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Die Methode der direkten Geländekorrektion

Von Armand K. Frisch, Wien

(Fortsetzung)

Es sei (Abb. 11) das schraffierte Flächenelement dq r • dr • difi
das Differential der Schnittfläche der differentiellen sphärischen Scheibe;
das Volumen des differentiellen Kugelringes sei

2 m • sint/r ¦ r ¦ dr ¦ dip 2 irr2 ¦ simp ¦ dr ¦ difi,

seine différentielle Masse

2 TT&r2 • sin if.¦¦ dr ¦ dip.

Tu

\«£
dr

\\
tt

¥

j_
Abb. 11

Man bezeichne mit e Vr2 + r'2 ¦— 2 r ¦ r' - cos ifi seinen Abstand vom
Aufpunkt Pu und mit W ipmax. den halben Zentriwinkel der sphärischen
Scheibe. Dann ergibt sich das Potential dieses differentiellen Kugelringes
mit

</. ¥'
n r2 ¦ sin ip - dr - dip

r I

J Vr2
iP 0

v 2 irk2&
+ r'2 — 2r ¦ r' - cosip

2 irk2dr2 ¦ dr ¦ —r Vr2 +r'2 — 2r ¦ r' cos^i
Y
0

2 TTk2& T ¦ dr (Vr2 + r'2 — 2 rr' ¦ cos W — Vr2 + r'2 — 2 rr'),
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beziehungsweise mit Einsetzen von

E Vr2 + r'2 — 2 rr' • cos W,

v 2 Trk2d- — ¦ dr (E — z), wobei z r' — r.
r

Für die vertikale Anziehung des Differentialringes auf irgendeinen Punkt
Pu auf der konvexen Seite der sphärischen Scheibe erhält man dann
(wenn wieder t/r statt W geschrieben wird) :

dv

dr'
2 7Tk2dr ¦ dr I

— E+r' — r\r' — r ¦ cosrfr

2 -irk2&r - dr Ir'2 — r ¦ r' ¦ cosip — E2 — Er

2 irk2&r • dr I — rr' • cos tp — r2 + 2 rr' • cos tp — Er
Ë

„ ,„„ r* /, r' ¦ cos<A — r2 Trk2& —r • dr 1 —

Für einen Punkt Pu auf der konkaven Seite der Scheibe, das heißt für
z r — r' oder r' < r, ergibt sich:

dv

dr7
2 irk2dr ¦ dr i- ¦ r ¦ cos ip

E + 1 — E+r — r'

2 irk2&r ¦ dr —r'r ¦ cos ip — r2 +2 rr' ¦ cos ip + £r
_

rz / r' • cos t/r — /•
— 2 77/V2!? — .(fr 1+ -^

Somit ist der gemeinsame Ausdruck für die Anziehung:

dv „ r2 Ir'- cos i/r — r
£

Wenn man nun von der differentiellen Höhe dr der Scheibe zur
endlichen Höhe b übergeht, so findet man:
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r=r0±b r0±b
8V n dv 2-7Tk2& nl r'-cosdi — r\
8T= -8T^±^~ (1T W— |r2-dr

rn

r0±b
7k2& n2rrk2& nf r2r' costi — r3

±—— I I^T -7
V -)dr;

Vr2 yr'2 — 2rr' • cost/.

nach Transformation des Ausdrucks unter der Wurzel:

r2 + r'2 — 2 rr' ¦ cos i/i (r — r' cos ip)2 + r'2 ¦ sin2 tp,

kann man dann das unbestimmte Integral mittels folgenden Ansatzes
lösen:

/r2r' - costi — r3 / ;T dr=(Ar2+Rr+C)V(r-r'c.os,p)2+r'2sm2i/,+
V(r—r' ¦ cos^r)2 + r'2 simp

(21)
drDfy=J V(r — r'('cosi/.)2 + r'2 sin2i/r

beiderseits differenziert:

r2r' • cost/. — r3 /- r =(2Ar + B)V(r — r'- cost/.)2 + r'2 ¦ sin2t/r +
V(r-r'- cosi/r)2 +r'2 ¦ sin2i/r

r — r' • costi
+ (Ar2 + Br + C) — _

y =- +
V (r — r' ¦ cos ip)2 + r'2 • sin2 ip

D

V(r — r' ¦ cosi/r)2 + r'2 • sin2i/r
'

mit dem Nenner multipliziert und nach Potenzen von r geordnet:

r2r' ¦ cost/.— r3 =2Ar(r2 +r'2 — 2rr'- cosip) +B(r2 + r'2 — 2rr'- cosi£) +
+ (Ar2 + Br + C)(r — r' ¦ cos^r) + D,

r2r' ¦ cosip—r3 2Aray2Arr'2—4Ar2r'-cosipyBr2 + Br'2-2Brr'- cos^ +
y Ar3 — Ar*r' ¦ cos ip y Br2 — Brr' ¦ cos ip + Cr—Cr' ¦ cosip + D,

