4*i

> y
p.

Abb. 1

Ai Festpunkt
P ausgeglichener Punkt
P0 Näherungspunkt
di Distanz

Das Problem wird nach der Methode der vermittelnden Ausgleichung
behandelt.

Die Beobachtungsgleichungen lauten

ai — o + U + vi (2.2)



Ersetzt man die unbekannten Azimute a; mit Hilfe der Gleichungen

sin a; COS ai-
ai aoi + Aai, Aai & I —7— P — V —T~ P (2-3)

di ai

durch die Unbekannten £ und 77 und o durch o0 + £, so lauten die Beo-
obachtungsgleichungen

sina,- cos a,- „ „a0i + f —j— P — *? —7— p =o0 + £ + h + Vi (2.4)
"i "i

und die Fehlergleichungen

sin at- cos a;
"i Ç

d p — V s p — i+ a,oi — (o0 y h) (2.5)

oder mit den üblichen Abkürzungen

sin at cos ai
ai —-— p, bi — p, fi a0i — (o0 + Iß (2.6)

"i «i

*>i at è + h -n — î, + h (2.7)

i — 1, 2, 3 n n Anzahl der Visuren.

Die Fehlergleichungen stellen ein System von n Gleichungen mit den
n + 3 Unbekannten vv v2, vn, $, rj, £ dar.
Die Bedingung [Vi v{\ Min. liefert die drei weiteren Gleichungen

[at vt] 0, [bi Vi] 0, [Vi] 0 (2.8)

und ermöglicht damit im allgemeinen eine eindeutige Bestimmung der
Unbekannten. Setzt man in die letzten drei Beziehungen die Größen Vi

aus (2.7) ein, entsteht das System der Normalgleichungen

f [aa] + v [ab] — £[«]+ [a/1 0 (2.9')

£ [ab] + -g [bb] — £[b]+ [bf] 0 (2.9")

— | [a] — r, [b] + t ¦ n— [f] 0 (2.9'")

Dieses System wird meist nicht direkt nach den Unbekannten f, -q, £

aufgelöst, sondern man eliminiert vorgängig die Orientierungsunbekannte
£. Eine gebräuchliche Art ist die Eliminierung nach Gauss. Man führt die
neuen Richtungskoeffizienten

[«ll t6'] [M re, ara-,ai a." bi' bi — fi' fi (2.10)
n n n

ein und gelangt zu einem dem Vorwärtseinschneiden analogen System

è [a'a'] + v [a'b'] + [a'f] 0 (2.11')

è [a'b'] + v [b'b'] + [b'f] 0 (2.11")
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Wir bilden noch die für später wichtigen Ausdrücke

[«'] 0 [b'] 0 [/'] 0

[al2
[a'a'] [aa]

[b'b'] [bb]

[a'b'] [ab]

n

[br
n

[a] [b]

(2.12)

3. Elemente der Fehlerellipse [2]

Die Konvergenz des Näherungsverfahrens steht in engem
Zusammenhang mit der Fehlerellipse. Es werden darum hier die wichtigsten
Elemente der Fehlerellipse angeführt. Es soll angenommen werden, alle
Strahlen seien gleich genau beobachtet worden. Der mittlere Fehler an
einer beobachteten Richtung werde zu m — 1 angenommen, weil die
absolute Größe der Ellipse hier nicht interessiert.

Für das Vorwärtseinschneiden lauten die Elemente der
Fehlereinheitsellipse:

[aa] + [bb] + W

~2pygroße Halbachse A: A2 (3.1')

kleine Halbachse B: B2
[aa] y [bb] — W

2D (3.1")

Verdrehungswinkel zwischen großer Halbachse und x, y-Koordinaten-
system

- 2 [ab]
ts (2 0) -*<¦ >

-([aa]-[bb])
Die Abkürzung W steht für

W V([aa] -^[ftft])2T T[ab]*

und D für
D [aa] [bb] — [aft]2

(3.1'")

(3.2')

(3.2")

Für den Rückwärtseinschnitt aus denselben n Strahlen lauten die
Ausdrücke entsprechend

[a'a'] y [b'b'] + W'
2D' tg(2®')

— 2 [a'b']
([a'a'] — [b'b'])

