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Zur Frage des Dichtegesetzes
der einparametrigen heterogenen Gleichgewichtsfiguren

Von K. Ledersteger, Wien
Die bisherigen Untersuchungen der aus dem Helmertschen Ansatz
fiir das Rotations-Niveausphiiroid vierten Ranges
_ kE
B

w?®

2 kE

U, [1 —% P, (cos#) + ;3— %)1 P, (cos &) + sin? 19‘] (1)
hervorgehenden Niherungen fiir die sphiroidischen Gleichgewichtsfigu-
ren haben zu dem Schlull gefiihrt, da3 alle diese co®-Nidherungsfiguren ihr
streng individuelles Dichtegesetz besitzen, das heiBt, daB jeder dieser
Figuren mit der freien Oberfliche S (a, a, f) eine und nur eine Massen-
anordnung im hydrostatischen Gleichgewicht entspricht, und zwar nur
fiir eine ganz bestimmte Rotationsgeschwindigkeit. Da es nidmlich zu
jedem System Stokesscher Elemente E, w, S (a, a, f) verschiedene
Stokessche Konstanten gibt, darunter die beiden Massefunktionen K
und D, welche fiir alle méglichén zugehdrigen Massenanordnungen Inte-
gralinvariante sind, andererseits aber durch (E, w, K, D) eindeutig eine
heterogene oder homogene Gleichgewichtsfigur bestimmt ist, gibt es zu
jedem System Stokesscher Elemente, sofern in Anbetracht des bedingten
Charakters der Parameter iiberhaupt eine physikalisch sinnvolle Losung
moglich ist, unter den sonstigen unendlich vielen Massenanordnungen
nur eine Massenanordnung im Gleichgewicht, derart, da3 die gegebene
Flache S entweder freie Oberfliche oder dullere Niveaufliche ist. Ein
zweiter Beweis fiir die Eindeutigkeit des Dichtegesetzes ergibt sich aus
dem klassischen Ergebnis, demzufolge fiir Gleichgewichtsfiguren auch
die Triagheitsmomente selbst — und nicht blo8 deren Differenz — wenig-
stens mit sehr guter Annidherung Stokessche Konstanten sind. Dies ist
aber nur dann mit der eigentlich selbstverstiindlichen Tatsache in Ein-
klang zu bringen, dall die Triagheitsmomente sehr wesentlich von der
Massenkonfiguration abhingen, wenn sich bei den Gleichgewichtsfigu-
ren die Trigheitsmomente zwar als Funktionen der Stokesschen Ele-
mente darstellen lassen, welche aber nicht mehr den Sinn von Integral-
invarianten fiir unendlich viele Massenanordnungen haben, die es gar
nicht gibtl.

Wenn nun die spiteren Ausfithrungen fiir die Niherungen mit dem
Potentialausdruck (1) ein sehr einfaches, stetiges Dichtegesetz liefern, so
zwingt dies im Verein mit der Eindeutigkeit des Dichtegesetzes zu der
logischen Folgerung, daf3 diese Figuren noch lange nicht die Gesamtheit
aller Gleichgewichtsfiguren darstellen. Denn sonst bliebe kein Raum fiir
die sicherlich moglichen unstetigen Dichteverteilungen. Man braucht
dabei noch gar nicht an den wirklichen Erdkdérper zu denken, der zumin-

1 K. Ledersteger, Die Stokesschen Konstanten und die Tragheitsmomente
einer Gleichgewichtsfigur. Ost. Zf'V, 1959, S. 97-114.
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dest in seiner Kruste offensichtlich betridchtliche Abweichungen vom
hydrostatischen Gleichgewicht aufweist. Wir miissen daher nochmals die
Frage nach der Mannigfaltigkeit der iiberhaupt méglichen Gleichgewichts-
figuren aufgreifen, wobei zu betonen ist, da3 diese selbstverstiandlich als
vollig exakte Figuren und nicht blofl als Nidherungen zu betrachten sind.

Wir gehen von den sukzessiven Niherungen der Potentialentwick-
lung der Gleichgewichtsfiguren aus und finden die erste Ndherung, wenn
wir in (1) bereits die Massefunktion 4.0., das heilt den Koeffizienten D
der zonalen Kugelfunktion P,, unterdriicken. Es resultiert als Sphiroid
zweiten Ranges das Brunssche Niveausphiroid von Rotationsform U,.
Wollte man auf dieses das bekannte Helmertsche System von acht Glei-
chungen anwenden, so hat letzteres wegen des Ausfalls des Parameters
8 = D/a* nur mehr zwolf Parameter, also fiir die vorgegeben gedachte
Erdmasse nur mehr co® Ldésungen, und ein einfacher Analogieschiul3
zeigt, dal wir es mit den oco? homogenen MacLaurinschen Ellipsoiden
mitsamt ihren dufBleren Niveauflichen zu tun haben. Fihren wir aber in
das Gleichungssystem den fiir alle homogenen Ellipsoide giiltigen Wert
fiir die statische Abplattung

