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Die Methode der direkten Geländekorrektion

Von Armand K. Frisch, Wien

(Fortsetzung)

Die Anziehung Tp eines Ringsektors auf den Punkt P ergibt sich
nach (5), wenn für d die jeweilige Höhe h des Ringsektors über oder unter
dem Geländepunkt eingesetzt wird, als Differenz

2irk2& „ f- 2-nk2&
Tp (h + al+i — Vh2 + ai+i2) (h + a; —V/i2 + at2),

n n
das heißt

2 -nk2» i /Tp (at+i — at + Vh2 + a\ — Vh2 + a2l+1), (11)
n

wobei n die Anzahl der Sektoren ist.
Handelt es sich dagegen um die Anziehung der Ringsektoren auf

einen anderen Punkt der Lotlinie, so ist wohl zu unterscheiden, ob es sich
um eine Zusatz- oder um eine Defizitmasse handelt. Denn wenn man
nach der Verschiebung des Punktes von P nach Pa die unendliche Platte
wieder aufsetzt, so wird ihr Anziehungsbetrag bei Vorhandensein von
Überschußmassen zu klein und umgekehrt bei Defizitmassen zu groß
sein.

Somit ergibt die Anziehung der Überschußmassen eine Vergrößerung
der Anziehung der unendlichen Platte auf den Punkt Pu, weshalb die
Oberflächenschwere g um diesen Wert der Anziehung der Überschußmassen

ebenso verkleinert werden muß. wie um den Anziehungswert der
Platte selbst, während die fehlende Wirkung der Defizitmassen eine
Verringerung der Plattenanziehung bedeutet, weshalb g um den Wert dieser
Verringerung vergrößert zu werden hat. Liegen etwa die Abweichungen
von der Platte wie in Abbildung 7 gänzlich oberhalb des Niveaus des
Punktes Pu, so müssen demnach die Überschußmassen negativ und die
Defizitmassen positiv bezüglich g in Rechnung gestellt werden.
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Die Anziehung Tpu eines Ringsektors auf Pu ergibt sich als Differenz
aus (4):

Tpu
2tTk2&

n

2-irk2»

n

¦ (h + V(H — hu)2 + a2i f i — V(h + H — hu)2 + a2i+i) -
¦ (h + V(H — hu)2 +ai2 — V(h+ H — hu)2 + at2)

beziehungsweise

2nk2d-
TPa V(H — hu)2 + a2u_a — V(H — hu)2 + at2 —

— V(h + H — hu)2 + a2i+i + V(h + H — hu)2 + at2).
(12)

Somit erhalten wir bei Berücksichtigung der Geländeform die vom
Oberflächenpunkt P auf einen beliebigen in der Lotlinie gelegenen Punkt
Pu reduzierte Schwere mit

gu=g + ~-(H — ha) — 4TTk-&(H — hu) +STp — STPu,

worin der zweite Term des Ausdrucks auf der rechten Seite dieser
Gleichung die Freiluftreduktion darstellt, der dritte Term die Plattenreduktion,

der vierte die Summe der stets positiven Anziehungen der einzelnen
Ringsektoren auf den Geländepunkt P als Zusatz zu der vor Verschiebung

des Punktes abzunehmenden unendlichen Platte und der fünfte die

272



Summe der Anziehung der einzelnen Ringsektoren auf den Punkt Pu
als Zusatz zu der nach erfolgter Verschiebung des Punktes wieder
aufzusetzenden Platte.

Handelt es sich um die Reduktion auf den Geoidpunkt P0, so
ergibt sich mit hu 0:

g0=g + —-H — 4 rrk2&H + STp — STp„ix

wobei STpc die Summe der Anziehungen der einzelnen Ringsektoren auf
den Punkt P0 auf dem Geoid darstellt.

e) Der Durchschnittswert mit Berücksichtigung der Geländeform

Die Bestimmung des Durchschnittswertes mit Berücksichtigung der
Geländeform ist im Gegensatz zum analogen Wert bei der unendlichen
Platte wegen der Nichtlinearität des Schwereverlaufs in der Lotlinie
wesentlich schwieriger. 1932 hat Niethammer [3] als erster die Berechnung

des Durchschnittswertes
H

G — I gudhu

0

mittels numerischer Integration durchgeführt. Er ging dabei folgendermaßen

vor:
Man denke sich die Massen zwischen dem Geoid und der physischen

Erdoberfläche aus zwei Teilen zusammengesetzt, und zwar
1. aus der unendlichen Platte von der Dicke H und der Dichte &

zwischen dem Geoid und dem Geländepunkt und
2. aus den Überschußmassen, die (bis zur Entfernung von 42 km)

den Geländepunkt überragen und denen die Dichte + & zukommt,
beziehungsweise aus den Massendefekten, die unterhalb der Höhe dieses
Punktes liegen und die Dichte — & haben.