[a'a'] + [b'b'l — W'B" J l T w' V([a'a']—[ft'ft'])2+4[a'ft']2

(3.3)



D' [a'a'] [b'b']—[a'b']2

^Uaayyuyy-uyy^
[aa] [bb] — [ab]2 ¦

[aa] [b]2 — 2 [ab] [a] [ft] + [ftft] [a]2

D, _ D [aa] W — 2 [ab] [a] [b] + [bb] [a]2

4. Analytische Behandlung des Näherungsverfahrens

Das Näherungsverfahren liefert an Stelle des ausgeglichenen
Punktes P eine Punktfolge P0, Plf P2, P3 die, wenn das Verfahren
brauchbar sein soll, hinreichend rasch gegen P konvergieren muß.

In der folgenden analytischen Herleitung wird der Punkt in der
Fehlerfigur streng nach der Methode der kleinsten Quadrate berechnet,
im Unterschied zum praktischen Vorgehen, wo er nur eingeschätzt wird.
Es ist aber darauf hinzuweisen, daß auch die Einschätzung nach
Gesichtspunkten der kleinsten quadratischen Abweichungen geschieht. Die
Differenzen zwischen strengem und geschätztem Wert dürfen nur klein
sein, soll das Verfahren eine brauchbare Lösung liefern. Wie die Erfahrung

zeigt, ist unser Auge im allgemeinen geschickt im Einschätzen nach
dem Minimumsprinzip. In praktischen Beispielen liegt der geschätzte
Punkt meist sehr gut.

Die Fehlergleichungen sind der Ausdruck der geometrischen
Beziehungen zwischen den Beobachtungswerten l und deren Verbesserungen

v einerseits und den - vorläufig variabeln - Unbekannten x, y, o

(bezogen auf genäherte Werte x0, y0, o0) andererseits. Die Unbekannten
und die Verbesserungen können im Rahmen der Fehlergleichungen
beliebige Werte annehmen. Erst die Ausgleichungsbedingung ([vv] Min.
unter Variation einiger oder aller Unbekannten) legt eindeutige Werte
fest. Wenn alle Unbekannten variiert werden, führt die Minimumsbedingung

auf die streng ausgeglichenen Werte, variiert man nur eine
oder einige der Unbekannten, ergeben sich Werte, die noch von den frei
wählbaren, nicht variierten Unbekannten abhängig sind (im anschließend
beschriebenen Verfahren die Näherungswerte auf den verschiedenen
Approximationsstufen).

Zum Zwecke der theoretischen Untersuchung des Verfahrens
schrittweiser Näherung ist es vorteilhaft, die Korrekturgrößen £, -q, £

anstatt auf beliebige Bezugswerte x0, y0, o0 direkt auf die streng
ausgeglichenen Werte zu beziehen. Um Verwechslungen vorzubeugen,
werden in diesem Abschnitt alle aus der strengen Ausgleichung resultierenden

Größen mit einem Querstrich versehen: x, y, ö, vi. Sie dürfen
durch die ganze Ableitung hindurch als feste Größen angesehen werden,



man kann sie sich zum Beispiel vorgängig des Approximationsverfahrens
nach der strengen Methode berechnet denken. Stehen die Größen x, y,
o, Vi ohne Querstrich, sollen sie als Variable aufgefaßt werden. |, -q, £

bedeuten dann nach dem vorhin Gesagten die Abweichungen der
Variablen x, y, o von den ausgeglichenen Werten x, y, ö. Die ersten, in
gewissen Grenzen beliebigen Näherungskoordinaten f0, r)0 wollen wir als
Ausgangswerte bezeichnen, eigentliche Näherungswerte wollen wir die
Größen £lf £1( rjv £2, f2, rj2 auf den einzelnen Approximationsstufen
nennen.

Ausgangspunkt
P« 9

r' Ç
"I.

P30

ÏÏ P ausgeglichener Punkt

Abb. 2

Wenn man die Formeln für »,-

Vi ai Ç + bt -q ¦ ¦l+ft (2.7)

auf den ausgeglichenen Punkt P bezieht, werden die Größen /; nach
(2.6) und (2.2)

fi ä,- — (ô + h) vt.

Damit gehen die Formeln für i»,- über in

vi =ai$ + biij — £ + Vi.