— r3 + r2r' • cost^ r3 ¦ 3 A + r2 (2 S — 5 Ar' ¦ cos^) + r (2 Ar'2 —

— 3 Br' • cost^ + C) + (Br'2 — Cr' ¦ cost/. + D).
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Der Koeffizientenvergleich ergibt:

3 A —1; A —|;
2 B — 5 Ar' ¦ cost/. r' ¦ cost/. 2 B + j r' ¦ cost/.; B — \ ¦ r' ¦ cosip

0=2 Ar'2 — 3Br'- cost/. + C — f r'2 + r'2 ¦ cos2 ^ + C;

2 — 3cos2ti

0 Br'2 — Cr' ¦ cost^ + D — \ r'3 ¦ cos0 —
2—3 • cos2t/.

ferner ist:

S
dr

r'3 • cost/r + D; D r'3 ¦ cost/. • sin2 ip;

Substitution:
r — r' - cost/r

Vr — r' ¦ cost/.)2 + r'2 • sin t/.)

r' • sint/i • du

J Vr'2 • si

r' ¦ sint/i

dr r' ¦ sin t/. • du

duTsin21/. • u2 + r'2 • sin2 tp J Vl +u2

r — r' • costi
Arshu + C Arsh -— + C

r' ¦ sint/.

ln (r — r' - cos tp + Vr2 + r'2 — 2 rr' ¦ cost/.) + C
Für die sphärische Anziehung einer Scheibe von der Höhe b auf

einen auf ihrer konvexen Seite (nur dieser Fall ist für uns von Interesse)
gelegenen Punkt Pu ergibt sich dann sukzessive:

8V
_dr' r

k2&[i
n-[-

2 nk2» r r3

3~ J r2 — J rr' ¦ cos t/r +

+ $ ¦ r'2 (2 — 3 cos2 ip) I Vr2 + r'2 — 2 rr' ¦ cost/. —

r r0 + b

- r'3 ¦ cos t/r ¦ sin2t/r • ln (r — r' ¦ cost/. + Vr2 + r'2 — 2 rr' • cost/.) + C

r /•„

ev
aT7

2 77JC2fl

3r'2 (r, + b)3 — r03 + [(r„ + ft)2 + (r0 + b) r' ¦ cost/. —

r'2 (2 — 3 cos2i/.)] \/(r0 + b)2 + r'2 — 2 (r0 + ft) r' ¦ cost/. —

[r02 + r0r' cost/. — r'2 (2 — 3 cos2<^)] Vr2 + r'2 — 2 /•„/•' coTt/.—
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-3r'3-cost/csin2t/i- ln r„+ft—r'-cost/. + V(r0+ft)2 + r'2 — 2(r0+b)r'costp

r0 — r' cost/. + Vr02 + r'2 — 2 (r0 + b)r' ¦ cost/.

8V
i O ..aa r' Kf° + ft)3 —V /0o + »)' r + 6 c/j_

+ 3cos2t/,-2)|/l +i^7L&)2 —2r^*cost/,

'S + y ' W + 3cos2^-2) j/1 + £ — 2£ • cos'I

^-cos^+l/l
-3cost/.-sin2t/. • In

V- (ryb)2 r0+b
—2 2-^-cos./.

-COSt/t 1/ 1 +-—— 2-"- cost/.
r'2 r' r

Die Differenz der Anziehungen zweier Scheiben gleicher Höhe ft mit den
Zentriwinkeln 2ipy und 2tp2 auf einen Punkt Pu ist dann:

Asph 27Tk2d-
r' (r0 + b)2 r0+b

-jj— + - — • COSt/.! +

1/ (r<, + &)2 0A> + b
+ 3 cos2./.!—2 1/ 1 + ^-- ' 2 u

-, - • cos «/.,

+ V " ',;- + ' °
',

"
• COS^a + 3cos^2-2 )]/ 1 + ^Ì^-2r°tè • COS&+(r.yjl rB+b

r'2 r'

+ r *'
+ -p

• cost/.! + 3 cos2./-! — 2 \ |/ 1 + -^ — 2 ^ • COS0!

/V.1 r„ 1/.— + °
• costia + 3 cos2t/.2 — 2 1/ 1 + —-- — 2 °

• costi,

^-cost^ + l/l
+ 3COS0!' sin2t/.!- ln

(A. + &)2 or0+ft— 2- • cos^

cost/.s\T~y, 2 —¦ - COSlpy

-3cost/(2- sin2t/f2- In

o+ft /i lA (ro + *)2 „I-0+* "
—; COSt/(2+ 1/ 1 H 2 — • COSti2
r » r* r

-°—COS^a + l/l +-^ — 2-V COS^a
».' » p'^ ja' '
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Setzt man nun in diese Formel die gegenständlich interessierenden
Annahmen für Pu ein, und zwar

a) für r0 R 6371,2 km, ft hij+t fi, r' R + H, tpy tpt,
tp2 — tpt+i, so erhält man als Ausdruck für die Anziehung der Geländezone

i, i + 1 auf P:
(22)

i. o ii.^R + H\ l(R+h)2 R+hAsph,P 2 irk2& —- — "¦ Z ; -| costi; +3 l V(i? + H)2 R + H ri