Der Schwereverlauf in der Lotlinie der unter 1 zusammengefaßten
Massen ist linear; somit ist der Durchschnittswert dieses Teiles gleich
dem Schwerewert in halber Höhe, das ist aber nichts anderes als der
Durchschnittswert laut Helmerts Gebirgsreduktion, wie in Punkt c,
Seite 250, ausgeführt wurde.

Bezeichnet man nun die Wirkung der unter 2 zusammengefaßten
Massen, die über die Platte hinausragen oder an ihr fehlen, mit Ag"u,
so wird der gesamte Durchschnittswert

H
G =g + -^ fAg\ dhu + STP, (13)
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wobei g die Helmertsche Gebirgsreduktion ist, während der zweite Term
des rechts stehenden Ausdrucks nichts anderes darstellt als den
Durchschnittswert Ag" aller unter 2 zusammengefaßten Massenwirkungen.

Der Berechnung dieser Massen wird nun die gleiche Einteilung des
Geländes nach Zonen und Sektoren zugrunde gelegt, wie sie in Punkt d
für die topographische Reduktion des Oberflächenwertes mitgeteilt
wurde.

Sei Tu die Anziehung eines solchen Ringsektors auf den Punkt Pu,
so findet man nach Vertauschung von Summation und Integration:

H H H

Ag" ~ CAg"u dhu -1 CsTu - dhu S C^ ¦ dhu.

0 0 0

Um die verschieden zu behandelnden Zusatz- und Defizitmassen zu
unterscheiden, setzt nun Niethammer für die ersteren, also für & > 0,

H
Tu
ir dhu-= +&F(H,hu)
£1

0

und für die letzteren mit d- < 0

H

I
0

Jf-dhu =—&&(H,hu)

und findet mit À 1, p — 0 für & > 0 beziehungsweise
A 0, p 1 für ê < 0 den Ausdruck

Ag" & ¦ SS (XF — p0).

Das doppelte Summenzeichen deutet an, daß die Summen über sämtliche
Zonen und Sektoren zu nehmen sind.

Die Funktionen F und 0 werden sodann mit Hilfe der Anziehungsformeln

(11) und (12) mittels numerischer Integration gewonnen. Hierfür
hat Niethammer einerseits Tabellen mit & 1 für die Werte von F, und
& —1 für 0 und F0 (F0 ist der Wert von F für H 0) beziehungsweise
für AF F — F0 errechnet und anderseits auch graphische Darstellungen

für die Funktionen F0, A F und 0 ausgearbeitet, wobei sich die Werte
von F0 (H 0, h) am Kopf der Tafeln befinden. Die sich aus den Tafeln
durch Ablesung ergebenden Zahlen sind Einheiten der zweiten Dezimale
des Milligals; ihre Genauigkeit kann durch Interpolation gesteigert
werden.
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Die Berechnung des Durchschnittswertes G ergibt sich sohin mit

G =g + -!Th — 2 trk2&H + STP — ST,
R

wenn unter — ST Ag" verstanden wird.
Niethammer hat seine Zonen später unter Berücksichtigung der

Erdkrümmung bis zu 188 km ausgedehnt.
Vernachlässigt man die Nichtlinearität des Schwereverlaufs in der

Lotlinie, so kann man mit Mader [4] einfach das arithmetische Mittel aus
Gelände- und Geoidschwere, das heißt G \ (g + g0), als
Durchschnittswert nehmen. Der Fehler, der sich dadurch beim Punkt Hochthor
(H 2504 m) gegenüber einem quadratisch angenommenen Schwereverlauf

ergeben würde, beträgt nach Mader 5,2 mm, gegenüber dem nach
Niethammer berechneten Durchschnittswert jedoch 4,2 mgal2 oder etwa
11 mm und die exakte Berechnung nach der Methode der direkten
Geländekorrektion bis 1000 km, wie sie in der Folge gezeigt wird, ergibt
einen Fehler von 4,675 mgal beziehungsweise etwa 12 mm.

Bei der Bestimmung dieses Durchschnittswertes aus g und g0 erhält
Mader als Zwischenresultat gleichzeitig auch noch den für die Geophysik
bei der Untersuchung der Massenlagerung in der Erdkruste interessanten
Bouguerschen g-Wert

g"0 g + -JL H — 2 -nk2&H + STp, das ist
R

Beobachtungswert + Freiluftkorrektion -f- topographische Korrektion
auf den Geländepunkt vermindert um die einfache Plattenkorrektion.