Für den Fall der strengen Lösung müssen £ ^ £ 0 und vi «,-

werden, wie man mit den Normalgleichungen bestätigen kann, deren
Absolutglieder nach (2.8) verschwinden und deren triviale Lösung lautet
!=*/ £ =0.

Nach der Vorschrift beim Näherungsverfahren werden aber die
Größen £, -q, t, nicht in einem Guß ausgeglichen. Vielmehr werden
zuerst die Koordinaten $ f0, -q tja festgehalten und ein erster Wert,
d für £, gesucht. Nachher wird die erste Näherungsorientierung, £1(

festgehalten und die Koordinaten £, -q nach dem Prinzip [vv] Min.
variiert, was auf die ersten Näherungswerte £w ^ führt; diese werden
hinwiederum konstant gehalten und nach [vv] Min. die zweite
Näherungsorientierung, £2, bestimmt usw.
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a) Variation von £

Die Fehlergleichungen haben die Gestalt

vi a,- f0 + &i 77„ — £ + Vi

Daraus entsteht nach dem Prinzip der kleinsten Quadrate und bei
variablem £ eine Normalgleichung

8\vv]i ¦-—- =-M =— [a]f, — [b]Vo + n ¦£-[£,] =0

und wegen [vi] 0 (Gleichung 2.8) erhält man den Wert

£x
[a] g° ± [*] 3L (4.1)

ft,) Variation von | und ^

Die Fehlergleichungen lauten

».• ai I + &i ^ — £i + t'i-

Daraus entstehen bei variablem | und 77 die Normalgleichungen

1 8 [vv]
2 8Ç

1 8 [vv]
2 8-q

[av] =[aa]£ + [ab] ri —[<-]&= 0

-[bv] =[ab]$ + [bb]7j — [b]^=0

Die Glieder [av] 0, [bv] 0 verschwinden auch hier nach (2.8). Aus
den Normalgleichungen berechnen wir die Unbekannten zu

Mm-mmir [aa] [bb] — [ab]2 bl

_ [b][aa]-[a][ab]
Vl~ [aa][b~b] — [ab]2

Ql {4'Z >

Die Gleichungen (4.1) und (4.2) kann man allgemein für die k-te
Approximationsstufe schreiben:

£* Mfr-'+M*-» (4.3')
n

[q][ftft] — [ft][aft]
s* T^m, yyyy ' £* (4-3

[aa] [ftft] — [aft]2

6] [aa] — [a] [aft

[aa] [ftft] — [ab]2

[6] [aa] — [a] [aft] „
TO \1. ,L ILr ¦ -h (4.3'")
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5. Die Lage der Näherungspunkte

Nach den Gleichungen (4.3) könnte es scheinen, als ob die
Näherungspunkte von den Beobachtungen unabhängig wären, weil diese in
den Formeln nicht explizit auftreten. Die Beobachtungsgrößen li sind
aber implizit in den Größen £0 und •«„ enthalten, als den Koordinatendifferenzen

zwischen Ausgangspunkt P0 und ausgeglichenem Punkt P.
P wird ja als aus der strengen Ausgleichung berechnet gedacht. Es können

hingegen andere Größen angegeben werden, die unabhängig von den
Beobachtungen sind und nur von der geometrischen Konfiguration der
Bestimmungsstrahlen abhängen.

Als erstes wollen wir fragen, welches der geometrische Ort der
Näherungspunkte ft-i, ijfc-i ist, die auf eine konstante
Näherungsorientierung £fc führen.

Nach Gleichung (4.3')

— ([a] h-i + [b] 7]k-i) £c const.

ist das die Gerade

[a] t n- rc

mit der Steigung ut (5.2)
[b]

und dem Achsabschnitt auf der y-Achse
£c

[b]

Speziell ergeben die Näherungspunkte auf der Geraden gt:

m-i — -ër èk-i (5.1')

die Orientierungsunbekannte £c 0. Liegt der Ausgangspunkt zufällig
auf dieser Geraden durch den ausgeglichenen Punkt, so liefert das
Verfahren sofort die exakte Lösung. Gelänge es, diese Gerade zu finden, so
würde man im ersten Schritt auf den streng ausgeglichenen Punkt stoßen.
Nun ist es sehr leicht, die Richtung dieser Geraden anzugeben, ihre Lage
setzt aber die Kenntnis des ausgeglichenen Punktes bereits voraus.