\ l / cR+fi)2 fi+ft T
+ 3cosVi-2J|/l+i^-2--.cos^ +

/(fi+fi)2 *+fi
\(i?+iî)2 iî+if r +

\l/ (fi+fi)2 fi + fi
3cosV*+i—2 y 1 + TrhTi—2 - r- -co80jtl(fl+H)2 i?+iï

fi2 fi
+ 1 • COSlii +

\(R+H)2 R + H Vl

+ 3 costyi — 2 j/ 1 + j^TiKi — 2 ^T^ • c051/'' -
R?

2 ^
LR + H)2 R+H

R2 R
- H • cos ti;+ i +

(R+H)2 R + H r +

+ 3 COSV,- H—2)|/l + Jg^jFT. ~ 2 F "—, ' C0S & + 1 +
i?

(R + H)2 ~ R~+~H

+ 3 cost/.; sin2 t/.f •

fi+ft lAT^+^)2 7^+* T
costi; + V 1 H 2 • costi;fl + iZ ri (Ä+H)2 jR+i/ r<

• In -== _ —=_--
R 1/ R2 R

— COSt/i; + V 1 H 2 • costi;fi+H Vi r » ^(iì + if)s R + H Y

— 3 COSt/.; + i • SÌn2t/.; + i •

R+h 1/7 (fi+fi)2 -R+fi T
COS0; l+l' IH 2 • COS0; + iR+H Vi.l-r» t (R+Jr>t R+jj V + 1

• In —
R lA R* „ fi

cosifii+a + V 1 H 2 -costif+i
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ß) Setzt man für r0 R, ft fiIjl + 1 =fi, r' R, tpy ipt und >p2 ipi+i>
so läßt sich der dritte und vierte Ausdruck des Polynoms für Aspt, mittels

V2 — 2 cos"0 a/2 • V2 sin — 2 sin —r 2 2

vereinfachen und man erhält für die Anziehung der Geländezone i,i+l
auf den Punkt P0 am Geoid:

„ R lf(R + h)2 R + h
Asph, Po — 2 nk2& —

R2 + —g- COS./.;

+ 3cos2</.i-V (fi+fi)2 fi+fi1+— 2 — cos,fo

(R + h)2 R + h
™ ~— cos <Pi 1
R2 R T

+ 3 cos2 tp,i+t-2)sj A (R + h)2 nR+h
1 + TT 2 -~ COSt/.; jR2 R

sin — (1 — costpi — 3 cos2t/i;)

-sin (1 — COStpi^i — 3 COS2t/.;4 i)
dt

3 cosipi sin2tpi

In

i?+A
IT COS t/ry/ (R + h)2 R+h

1 +—— 2—— cost/.;

2 sin— (l + sin^
+

3 COSt/.; + i Sin2t/>;f

fi+fi
• In

i?
COS^r; + l+\/ ffl+fi)2 tf+A

1 + _.- 2 — COS t/(;+i
R2 R

2sin^±i(1 + sinÉi±l
2 V 2

(23)

Zwecks Berücksichtigung der der Einfachheit halber jeweils unter
einem Kugelring bis zu 100 km Tiefe unter dem Geoid gedachten
isostatischen Ausgleichsmassen werden folgende Annahmen für die
sphärische Berechnung getroffen:
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y) r0 (R —100) km, 6= 100km, r' R + H, ipy t/.;, ip2 tpi+i
und & #;,;+i; das ergibt

R+h [IR2 R
flsDft p 2 -nk29i ;+i — 1 cos ti; +spn.p i.i + i 3 \(R + H)2 R + H V

* R2 R
3cos2ti; — 2JV/1 H 2 -COSti;ri i\i (R + H)2 R + H r

R2 R
+ 1 COS ti,_Li

\(R+H)2 R + H ^'+1

)/ /?2 /?

\1+-(rTW-2r + ïiC0S^ +

(R — 100)2 R —100
H COS ti; +

(R+H)2 R+H ri

V / (R — 100)2 R — 100
+ 3cosV;-2JV/l + L_^_2——co.*

(R—100)2 R—100
(R+H)2 R+H

cos tpi+1 +

bi+1—2)\Jl (R—100)2 R — 100
3c0S2li;+ 1 — 2 IV /1 + " 2 COSti;,v + i /\/ ^ (fi+iï)2 fi+iï r +

3 COSt/i; Sin2t/t;

fi / R2 R
COS ti; + V /1 H 2 COS tpi

R + H ri V (R+H)2 R + H r
ln

fi —100 / (fi—100)2 „fi —100
COSti; + V / 1 -| 2 COS 0;