Ferner vereinfacht sich die Berechnung gegenüber der Niethammers
dadurch, daß Mader bei Bestimmung des Geoidschwerewertes die
unendliche Platte nur einmal berücksichtigt, bei der Berechnung der
topographischen Korrektion auf den Geoidpunkt dagegen gleich die Anziehung

der Gesamtmassen zwischen Geoid und physischer Erdoberfläche
bis zum Radius von 30 km um P ansetzt. Dies hat den Vorteil, daß
diese Anziehungswerte A0 (zum Unterschied von T, womit die
Ergänzungsabteile zur Bouguerschen Platte bezeichnet werden) bezüglich des
Beobachtungswertes g gleiches Vorzeichen haben, und zwar ständig
negatives, da die A0-Massen eben keine positive oder negative Ergänzung
zur unendlichen Platte mehr bilden, sondern dieselbe, allerdings nur bis
zu 30 km, beinhalten. Daraus ergibt sich der weitere Vorteil, daß nun
nicht mehr mit dem im Hochgebirge zweifellos zu großen Wert der
zweifachen unendlichen Platte operiert wird, sondern nur mit der einfachen,
während das zweitemal die Massen nur bis 30 km berücksichtigt werden.
Das läuft aber praktisch auf die Annahme eines Mittelwertes für den

2 Die Angabe in Maders Tauernnivellement bezüglich der Berechnung Hoch-
thor nach Niethammer, wo zwischen dem Wert Niethammers und dem arithmetischen

Mittel Maders nur eine Differenz von 1,63 mgal besteht, beruht auf einem
Irrtum in der Bestimmung der Niethammerschen topographischen Korrektion des
Durchschnittswertes, die nicht 15,45 mgal, sondern nur 12,88 mgal beträgt.
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Geländeeinfluß hinaus, und zwar des arithmetischen Mittels zwischen
der unendlichen Platte und einem Zylinder von gleicher Höhe und 30 km
Radius, was aber nichts anderes ist als ein gewisser Geländeabfall, der
ja auch in der Natur irgendwie auftreten muß. Dadurch kann Mader auch
mit einer einzigen Tabelle für die Anziehungen Tp der Abschnitte
bezüglich des Oberflächenpunktes und für die A0 bezüglich des Geoid-
punktes das Auslangen finden, da beide nach (11) zu berechnen wären.

Der Madersche Durchschnittswert ergibt sich schließlich mit

G \ (g + g0) g + -^-H — nk2&H + \ (STP — SA0).
B

Der in der Maderschen Berechnung praktisch auftretende allmähliche

Geländeabfall außerhalb des 30-km-Zylinders wurde von Ledersteger

[7] in einer anderen, den natürlichen Gegebenheiten besser
entsprechenden Form berücksichtigt. Ledersteger bringt ein Modell in
Vorschlag, bei dem sich das Gelände aus 500 m dicken zylindrischen Scheiben
zusammensetzt, deren Radien, an der Oberfläche mit 40 km beginnend,
stufenweise um je 30 km zunehmen, wodurch ein natürlicher Geländeabfall

erzielt wird.
Infolge der dabei eintretenden Erweiterung des endlichen Modells,

das bei einer Stationshöhe von 3000 m eine Grundplatte vom Radius
190 km hat, muß bereits die Erdkrümmung berücksichtigt werden,
weshalb Ledersteger bei der Berechnung der Anziehung dieses Modells auf
die Punkte P, 1, 2.. .6 (siehe Abb. 8) von den Formeln für die Anziehung

einer differentiellen sphärischen Scheibe auf einen in deren Achse
gelegenen Aufpunkt ausgeht (Helmert [6]). Von der später durchgeführten

Ableitung der Anziehung einer sphärischen Scheibe sei die
Differentialformel vorweggenommen :

„ r2 / r' • cos i/r — r
As ± 2 nk2& dr 1 T T~s r'2 \ E

Diese Formel läßt sich leicht transformieren in

r2 I z 2r' è
As ± 2 rrk2&dr — (l _ — ± — sin2 -J

r2 r2 2 z
den Faktor =1Tr'2 (r ±z)2 r

darf man 1 setzen, denn der damit begangene Fehler macht für
z 2,5 km bei einer Partialanziehung von 56 mgal erst 0,044 mgal aus.