Der Wert der Unbekannten £fc ist dem Abstand s^_i des Näherungspunktes

Pk-i von der Geraden « £ direkt proportional, denn
[o]

aus dem rechtwinkligen Dreieck in Abb. 3 geht hervor

S*-l TS, • COS V
[bi

10



und weil

oder

t„ M n- £fc ft
tg V fr — -—-, ISt Sk_t ——- ¦

[b] [b] V[a]2 + [b]2

r V[a]2 + [ft]2
£fc Sfc-t-

i i' i
i„.i Ak-i

•»*

Abb. 3

Weiter soll der geometrische Ort des Punktes Pj, (|j, rjk) untersucht
werden, für alle Werte der Näherungsorientierung £jj. Aus den
Gleichungen (4.3") und (4.3'") folgt

Vk
[ft] [aa] — [a] [ab]

[a][bb]—[b][ab]
•h- (5.3)

Der Punkt Pj, läuft auf einer Geraden gt durch den ausgeglichenen
Punkt. Der Abstand von Pj, zum ausgeglichenen Punkt P ist proportional
zu £fc. Alle Näherungspunkte, Plt P2, P3 liegen demzufolge auf einer
Geraden durch den ausgeglichenen Punkt mit dem Steigungsfaktor

/x2
[b][aa]—[a][ab]
[a][bb]—[b][ab]

(5.4)

Nur der willkürliche Ausgangspunkt P0 macht davon eine Ausnahme.
Die Geraden Gleichung (5.1') und (5.3) haben die Richtungen von

konjugierten Durchmessern in den Fehlerellipsen für das reine
Rückwärtseinschneiden wie auch für das reine Vorwärtseinschneiden aus den
n gegebenen Strahlen.

Um den Beweis für den Vorwärtseinschnitt zu führen, schreiben wir
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alle Formeln im Hauptachsensystem der zugehörigen Fehlerellipse. Im
Hauptachsensystem ist

tg(2@)= ¦ ![a*W=Q
[aa]—[bb]

woraus folgt [ab] — 0.

Die beiden Steigungsfaktoren sind dann

P-i __r und ^
[ft] [aa]

[a] [bb]
'

Das Produkt wird
[aa]

^"^^-[ftftf-
Sollen fr und fr die Richtungen von konjugierten Durchmessern sein,
muß im System der Hauptachsen gelten

A2
V- ¦ IH —-jp-

Im speziellen System wird

t, [aa] y [bb] + [aa] — [bb] [aa]

(5.5")

2D D

[aa] y[bb]— [aa] y [bb]

2D
[ftft]

D

und
A2 [aa]
B2

~~
[bb]

~ ^1 fr, q. e. d.

Für das Rückwärtseinschneiden führt die Bedingung

tg (2 &') -- 0 auf [a'b'] 0

oder nach Gleichung (2.12) auf
[a] [ft]

[ab]=
n.

¦

Die Steigungsfaktoren werden nach Gleichungen (5.2) und (5.4)

[«]
[ft] [aa] - [a]2[fc]

n
fr

[a] [bb] - [fc]2 [a]

und
[a]2

[aa]
n

fr fr -
[fc]2

[ftft] - Ai-

12



Es wird analog deh Gleichungen (5.5)

[a'a'] [b'b']
A'2 - -, B'2

L J

71' 'D' D'

und

A'2 [a'a']
[aa]

B" [Ö'b'] [bb]-B

a\'
n

-- fr ¦ fr, q. e. d.

Die Abb. 4 zeigt an einem durchgerechneten Beispiel die Lage der beiden
Geraden und die Fehlerellipsen. In der Figur ist auch dargestellt, wie die
Näherungspunkte auf einer Geraden gegen den ausgeglichenen Punkt
zulaufen. Sobald das Gesetz der Annäherung bekannt ist, kann man
Aussagen über die Güte der Konvergenz machen.