R + H r V (R+H)2 R + H r
3 COS tpi ^ i Sin2 i/r; ,|

•

fi IT fi2~
"

fi
COSti; i+V/1 -I 2 C0Sti; + iR + H ri a V (fi+iï)2 fi + iî

fi—100 / (fi—100)2 fi—100
COSti; + i + \ / 1 H —2 C0Sti; + iR + H m V (R + H)2 R + H ri+1

(24)

für die Anziehung der negativen Kompensationsmassen auf den Punkt
P auf der konvexen Seite der Scheibe, und mit

8) r0 (R — 100) km, ft 100 km, r' fi, yfty t/.;, t/.2 ipi+1
und # #;,;+i erhält man
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aSph,p0 2 TTk2êu+1 -2 sin ^1 (1 — cos* — 3 cos2*)

«Ai+l,-SÌn~i(l COS* + 1 3 COS2* + 1)

(fi — 100)2 fi —100
1 COSiA; +fi2 fi Y

\e L (fi—100)2 fi —100
3cos2* — 2JV/1 +v _^—L—2 —--„cos*

(fi —100)2 fi —100
fi2 R

C0S*+i

s™0a/ T\e T (R — 100)2 fi —1003cos2*+1 —2jWi +\ __L_ 2 cos*+1 +

3 cos* sin2* ¦

2 sin ^ (l + sin-^
2 \ 2

• ln
fi —100 / (fi—100)2 fi—100

R
— cos* + y 1 + Ri — 2 —— cos *

— 3 cos</.;+1 sin2*+1 •

„ *+i Ir *+i2 sin - ¦ 1 + sin
2 \ 2

• ln
fi—100 / (fi—100)2 fi—100
— cos*+1 + V/l+ —— 2—— cos*+1

(25)

für die Anziehung der isostatischen Kompensationsmassen auf den
Geoidpunkt P0.

Damit hat man die Formeln für die sphärische Berechnung der
Anziehung eines Kugelringes (beziehungsweise bei geeigneter Teilung durch
die Anzahl der Sektoren eines Sektors des Kugelringes) auf P und P„
gewonnen. Mit Hilfe dieser sphärischen und der noch abzuleitenden
reduzierten Formeln wird im nächsten Abschnitt gezeigt werden, daß
die Anziehungsdifferenzen des mittels Drehung um P";,;+i in die
Horizontale und Reduktion auf einen rechteckigen Querschnitt mit den Seiten
fi;,;+i und R(ipi+i —*) gewonnenen Ringkörpers von den entsprechenden

Anziehungsdifferenzen auf Grund der sphärischen Berechnung derart

geringfügig abweichen (siehe Tabelle 2), daß man auf die komplizierte
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sphärische Berechnung verzichten und die wesentlich einfachere
reduzierte anwenden kann.

Die Drehung des Querschnittes erfolgt, wie erwähnt, im Punkte
P"i,i+i, der mit dem Geoidpunkt P„ den Zentriwinkel beziehungsweise

* + *+iDrehwinkel1 bildet. Laut Definition bleibt die Höhe ftf.i+i
Â

ungeändert, während die Grundlinie des rechteckigen Querschnitts
G'iö"i6"i+iö'i+i gleich gesetzt wird der Zonenbreite, das heißt gleich

der Länge des Kreisbogens P";jP";+i oder fi (^;+i —*).
Um nun analog den Formeln (11) und (12), die die Anziehung eines

Zylinderringes betreffen, die Anziehung dieses Ringkörpers auf irgendeinen

Punkt Pu der Lotlinie zu erhalten, muß zuerst seine Lage
beziehungsweise die Lage seines Querschnitts in dem rechtwinkligen, ebenen
Koordinatensystem bestimmt werden, das mit dem Ursprung PB von
der y-Richtung P„C einerseits und der nach rechts positiven x-Richtung

anderseits (siehe Abb. 10) gebildet wird. Man findet den
Abstand x;2 der Punkte Q'; und Q"t von der y-Achse folgendermaßen:

Die Abszisse des Mittelpunktes P"i,i+i ist

xUi+i R ¦ sin \ (* + *+1).

Die Bogenlänge zwischen P"; und P";+i, das heißt der Winkelabstand
der zwei Trennflächen i und i + 1, ist gleich fi (*+i — *). Folglich ist

xt a fi sini^tiül _ R *yy-yk
2 2

und

xi+i i fi sin *l± ia y + RÉyyy*±,i+i,i 2 2

wenn man mit x;+i?i noch die Abszisse der Punkte Q'i+i und Q"i+i
bezeichnet. Die den Indizes der Abszissen nachgestellten Ziffern 1 und 2

dienen der Unterscheidung zwischen der Änderung der Abszisse x;
des Punktes P"; auf der Kugel in 1.) xttl auf Grund der Drehung der
Zone i — 1, i, und in 2.) x;>2 auf Grund der Drehung der folgenden Zone
i,i + l (siehe Abb. 10).