ib a r' rSetzen wir noch für sin -1— und für — —, so erhalten wir die
2 2R E a

Näherung

As 2 nk2&dr I 1 %- ±E 2R
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Unter Berücksichtigung der ebenen Anziehungsformel nach (2):

dV 2 7r/c2#6fz (e — z), Ae
f3dV „ / z

2-nk2d-dz 1
az

und bei Gleichsetzung von dr und rfz und von e und £ unter
Vernachlässigung von Gliedern höherer Ordnung erhalten wir:

As Ae 1 ± 2r
Mit diesem Ausdruck gewinnt man folgende Anziehungswerte für

den Verlauf der Modellschwere in den Punkten P, 1, 2, 6:

P: + 338,701 mgal

1: + 227,410 mgal

2: + 116,115 mgal

3: + 4,817 mgal

4: — 106,486 mgal

5: — 217,795 mgal

6: — 329,105 mgal

111,291 mgal

111,295 mgal

111,298 mgal

111,303 mgàl

111.309 mgal

111.310 mgal

Es zeigt sich hierbei ein von der Linearität so geringfügig abweichender
Verlauf der Schwere, daß man dieses Modell als linear betrachten und an
Stelle der unendlichen beziehungsweise endlichen Platte anwenden kann.
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Bezeichnet man die vertikale Anziehung dieses Modells mit g", und
zwar g"p bezüglich des Oberflächenpunktes P und g"„ bezüglich des

Geoidpunktes P0, so erhält man für das idealisierte Gelände (das heißt
zunächst ohne Berücksichtigung der topographischen Korrektion) analog
der Ableitung Seite 249, wobei jetzt das Modell die Platte ersetzt:

g — \ (g + g<>) wegen der Linearität des Modells,

90 9 + if H ~ 9"p + 9"° Und 9=9+lï H—ì(g"p — g"à- <14>

Sobald man aber nicht mehr mit der unendlichen Platte operiert,
muß man, wenn Bestehen der Isostasie vorausgesetzt wird, auch die
Änderung der Wirkung der innerhalb des Geoids gelegenen negativen
Kompensationsmassen erfassen, die eintritt, wenn man vom Oberflächenpunkt

aus die Schwere in einem anderen Punkt, etwa dem Geoidpunkt,
oder die Durchschnittsschwere ableitet. Baeschlin [8] ist im Zusammenhang

mit der Berechnungsmethode Niethammers bereits ausführlich auf
das Problem der Isostasie eingegangen.

Ledersteger berücksichtigt nun die Isostasie in sehr vereinfachter,
aber um so leichter in die bereits abgeleiteten Ausdrücke integrierbarer
Form. Er legt die Pratt-Hayfordsçhe Isostasie in ihrer einfachsten Form
nach Baeschlin [9] zugrunde und rechnet die Kompensation bei Annahme
einer einheitlichen Tiefe von 100 km erst vom Meeresniveau ab. Dies
schon mit Rücksicht auf den Umstand, daß er für die Kontinentalmassen

eine einheitliche Dichte von 2,7 vorausgesetzt hat.
Für die Kompensationsmassen wird nun zwecks Vereinfachung ein

Kreiszylinder von 100 km Höhe mit dem Radius

R [40 + 30 (-ffkm — 0,5)] km angenommen.
2 7

Die Dichte dieser negativen Kompensationsmassen ist © —^—- -Htm.

Nun kann man die Differenz der Zylinderwirkung auf die
Oberflächen- und Geoidpunkte der einzelnen Stufen H 500 m, 1000 m usw.
berechnen und erhält damit die entsprechenden Werte der isostatischen
Kompensation Ag für die Geoidschweré. Nimmt man nun deren halben
Betrag zum Ausdruck (14) hinzu, um die isostatische Wirkung auf die
Durchschnittsschwere zu erhalten, so ergibt sich:

g =g+j-H — i(g"p — g"0) + ÌAg.

Ledersteger findet dann für die zu g hinzuzufügende Gesamtkorrektion
C, die er mit den verschiedenen Annahmen von H berechnet, eine nur
geringfügige Abweichung von der Linearität und bildet daher durch
Division mit SH 10500 einen mittleren Gradienten von 0,041816 • Hm.
Es ergibt sich somit g g + 0,0418 Hm mgal.

Verglichen mit dem Helmertschen Ausdruck (10), Seite 251, zeigt
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sich, daß der Reduktionskoeffizient um 0,0007 erhöht ist, was für 2500 m
Meereshöhe 1,75 mgal beziehungsweise 4,4 mm ergibt.