Weil nach Gleichungen (4.3") und (4.3'") tk und 7)k proportional zu
£t< sind, gilt das auch für den Abstand Pj,P pk (k £ 0). Man darf
darum schreiben

£/<+! Pk+i P Pk+i
.k PkP Pk

Es genügt also, die Folge £1( £2, £3 auf Konvergenz zu untersuchen.
Dazu ersetzen wir in der Gleichung

Y [a] tk + [b] yk
tfc+i >

die Größen tk und Vk durch die Gleichungen (4.3") und (4.3'") und
erhalten

r - [a]2 m y 2 [a] [b] [ab] ± [b]* [aa] r+1
n ([aa] [bb] — [ab]2)

' "'

Das Verhältnis £fc+i/£fe ist unabhängig vom Index k.

£ft+i/£ft const. C für k 1, 2, 3

Eine Folge mit dieser Eigenschaft heißt eine geometrische Folge mit
dem Konvergenzfaktor C. Man kann auch schreiben ik+i Ck ¦ Ck-

C ist eine Größe, die nur von der Konfiguration der Festpunkte
und des Neupunktes abhängt und nicht von der Lage des Ausgangspunktes,

denn a,- und bi sind die Richtungskoeffizienten und n die
Anzahl der Richtungen.
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g2 Affinitätsrichtung

K5

A.

g. Affinitätsachse VE

Affinitats-
verhältnis

< M
KjPREg,' y

Konvergenzfaktor

C I - -h. 0.73

MM-[a] [ab]
9* *

[a][bb]-[b][ab]

Abb. 4. Fehlerellipsen und Näherungspunkte.

Av A2, As, At, Ab Festpunkte, P Neupunkt
P0 Ausgangspunkt. Pv Pv P3, Pt,P,t Näherungspunkte
VE Fehlerellipse für das Vorwärtseinschneiden
RE Fehlerellipse für das Rückwärtseinschneiden

6. Untersuchung und anschauliche Deutung des Konvergenzfaktors C

Der Konvergenzfaktor

[a]2 [bb]
C

¦ 2 [a] [fc] [ab] + [fc]2 [aa]

n ([aa] [bb] — [ab]2)
(6.1)

charakterisiert die Güte der Konvergenz vollständig. Je nachdem C > 1,
1, < 1 ist, divergiert die Folge der Näherungspunkte, bleibt sie

stehen oder konvergiert sie.
Eine allgemeine Aussage läßt sich sofort mit Hilfe der Determinante

des Normalgleichungssystems (2.9) machen, die in der Theorie der
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Matrizen als Gramsche Determinante bekannt ist. Im vorliegenden Fall
ist es speziell eine Gramsche Determinante dritter Ordnung (siehe [3]). Als
Determinante einer Gaußschen Transformationsmatrix besitzt sie die
Eigenschaft G > 0. Ausführlich geschrieben, lautet die Bedingung

G
[aa] [ab] — [a]
[ab] [bb] — [ft]

— [a] — [ft] n

n [aa] [bb] + 2 [a] [fc] [ab] — [a]2 [ftft] — [ft]2 [aa] — n [ab]2 > 0,

und daraus folgt sofort

[a]2 [bb] — 2 [a] [b] [ab] + [ft]2 [aa]

n ([aa] [bb] — [ab]2)
C<\. (6.2)

Weiter läßt sich zeigen, daß C > 0.
Der Nenner wird nach (3.2") mit nD abgekürzt. D ist die

Normalgleichungsdeterminante für das reine Vorwärtseinschneiden und damit
eine Gramsche Determinante zweiter Ordnung. Es gilt darum D > 0,
welche Beziehung auch unter dem Namen Schwarzsehe Ungleichung
bekannt ist. Weil n ganz und positiv ist, gilt für den Nenner allgemein
nD > 0.

Den Zähler

Z [a]2 [bb] — 2 [a] [fc] [ab] + [ft]2 [aa]

vergleichen wir mit dem Ausdruck

Q la]2 [ftft] — 2 la] [ft] V[aa] V[ftft] + [ft]2 [aa].

Dieser läßt sich zu dem reinen Quadrat

Q ([a] V[bb] — [fc] Vjöo])2 > 0

umformen und ist darum nie negativ.
Man muß nun die beiden Fälle unterscheiden:

2:-2[a][&][aft!lo } ^ der Zahlenrechnung.