/ * + * _L J \
Die zugehörigen Ordinaten sind {/;,;+1 fi 11 — cos — - I für

die Punkte Q", beziehungsweise (/;,;+1 — fi;,;+i für die Punkte Q'.
In der Tabelle 1 findet man die Berechnung der für eine gegebene

Zoneneinteilung konstant bleibenden Werte x;>2, Xf+i^ und [/;,;+1
zusammengefaßt, wobei die Zoneneinteilung der auf Seite 285 angegebenen
entspricht.

Damit hat man nun alle Elemente, um die Formeln für die Berechnung

der Anziehung des zylindrischen Ringes auf Pu, P0, P und P zu
berechnen. Zum Zwecke des späteren Vergleiches mit den anderen Methoden
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Tabelle 1: Berechnung der Querschnittskoordinaten

B-tpi

km

R-
tpi+tpi + i

~£~~

km

*" + *+!
R-m\{i\ii- *+. i)

km

iJ-K*ri-
-*)
km

tosi(tpi+ipi+l)
yi,i+1

km

*t,2
¦z

»« + 1,1

km
1-cns^(tpi+tpi i l)

o ' "

0

0,25 0 0 08,09364 0,250000 0,25
1,000000000

0,00000
0

0,5
0,000000000 0,50000

0,75 0 0 24,28092 0,750000 0,25
0,999999986

0,00009
0,50000

1,0
0,000000014 1,00000

1,25 0 0 40,46820 1,250000 0,25
0,99999998

0,00013
1,00000

1,5
0,00000002 1,50000

1,75 0 0 56,65548 1,750000 0,25
0,99999995

0,00032
1,50000

2,0
0,00000005 2,00000

2,50 0 1 20,93640 2,500000 0,50
0,99999993

0,00046
2,00000

3
0,00000007 3,00000

3,50 0 1 53,3109, 3,500000 0,50
0,99999984

0,00102
3,00000

4
0,00000016 4,00000

5,00 0 2 41,8728! 5,000000 1,00
0,99999970

0,0019!
4,00000

6
0,00000030 6,00000

7,00 0 3 46,62193 6,999999 1,00
0,99999940

0,00382
6,00000

8
0,00000060 8,00000

9,50 0 5 07,55833 9,499996 1,50
0,99999889

0,00707
8,00000

11
0,00000111 11,00000

13,00 0 7 00,86930 12,999991 2,00
0,99999793

0,0131„
10,99999

15
0,00000207 14,99999

17,50 0 9 26,55483 17,499978 2,50
0,99999622

0,02408
14,99998

20
0,00000378 19,99998

25,00 0 13 29,36404 24,999935 5,00
0,99999230

0,04906
19,99994

30
0,00000770 29,99994

37,50 0 20 14,04605 37,499783 7,50
0,99998269

0,11029
29,99978

45
0,00001731 44,99978

57,50 0 31 01,53728 57,499220 12,50
0,99995926

0,25956
44,99922

70
0,00004074 69,99922

91,00 0 49 06,08509 90,996906 21,00
0,99989800

0,64986
69,99691

112
0,00010200 111,99691

150,00 1 20 56,18422 149,986145 38,00
0,99972286

1,7657!
111,98615

188
0,00027714 187,98615

244,00 2 11 39,39300 243,94036 56,00
0,99926676

4,67162
187,94036

300
0,00073324 299,94036

400,00 3 35 49,82459 399,73728 100,00
0,99802982

12,5524!
299,73728

500
0,00197018 499,73728

750,00 6 44 40,92110 748,52328 250,00
0,9930747

44,1110
498,52328

1000
0,0069253 998,52328



wird aber nicht nur die Formel für die «reduzierte» Lage des Ringes
aufgestellt, sondern zunächst für die ebene Lage, von der ausgehend
Niethammer und Mader ihre Berechnungen durchgeführt haben. Entsprechend

dem Seite 248 und 249 angegebenen Weg erhält man für die
Anziehung auf P„ bei ebener Lage (Abb. 12):

P

Pu
7

L+rtilVf\i*i TT """».*«ï_J
Xi.Ui

Abb. 12

(26)

Ac>Pu 2 -nk2& (7lM + 1 + Vx2;/i + (fiu — /i;,;+i)2 — Vx2;+1 + fi2„

— Ki, 1 — Tx\+ Jhu — fiM+ tf + VxT +H\),
für den Oberflächenpunkt P mit hu H

AeiP 2 7Tk2d- (Vx21+7 +T^ — fif.i + i)2 — Vx2;+1 + H2 —

— Vx2; +(H — hiti+1)2 + Vx*t + H-),

für den Geoidpunkt P„ mit hu 0

AeiPo 2 TT*2,? (Vx^^+A2;.^ — X; + 1 — Vx2; + A2M + 1 + X;) (27)

und für den Durchschnittswert
H

Äe
H

I Apu dhu

0

H
2 rrk2& C t I /

H J (Vx2; + 1 + (hu — hUi + l)2 — Vx2; + 1 + A2U —

— Vx2; + (Au — fi;,; + 1)2 + Vx2; + fi2„) dhu.
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Die Auflösung des unbestimmten Integrals läßt sich mittels Substitution
von Hyperbelfunktionen leicht durchführen: Im ersten Wurzelausdruck
werden