Fügt man zu obigem Ausdruck noch die topographischen Korrektionen

(etwa nach Niethammer) hinzu, so erhält man:

G g + 0,0418 Hm mgal + STP — ST,
worin die Nichtlinearität des Schwereverlaufs, ein allmählicher Geländeabfall,

die Erdkrümmung und die Isostasie berücksichtigt sind. Es ist
dies bisher zweifellos die genaueste Methode. Infolge der Kompliziertheit
der Bestimmung der Geländekorrektion ist sie allerdings nicht weniger
langwierig als die Niethammersche.

2. Die Schwerereduktion nach der Methode der direkten Geländekorrektion

a) Allgemeines

Bei der im Folgenden geschilderten Methode zur Ableitung der
Schwere in irgendeinem Punkte der Lotlinie aus der beobachteten
Oberflächenschwere beziehungsweise zur Bestimmung der exakten
Durchschnittsschwere in der Lotlinie zwischen dem Oberflächenpunkt und dem
zugehörigen Geoidpunkt werden die Kontinentalmassen ähnlich den im
ersten Teil geschilderten Methoden durch konzentrische, vertikale
Kegelflächen in konzentrische Geländezonen zerlegt, die vom Geoid bis zur
physischen Erdoberfläche reichen. Als Zonenhöhe wird jene mittlere Höhe
angenommen, die sich bei horizontaler Einebnung der Zonenoberfläche
ergeben würde. Man bestimmt nun die Anziehung der durch sämtliche
Zonen ausgedrückten Geländemassen auf den Oberflächenpunkt P, zieht
diesen Wert vom beobachteten Schwerewert g ab, verschiebt den Punkt
nach Pa (beziehungsweise ~P als dem Punkt der Lotlinie, der dem
Durchschnittsschwerewert entspricht), wobei die entsprechende Freiluftreduktion

anzubringen ist, und addiert hierauf den Wert der Anziehung der
Zonen auf den gesuchten Punkt Pu zu g. Analog verfährt man mit den
negativen isostatischen Kompensationsmassen, die deshalb berücksichtigt

werden müssen, da ja vom Modell der unendlichen Platte vollkommen

abgegangen und das Gelände direkt bis zu einer bestimmten
Entfernung, zum Beispiel 300 oder 1000 km, erfaßt wird. Bei solchen
Entfernungen ist schließlich auch die Erdkrümmung zu berücksichtigen,
was zunächst durch die Anziehungsberechnung nach sphärischen Formeln
erfolgt.

Es handelt sich nun darum, die Anziehung dieser Geländezonen auf
die Punkte der Lotlinie beziehungsweise den Durchschnittswert dieser
Anziehungen zu bestimmen.

Es sei (Abb. 10, Seite 284) der Bogen P^B der Schnitt der an Stelle des
Geoides angenommenen mittleren Erdkugel (R 6371,2 km) mit der
Zeichenebene, PiPt+i der Schnitt der physischen Erdoberfläche der
Zone i, i + 1 mit ihr und P',P',-+1 die nach erfolgter Einebnung
erhaltene Abdeckung dieser Zone, die nun die mittlere Höhe Ai, i+i hat.
Bezeichnet man die vertikale Anziehung dieses Teils einer sphärischen
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Scheibe auf Punkte der als gerade angenommenen Lotlinie PP0 mit
Aspha so ergibt sich die Reduktion der in P beobachteten Schwere auf
einen beliebigen Punkt Pu der Lotlinie mit

2g
9u 9 H—zr- (H — hu) — SAspht P + SAsph, pu — Saspi,t P + Sasp^ Pu,ix

(15)
2g

wobei —- (H — hu) die Freiluftreduktion, SAsph, p den von g abzuzie-
R

henden Einfluß der Vertikalanziehung der in der Summe aller Zonen
erfaßten Geländemassen auf P, SAgp^ pu den nach Verschiebung des
Punktes nach Pu zu g wieder hinzuzufügenden Einfluß derselben Massen
auf Pu und die gleichartigen Ausdrücke mit a schließlich den entsprechenden

Einfluß der negativen isostatischen Kompensationsmassen
darstellen.

Die Schwere g0 auf dem Geoid erhält man wegen hu 0 mit:

2g
9o 9 + —— H — SAspi,t p + SAsph po — Sasph, P + Saspi1< Po, (16)

/t
und den Durchschnittswert der Schwere zwischen P und P0 mit:

H H-in i n\ 2g
G TT I 9u ' dh" ~h I 9 + lt(H ~ hu) ~ sph-p +

0 0

+ SAspht pu — Saspht p + Saspi,t Pu dhu

1 I 2g 2g H2
-ß(gH+ -^-H*—-J[--^ H ' 2a°p». P — H- Sasph, p

H H

+ ss I Zr4sph> pu ¦ dhu y s,- I Sasph> pu ¦ dhu

0 0

9 + -=- H — SAsp^ p — Saspht p yB
H H (17)

+ s C-^yy dK y sC^&L. dhu.