Im ersten Fall wird Z >^0, weil das erste und dritte Glied nie negativ
werden. Im zweiten Fall läßt sich wieder die Schwarzsehe Ungleichung
anwenden:

[aa] [bb] — [ab]2 > 0

| Vfäöj • vTfcö] | > | [aft] |

und daraus
| 2 [a] [ft] • V[aa] ¦ V[bb] \ > \ 2 [a] [6] [ab] |
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und also

Z > Q > 0,
nD > 0. (6.3)

Mit 1 > C > 0 ist die Konvergenz des Verfahrens bewiesen, wobei im
Grenzfall von C 1 der Prozeß stehen bleibt.

Untersuchung des Grenzfalles C — 1

C 1 bedeutet G 0. Aus der Matrizentheorie ist bekannt, daß
die Gramsche Determinante dann und nur dann zu Null werden kann,
wenn die drei n-dimensionalen Spaltenvektoren

öl
a2

an

h

bn

— 1

— 1

— 1

der Fehlergleichungsmatrix von Gleichung (2.7) untereinander linear
abhängig sind. Da für das Rückwärtseinschneiden mindestens drei
Richtungen gebraucht werden, ist n > 3. Ein Kriterium für die lineare
Abhängigkeit ist das Verschwinden aller Unterdeterminanten vom
Range 3 der Fehlergleichungsmatrix. Für die ersten drei Zeilenvektoren
zum Beispiel lautet die Bedingung

ai *>i — 1

a2 ft2 —1
a3 fc3 — 1

Diese Determinante ausgerechnet ergibt

sin ax cosa!
rfl rfi

sin a2 COSa2

d, d,

sin a, COSa3

1

0

sin aj cos a2
+

sin 03 cos ax sin a2 cos a3

di d3 d2 d3d1rf2

cos ax sin a2 cos a3 sin ax cos a2 sin a3

di dz di d3 d2 d3

d3 (sin at cos a2 — COS ar sin a2)

+ d2 (sin a3 COS aj — COS a3 sin ax)

+ d! (sin a2 cos a3 — cos a2 sin a3) 0

(6.4)

Es läßt sich nun zeigen, daß diese Bedingung nur für vier auf einem
Kreis liegende Punkte erfüllt sein kann.
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Von den vier Punkten P, Alt A2, A3 kann man unter Berücksichtigung
von Gleichung (6.4) nur drei beliebig wählen. Die einschränkende
Bedingung (6.4) erlaubt bei einmal getroffener Wahl von zum Beispiel P,

A2

2R

\
N?

Abb. 5

A1( A2 nur noch, daß sich der Punkt A3 auf einer Kurve bewegen kann.
Die Gleichung dieser Kurve heißt in den Variablen a3, d3 geschrieben
nach (6.4)

sin a3 (dx cos a2 — d2 cos ax) + cos a3 (d2 sin ax — dx sin a2)

sin ax cos a2 — cos a± sin a2

Man darf abgekürzt schreiben

d3 M sin a3 + N cos a3, (6.5)

wo M und N Konstanten sind. Durch eine Drehung der Nullrichtung
um den Winkel an (siehe Abb. 5) läßt sich diese Gleichung immer in die
Form überführen d3 2 R cos ß3, was die Gleichung eines Kreises mit
dem Radius R in Polarkoordinaten darstellt, wenn der Koordinatenursprung

auf der Peripherie liegt und die Nullrichtung mit dem Durchmesser

zusammenfällt.
Substituiert man nämlich a,- an + ßu heißt Gleichung (6.5)

d3 M (sinajj cosj83 -f cosa^ sin/?,,) + N (cosa« cos/33 — sina« sin/?3)

sin/?3 (M cosaji — N sinaji) + cos/33 (M sinan + N cosajj).

Wählt man nun an so, daß M cos an N sin an oder tg an
M
N'

geht daraus d3 =2 R ¦ cos ß3 hervor, mit R \ (M sin a« + N cos an).

Schlußfolgerung: Der Konvergenzfaktor C kann nur gleich 1 werden,
wenn die vier Punkte Alt A2, A3, P auf einem Kreis liegen. (Gefährlicher
Kreis beim Rückwärtseinschneiden.) Wird P aus mehr als drei Punkten
Ai bestimmt, gilt der Satz für irgendeine Kombination von Neupunkt P
und drei Festpunkten A,-. (Fortsetzung folgt)
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