Au — A,)1+1 x1 + i shu,

chu -v/l |
t*»—fr.'+i>r ^xVi +"(An — A,7+i)2

V X2; + 1 «i + 1

und dfiu x, + i chudu gesetzt, und man erhält

S Vx2;+1 + (ha — /i;,; + i)2 dfiu / Vx2;+1 + x2;+1 sh2u x; + 1 chudu

i X2'
| x2, + 1 ch2 udu —\-— (u + shu chu) + C —

0- P2i+i Arsh •— +
2 Xi+i

+ (An— A|,i+i) ViviTT(Äu — Af.i+i")2] + C

-U+i In (A„ —AM+1 + Vx21+1 -f (A„ —AM+1)2) +

+ (Au — A;,; + 1) Vx2; + 1 + (A„ — A;,; + 1)2 C.

Damit ergibt sich bei entsprechender Modifizierung der übrigen drei
Wurzelausdrücke unter dem Integralzeichen:

Ae ~- [{*2, + i In (Au — A;,;+1 + VïviT+ (A« — A;,;+i)2) +

+ (Au — AM+1) V&TÎ + (hu — A;,;+1)2} —

— {x2i+1 ln (Au + Vx2I+1 + A2U) + hu Vx277TTÄ2ü} —

— {x2; ln (A„ — AM+1 + Vxi7+1ÄU^=Ä7771)^) +

+ (AU —A;,;+1) Vx-t + (AU —AM7^} +

+ {x2; ln (Au + VivTÄ^) + K Vx2; +A2„}]|^

nk2& V hu — AM + 1 + Vx2;+1 + (A„ —A;,;+1)2
""i+1 in — ¦ h

tA:2# r
A„ + Vx2;+7 + A2„

+ (AU— Al.i + l) Vx2;+ 1 + (Au — A;,;+1)2 — Au Vx2; + 1+A2„ —
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X2; In
hu — A;,;+i + Vx7+ (A„ — AM + 1)2

hu + Vx2] + h2u

-(hu—hUi+i)Vx2t+(hu—hUi+1)2 + hu Vx2i+h2u
H

¦nk2»k2» r
X2;

H l + i ln
H — hUi + 1 + Vx2;+1 + (H— hUi+i)2

ln

— x2; ln

ln

H + Vx2- + i + H2

— Ai.J+1 + VTT+T+ A2;,;+i

x, + i
H — hUi + i+ Vx2; + (g — A;,; + 1)2

i/ + Vx2; + Ü2

Af.i + l + Vx2; + A2;,;+1

+ (H —A;,; + 1)(Vx2; + 1 + (ff_n;,; + 1)2— Vx2; + (H — A;,; + 1)2) —

— if (VÏV7i + H2 — Vx2; + H2) +

+ hiti+i (Vx2T+~i + A2M7i — Vx2; + A2M+1)1.

Zusammengefaßt und geordnet nach x erhält man, wenn man noch den
konstanten Wert rrk2d- nach links hinüberschafft, die Differenz

Je J_ f
2 i ln X; + 1 (H — A;,; + 1 + Vx277T+ (H — fi;,,-+l)2)

+w*»ä h\ l+1
(Vx2i+i +TÏ- + H)(Vx2;+1 +ä2m71 —am+1)

+ /f VxVTl + (# — AM+i72 — Vx2;+1 + H2) —

—Am+i (Vx2;+1 + (h —A;77ö^ — Vx777+A2M+1) —

# 1 l
(Vx2; + if2 + ff) (Vx2; + A2;,; + 1 — A;,; + 1)

+ iî (Vx2; +(H — hui+ 1)2 — Vx2; + ü2) —

— AM+1 (Vx2; + (H — hitl+1)2 — Vx2t + h\i+i)\. (28)

Âe ist somit der Durchschnittswert der Anziehungen der Zone i,i + l
auf die Punkte der Lotlinie zwischen P und P„. Da die Differenz (Ä—Ap)
sehr häufig gebraucht wird, kann man die beiden Ausdrücke (26) und (28)
miteinander verbinden und erhält
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Ae Ae>

Tk2»' (29)

1

~H t+i In
c;+i(g — AM + 1 + VxV7+ (H — fi;,;+1)2)

(Vx2;+ 1 + i^+fi) (Vx77T+Ä2M7l—AM+l)

— ü VxTTT+Tïi-TftTToï — V^TT+lT2) —

— Ki+i (Vxv7+(H—Ai.i+T)2 — VïvTTT^777) —

1 {x2; ln Xi iH /*''''+1 + ^^ (fJ ~ /l'-'+l)2)

«I '
Vx2; +TT2 + H) (Vx2; + A2M + 1 — A,- ; t)

—h Vx27+lï7^1A;>;+1)2 — VxTyTW2) —

— A;,; + 1 (V^T+TH — A777)2 — Vx2; + A2;,; + 1)

Das gleiche gilt natürlich auch für die Differenzen (Apu — Ap) und
(Ap0 — Ap), die in analoge Ausdrücke zusammengefaßt werden können.