0 0

Wie im nächsten Abschnitt gezeigt wird, sind die Ausdrücke Asph
und asph recht schwerfällig und insbesondere ihre Durchschnittswerte

I — Asph dhu sehr kompliziert und schwer berechenbar. Durch eine
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kleine Transformation (Drehung und Zerrung) des jeweils eine Zone
bildenden Kugelringes kann man aber wiederum auf die relativ einfachen
ebenen Formeln (11) und (12) zurückkommen und mit ihnen Resultate
erhalten, die (siehe Tabelle 1) von den Ergebnissen der sphärischen
Berechnungen nur um höchstens wenige Hundertstel milligal abweichen,
was für unsere Berechnung eine zweifellos mehr als ausreichende
Genauigkeit ergibt.

Die Änderung, die man am Kugelring vorzunehmen hat, ist
folgende: Man dreht zunächst den Vertikalschnitt P'ìP'ì+iP"ì+iP"ì derart

um den Mittelpunkt P"ij+i der gekrümmten Grundlinie P";P";+1,
daß die Höhe P",-,;fiP'i,i+\, deren Länge h^i+i beibehalten wird, in
die Richtung P"ì,ì+iQ'ì,ì+i fällt, also parallel wird zur Lotrichtung
P0PS. Den Drehpunkt P"iti+i macht man nunmehr zum Mittelpunkt
einer zum Horizont in P0 parallelen und geraden Grundlinie von der

Länge des Bogens P"iP"i+i — R(t/jt+i—</>;), die somit gleich ist dem
Winkelabstand zweier Trennkegelflächen oder, einfacher ausgedrückt,
einer Zonenbreite. Der Drehwinkel ist natürlich gleich dem Zentriwinkel
des Bogens P0P"i,i+.i» als° i (<l>i + 'l'i+i)- Man erhält damit den
rechteckigen Schnitt Q'iQ"iQ"i+iQ'i+i, und aus dem Kugelring ist durch
Drehung und Zerrung ein Zylinderring entstanden, dessen Anziehung
auf die Punkte der Lotlinie nun analog den Formeln (11) und (12)
bestimmt werden kann. Auch den Durchschnittswert kann man, ausgehend
von diesen ebenen Formeln, sehr einfach bestimmen.

Man kann sich obige Transformation auch durch einfache
Parallelverschiebung des von vornherein als Repräsentant der Geländemasse
gedachten und auf dem als eben angenommenen Meeresniveau liegenden

Zylinderringes mit dem Querschnitt p'iP"iP"i + iP'i+i aus seiner
ebenen Lage in die Lage der gekrümmten Erdoberfläche entstanden
denken (siehe Abb. 10).

Daß diese Änderung auch zulässig ist, das heißt, daß die Ergebnisse
der sich auf sie stützenden Anziehungsberechnungen nur geringfügig von
den mit Hilfe der sphärischen Formeln berechneten Anziehungsbeträgen
abweichen können, erhellt schon aus folgender Überlegung: Die Änderung

des Querschnitts- (Drehung und Zerrung) wird bezüglich der in
Betracht kommenden Punkte Pu stets nach den gleichen Richtungen
vorgenommen, das heißt, es wird immer ein systematischer, dem Vorzeichen
nach gleicher Fehler begangen. In den Formeln (15), (16) und (17), die
alle Berechnungsarten beinhalten, handelt es sich aber stets um die
Differenzen der Anziehungen, somit auch um die Differenzen der
gleichgerichteten Fehler, die somit jedenfalls kleiner sind als die Einzelfehler.
Daß diese Fehlerdifferenzen auch absolut klein sind, ergibt sich aus der

3 Eine Drehung um den Schwerpunkt der Figur, das heißt um den Mittelpunkt

der Strecke P'i,i + \ P"i,i + \, würde die Lage des Drehpunktes von der
jeweiligen Zonenhöhe hi,i + \ abhängig machen, was nur die Reduktionsformeln
stark komplizieren, die Erstellung von Tabellen fast unmöglich machen und an
Genauigkeit nichts einbringen würde, da mit Differenzen gerechnet wird.
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nachstehenden Erwägung: Die Zonen in der Nähe der Station erfahren
nur eine ganz geringfügige Änderung, somit sind die systematischen
Fehler an sich sehr klein; bei den entfernter liegenden Zonen hingegen,
wo die Änderung größere systematische Fehler verursacht, ist der Unterschied

zwischen dem Wert der Anziehung auf den Oberflächenpunkt und
dem auf einen anderen Punkt nur sehr klein, so daß die Differenz der
Fehler ebenfalls sehr klein sein muß (siehe Tabelle 2).