Die entsprechenden Formeln für den reduzierten Ring erhält man
sofort aus den vorhergehenden, wenn man die infolge der Parallelverschiebung

entstandenen Koordinatenänderungen berücksichtigt, das
heißt mit den neuen Koordinaten x;;2, x; + i,i und ä/;,;+i rechnet.

¦H
T- ?£

\ \ •vT"

?^V-f .̂^t"r~
-^—

s
\

— X

Kii

tt1,1
Abb. 13

Es ergibt sich analog (siehe Abb. 13) für einen beliebigen Punkt Pu
der Lotlinie

Ared,Pu 2 rrk2& [Vx2^ + Jhu^KiTl + Vi.TiT ~
— Vx771>1+(Au+yM77)ï — Vx2;,2 + (Au— AM+1 + yi,iTJ2 +

+ Vx2;,2 + (hu + y;,;7l72], (30)
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für den Oberflächenpunkt P mit hu H

Ared.P 2 irk*» [Vx2; + 1>1 + (i^7ft~T77Ty;;; + 7)2 —

— Vx2;+1,1+W+yüTiT — Vx2;)2 +jHTThUi+1 + yTiTïr +

+ Vx272"+ (H +77,77i)2], (3i)

für den Geoidpunkt P„ mit Au 0

Ared.P» 2 ttA:2,? [Vx7+1>1 + (7W+1 — A;,;+7)2 —

— Vx2; + 1>1 + y2;,77 — Vx2;>2 + (yUi+1 —Tli,i+l)2 +

+ VxX,2 + y\i+i] (32)

und für den Durchschnittswert

4-ed (33)

nk2» \ (H — hiMl + yul + i+ Vx2;+ 1(1 +(H—A;,;+ 1 +y;,;+ 1)2

-g- x2;+1)1ln|
-ff + i/,,.+l + Vx2;+ljl + (ü+UM+1)2

«/M + l + Vx2; + lil + y2(>;+1

yt,i+l—A;,; + t + Vx2; + 1>1 + (yUi + i—huul)2)

+ (H — hUi+i + yui, i) Vx2;+1>1 + (H — hui+i +77,77i)2

— (H + yi,i+i) Vx2;+ljl + (H + y;>1+i)2 —

— Ù/M+1— Ai.ifl) Vx21 + 1)1 + (y;,; + i —A;,;+i)2 +

+ y.-,;+i Vx^+i,! + y2;,;+i

¦nk2»

H x2it2 • In (analog dem ersten Teil mit x^i^)}.

Für die Differenz (Ä— Ap) ergibt sich schließlich:

^red Are(j> p ^Tic2» (34)

lf /H—hi,i+i + //;,;+i+ Vx2i+lj"7+(ü —AM+1 + y;,;+1)2
-\x2i + i,iln^- H + y;,; + i + Vx2i + 1)1 + (H + y;,; + 1)2

y.-.i+i + Vx2,+1)1 + y\i+i +
9i,i+ \ A;,;+1 + Vx2;+1>1 + (yUi + i — A;,; + 1)2,

+ (ui,t+i — am+1 — H) V^i+i,i +7ff17ft77^i + vui+tf —
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— (fff.f + 1— H) Vx2;+ 1>1 + Q/;,; + 1 + H)2 —

— (Ui.i + 1 ~ A;,; + 1) Vx2; + 1;i + ((/;,; + — A;)l + 1)2 +

+ Ui,i+1 Vx2;tljl + y2;,; + i

JL Li ln (H — hUi+\ + gt.i+1 + ^x\2 + (H — hUi+i + yiti+i)2
H\ l'2 \ H + yUi+i + Vx\T+Jh + J/;,;+1)2

/.-,.+1 + Vx2;>2 + y\i+i +
J/t.i+1 — A;,;+i + Vx2;>2 + (yui + i — hui+i)2i

+ (J/M + I — A;,;+i — H) Vx\2 + (Hy~hui+i + yui+\J2

— (Ui,i+i — H) Vx\2 + (yi,i+i + H)2 —

— O/M+i —AM+1)Vx2;,2 + (y;,;+i—AM+1)2 +

+ yi,i+i Vx72 + y2Ui+i \.

Es wurde bereits früher erwähnt, daß die Berücksichtigung der
negativen isostatischen Kompensationsmassen nach dem gleichen Prinzip
vorgesehen ist. Es wird auch an Hand von einigen Beispielen gezeigt werden,

daß der infolge der Drehung und Zerrung entstandene Fehler ebenso
klein bleibt wie bei den Geländemassen, da es sich einerseits auch hier

"H

»i.ii "i.i*2.7

&-Z-1+6
2?-T

Xi •*i*r1.2

Abb. 14
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um Differenzen handelt, anderseits aber dem nunmehr im Verhältnis zum
Gelände bedeutend größeren Volumen ein wesentlich kleinerer
Dichtekoeffizient gegenübersteht, wodurch die Anziehungswerte und Fehler
klein bleiben (siehe Tabelle 3).

Man erhält die Dichte ©;,;+i der negativen Kompensationszonen
aus der Gegegenüberstellung

(X2; + 1,1 — X2;,2)7tA;); + 1 • 2,7 + (x2; + 1>1 — X2;>2) 77 • 100 • #';,. +

(x2;+i,i — x2;,2) tt • 100 • 2,7

2 7
#'t,i+l — 2,7 ®i,i+i Tq^ A;,;+i — Ti,i+1;

Ti,i+ 1 0,027 • A;(; + 1,

wenn fi;,;+i in Kilometern ausgedrückt ist.
Somit ergibt sich die Anziehung der negativen Kompensationszonen

auf den Oberflächenpunkt P aus der analogen Formel (31) für die Anziehung

der Massen über dem Geoid, indem man einfach für A^j+i die
entgegengesetzt gerichtete Höhe des 100 km tiefen Zylinderringes mit —100
und für# die nunmehr mit der Zonenhöhe variierende Dichte r;)1+i
einsetzt.

Man erhält damit

ared,P 2-nk- TtJ+l {Vx2;+1>1 + (H + 100 + £/;,; + x)2 —

— Vx2;+1,! + (H + y;,r+i)2 — (35)

— V^72 + (H + ioö +7mh)2 + Vx2,7T+ (h + Ui,i+iy}.

Entsprechend ergibt sich der Durchschnittswert äred aus (33):

«red (36)

wk\ La (H +10° +VUi +1 + Vx2uia + (H + 100 + y^TTr
H

- \ H + yiti+a + Vx2i+U1 +(H + l/;;;f j)2

Ui,i+i + Vx2; + lil + y2iti+i
100 + J/;,; + 1 + Vx2; + 1>7+ (TOO + Uj,;+1)2

+ (H + 100 + y;,;+1) Vx7777+" (H +~100 + yM+1)2 -
— (H + yui+i) Vx2;+1>1 +(H + y;,; + 1)2 —

— (100 + yUi+1) Vx2ì+iJTwO+TjTìTi)2 +

+

+ Ui,i + 1 Vx2;fl4 + y2i,i+l

"*2 f 1

— T;,;+i ix2;>2 • ln (analog dem ersten Teil mit Xi+i^) ...}.

331



Man erhält schließlich auf gleiche Art aus (34) die Formel der
entsprechenden Anziehungsdifferenz der negativen isostatischen
Kompensationsmassen mit

öred — ared, P

"k2Tui+i
(37)

H
x2;+1>1 ln

H + 100 + yl>l+1 + Vx2;+1>1 + (ü + 100 + yM+1)2

H + yi,i + l + Vx2; + 1)1 +(H + y;,; + i)2

y.-.i+i + Vx2;+1>1 + y2M+i
100 + yUi+i + VxV77T+ (100 + yUi+T)2

(yiti+i + 100 — H) Vx2i+Ui + (yy+i + 100 + H)2

(Ui.i+1 — H) Vx2;+1>1 + (yuiTT+H)2 —

(Ui,i+i + 100) Vx2;+lil + (yui+yTWG)2 +

+ yi,i + l Vx2; + lil + y2;,; + i

— {x2;;2 In (analog dem ersten Teil mit Xj+^i) ....}.

Mit den Ausdrücken (30) bis (33) beziehungsweise mit den analogen
Formeln für die negativen Kompensationsmassen (35) und (36) und den
daraus zusammengesetzten Ausdrücken (34) und (37) sind jetzt alle
Elemente gegeben, um die auf Seite 283 bereits erwähnten Tabellen oder
Graphika für den auf jede Zone entfallenden Teil der zur beobachteten
Schwere g hinzuzufügenden Gesamtkorrektion Ag^+i zu erstellen.
Diese Tabellen beziehungsweise Diagramme würden für die verschiedenen

Zonen nach entsprechenden Werteskalen der Argumente H und
Aj.i+i anzulegen sein, wobei die Werteskalen für europäische Verhältnisse

etwa von 100 m bis 4000 m mit Argumentsdifferenzen von je 100 m
gehen könnten, was bei linearer Interpolation in den meisten Fällen eine
Ablesung auf 0,01 mgal sichern würde. In den wenigen anderen Fällen
könnte man die Argumente in kleineren Abständen (25 oder 50 m)
aufeinanderfolgen lassen. Die Interpolation läßt sich, abgesehen von den
Extremfällen in unmittelbarer Nähe von A;;;+i H, sowohl in der
Richtung der A als auch der H vornehmen, was zu erwünschten einfachen
Kontrollen verhilft. In den Extremfällen (siehe zum Beispiel Tabelle 2,
Zone 0,5-1,0 km, hiyi+i 2,5000 km, H 2,5042 km) kann man nur
in der üf-Richtung interpolieren.

(Fortsetzung folgt)
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