Eine ähnliche Überlegung gilt übrigens auch bezüglich der
Zulässigkeit der Ermittlung eines einzigen auf Grund der durchschnittlichen
Zonenhöhe berechneten Anziehungswertes pro Zone anstatt einer Ermittlung

der Anziehungswerte für die einzelnen Zonensektoren (da die
Anziehung nicht direkt proportional der Höhe ist). Gewiß kann sich ein
solcher Durchschnittsanziehungswert sogar wesentlich von der Summe
der Teilwerte, die auf Grund der einzelnen Sektorhöhen errechnet wurden,
unterscheiden, und dies wird auch um so eher der Fall sein, je weiter die
einzelnen Sektorhöhen einer bestimmten Zone auseinanderklaffen. Da
aber auch in diesem Fall der Fehler stets systematischer Natur ist und
bezüglich des Oberflächenpunktes und jedes anderen Punktes der Lotlinie

beziehungsweise auch bezüglich des Durchschnittswertes gleiches
Vorzeichen hat, in unseren Formeln aber stets die Differenz der
Anziehungen auf jeweils zwei solcher Punkte aufscheint, muß auch dieser
Fehler sehr klein werden (siehe Tabelle 4).

Die Berücksichtigung der geänderten Wirkung der innerkrustalen
Kompensationsmassen im Falle der Isostasie wird analog der Berechnung
der Anziehung der Kontinentalmassen durchgeführt. Man geht wieder
von der gleichen Annahme aus, wie sie Baeschlin [9] zugrunde gelegt
hat, nimmt unterhalb jeder gedrehten Zone mit der Höhe htt t+i eine
ebensolche mit der Höhe 100 km an und berechnet die Differenz ihrer
Anziehungen auf den Oberflächenpunkt und einen anderen Punkt der
Lotlinie beziehungsweise den Durchschnittswert, wobei als Dichte die
negative kompensatorische Dichte des jeweiligen Zylinders

2 7
@i,i+i — -^ftu+i (km>

verwendet wird. Man erhält damit Ausdrücke, deren Bau vollständig
dem der Berechnungsformeln der Geländezonen entspricht.

Bezeichnet man schließlich die den sphärischen Reduktionen Aspn
beziehungsweise asph der Formeln (15), (16), (17) analogen Ausdrücke
mit Ared beziehungsweise are(j, so ergeben sich folgende Formeln für die
Berechnung der Schwerereduktionen beziehungsweise des Durchschnittswertes:

2g
9u g + -s (H — hu) — SAred> p + SAred, pu — Sared, p + Sared> Pu (18)

xt

Agu

(Schwerereduktion auf irgendeinen Punkt der Lotlinie),
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2g
9o=g + -5- H — SAredi p + SAredt pa — Saredi P + Sared> P (19)

ri
àg0

(Schwerereduktion auf den Geoidpunkt),

G g + ~ H — SATed, p + SÂred — Saredt P + Sâred (20)
B

àg

(Berechnung des Durchschnittsschwerewertes der Lotlinie),

wobei für die Gesamtkorrektionen Agij+i pro Zone jeweils eine Tabelle
oder ein Graphikon erstellt werden kann, woraus die auf die
entsprechende Zone i, i + 1 entfallenden Werte zu (18) oder (19) oder (20)
leicht abzulesen sind. Sieht man, wie dies später der Fall ist, 17 Zonen
bis zu 300 km oder 19 Zonen bis zu 1000 km vor, so bedeutet dies, daß
man mit den 17 beziehungsweise 19 Durchschnittshöhen der Zonen als
erstem und mit der Stationshöhe als zweitem Argument sogleich die 17

beziehungsweise 19 Werte (18) oder (19) oder (20) pro Zone erhält und
aus ihrer Summe den Gesamtwert Ag SAgtj+i der Schwerereduktion
beziehungsweise der Korrektion für den Durchschnittswert4.

Im nächsten Abschnitt werden alle Formeln abgeleitet, die zur
Berechnung der Anziehung der sphärischen und der transformierten Zonen
auf die Punkte der Lotlinie gebraucht werden, sowie die Formeln zur
Berücksichtigung der isostatischen Kompensationsmassen. Sodann folgen
an Hand der Angaben über den Punkt Hochthor (2504,25 m) im
österreichischen Tauernnivellement Vergleichsberechnungen zum Zwecke der
Fehlerabschätzungen wegen des Überganges von der sphärischen
Berechnungsart zur reduzierten und wegen der Verwendung von Durchschnittshöhen

für die Zonen. Hierauf wird die Schwerereduktion des Punktes
Hochthor exakt berechnet und schließlich werden die Resultate mit den
nach den anderen Methoden erhaltenen Ergebnissen verglichen.

b) Die Formeln zur Berechnung der direkten Geländekorrektion

Es sei (siehe Abb. 10) P die Station, auf der die Schwere g beobachtet
wurde. P habe die Höhe H, das heißt, H sei die Länge des - gerade
angenommenen - Stücks der Lotlinie zwischen P und ihrem Durchstoßpunkt
P0 mit der Niveaufläche in mittlerer Meereshöhe, dem Geoid. Pu mit der
variablen Höhe hu sei ein laufender Punkt zwischen P und P0.

Man denke sich nun die Umgebung der Station, wie bereits erwähnt,
durch zentrisch um P in bestimmten Abständen angeordnete vertikale
Kegelflächen i in Zonen i, i + 1 zerlegt, die vom Geoid bis zur
physischen Erdoberfläche reichen. Zwischen zwei solchen Kegelflächen i

Siehe Seite 282 nähere Erläuterung bezüglich hu in (18).
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und i y 1 befindet sich dann eine Art Kugelring (wenn wir die Erde als
Kugel vom Radius R 6371,2 km annehmen), der begrenzt ist durch
die von den Spuren der beiden Trennflächen i und i + 1 am Geoid
gebildete Fläche als Grundfläche, von den Trennflächen als Seitenflächen
und schließlich von der physischen Erdoberfläche selbst. Denkt man sich
letztere zwischen den Trennflächen eingeebnet, so erhält man die
Durchschnittshöhe hij+x für den Ringkörper.

In der Praxis wird man diese Gesamtdurchschnittshöhe entweder
nach der klassischen Methode der Einteilung des Ringes in Sektoren als
Durchschnittswert der (Durchschnitts-) Höhen dieser Sektoren erhalten,
oder man wird sie aus einer über den ganzen Ring entsprechend
regelmäßig verteilten, für jeden Ring ein für allemal zu definierenden Anzahl
von Einzelhöhen errechnen, wobei die Anzahl dieser Höhen nicht oder
nur wenig höher sein müßte als die Anzahl der klassischen Sektoren (8 bis
16, je nach Entfernung von der Station).

Es sei zunächst eine Anordnung von insgesamt 19 solcher
Kreiskegelflächen mit den folgenden Radien x,- von 0,5 bis 1000 km
angenommen, dann ergeben sich nachstehende 19 Zonen i, i + 1:

Radius '—^
1 2 3 4 5 6 7 8 9 10 11

xi km
xi +1 km

0
0,5

0,5
1,0

1,0
1,5

1,5
2,0

2
3

3
4

4
6

6
8

8
11

11
15

15
20

\^ Zane

Radius ^""\. 12 13 14 15 16 17 18 19

xi km
xi +1 km

20
30

30
45

45
70

70
112

112
188

188
300

300
500

500
1000

Ist nun PiPi^i (Abb. 10) der Schnitt der physischen Erdoberfläche
mit einer Vertikalebene zwischen den zwei Kegelflächen i und i + 1,

so findet man mit P';P',- + i den Schnitt der horizontalen, durch

Einebnung entstanden gedachten Abdeckung und mit P"iP"i + i die
Projektion auf die Kugel als Näherung fürs Geoid. P'iP'i P"ì+iP'ì+i

hiti+i ist die Durchschnittshöhe des Ringes, Rfc sein Abstand von
P0 auf der Kugel und R (<pi+i — ipi) seine (sphärisch gekrümmte) Grundlinie

P"iP"i f j. Die Anziehung dieses Kugelringes auf irgendeinen Punkt
der Lotlinie zwischen P und P0 ist dann nichts anderes als die Differenz
der Anziehungen der sphärischen Scheiben von der Höhe /i,-, i+i mit den
Zentriwinkeln 2</rj+i und 2i/r;. Um die Formel für diese Differenz
abzuleiten, kann man von der Differentialformel ausgehen, die Helmert [6]
ableitet.

(Fortsetzung folgt.)
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