1
Kla* = 5 (a—a) (2)
ein, so liefert dies
‘ S S s
BE 5 a ga ’ )

was besagt, dall sich die transformierte MacLaurinsche Bedingung be-
reits in den Gliedern 4.0. falsch ergibt; dies ist gar nicht verwunderlich,
weil ja im Niherungspotential U, gleichfalls ein Parameter 4.0. (8§ = 0)
unterdriickt wurde. Der Fehler der Losung kommt am klarsten darin
zum Ausdruck, daf sie auf einen positiven Formparameter f fithrt, was
physikalisch sinnlos ist. Wir miissen bei dieser Niherung demnach kon-
sequenterweise simtliche Parameter 4.0., 8, B, und f, unterdriicken, diir-
fen also die abgeleiteten Gleichungen ebenfalls nur bis einschlieBlich der
Glieder 2.0. entwickeln. Mit 8, und f entfallen aber zwei Gleichungen, so
daB nur sechs Gleichungen mit insgesamt zehn Parametern vorliegen,
welche fiur die gegebene Masse tatsidchlich co® Liosungen besitzen, eben
in der entsprechenden Niherung die co? MacLaurinschen Ellipsoide mit
ihren dulBeren Niveauflichen, Jedes Ellipsoid S (a, a) ist, wie wir wissen,
fir eine bestimmte Rotationsgeschwindigkeit streng eine homogene
Gleichgewichtsfigur, auf der vorliegenden Nidherungsstufe aber gleich-
zeitig fur unendlich viele andere Werte von w dullere Niveaufliache ande-
rer homogener Ellipsoide. ‘

Die Verallgemeinerung ist nun recht einfach. Im Potentialausdruck
(1) fir U,, in welchem wir die Massefunktion 4.0. statt mit D besser mit
D, bezeichnen, sind alle héheren Massefunktionen Dg, Dy ... vernach-
lassigt. Es wire somit sinnlos, die Helmertschen Gleichungen iiber die
vierte Ordnung hinaus zu entwickeln, das heiBt in der Formel fiur die
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theoretische Schwere einen Koeffizienten 8; und in der Differenz der
Radienvektoren von Sphiroid und achsengleichem Rotationsellipsoid

(I—s) = 5 Uesin2g + ..] (4)

neben dem ersten Formparameter 4.0. (f = f,) etwa einen Parameter 6.0.
(f¢) mitzunehmen. Die oot Lésungen des Helmertschen Systems fiir die
gegebene Masse E umfassen die co® iiberhaupt moglichen zweiten Nihe-
rungen S (a, a, f,) der viel gréBeren Mannigfaltigkeit aller Gleichgewichts-
figuren, deren jede gleichzeitig auch duflere Niveaufliche von unendlich
vielen anderen dieser «Nidherungsfiguren» ist. .

Geht man zu einem Niveausphiroid sechsten Ranges U iiber, er-
weitert also (1) um die zonale Kugelfunktion P, so tritt eine Masse-
funktion Dy hinzu, und man mufl die Formeln bis einschlieBlich der
Glieder 6.0. entwickeln, wodurch die zusidtzlichen Parameter B und f,
und zwei weitere Gleichungen auftreten. Man wird also zehn Gleichungen
fiir sechzehn Parameter und damit fiir die gegebene Masse co® Lisungen
erhalten, nimlich cot dritte N#herungen S (a, a, fs, f¢) mitsamt ihren
duBeren Niveauflichen. So kann man zu immer hoheren Niherungen
fortschreiten.

Wenn wir aber von Gleichgewichtsfiguren sprechen, so denken wir
an vollig strenge Losungen des geschlossenen oder des vollstindig ent-
wickelten Potentialausdruckes. So werden fiir ganz bestimmte Werte der
Massefunktionen K, D,, D;. .. in aller Strenge die co? homogenen, Mac-
Laurinschen Ellipsoide als die «nullparametrigen» Gleichgewichtsfiguren
S (a, a) resultieren. Die nichste Stufe stellen die co® «einparametrigen»
Gleichgewichtsfiguren S (a, a, f,) dar, wie sie bisher in ihren zweiten
Niherungen mit dem Potentialausdruck (1) allein untersucht wurden?.
Es folgen die co* «zweiparametrigen» Gleichgewichtsfiguren S (a, q, f,
fs)» welche natiirlich die vorhergehenden mit einschlieen usf.

So gesehen, wird die strenge Eindeutigkeit des jeweiligen Dichte-
gesetzes unmittelbar evident. Denn zu jeder Figur, etwa zu einer be-
stimmten zweiparametrigen Figur S (a, q, f,, fs), gehoren auler einer be-
stimmten Rotationsgeschwindigkeit nicht nur bestimmte Werte fiir die
Massenfunktionen K, D, und D, sondern auch fiir alle bei der dritten
Niherung U, vernachlissigten weiteren Massefunktionen Dg, Di,. ..
Wihlt man ein beliebiges System Stokesscher Elemente E, w, S (a, a, /4
fe), so sind dafiir alle diese Massefunktionen Stokessche Konstante, das
hei3t Integralinvarianten fiir simtliche mdagliche Massenkonfigurationen
von E im Innenraum von S, unter denen sich, wenn tiberhaupt, so nur
eine Massenanordnung im hydrostatischen Gleichgewicht befindet, die
durch (E, w, K, D, Dy ...) streng definiert ist und die sich aus Ug mit
(E, w, K, D,, Dg) eindeutig als dritte Ndherung ergibt, wenn es gelingt,

2 K. Ledersteger, Die heterogenen sphiroidischen Gleichgewichtsfiguren und
das Normalsphéroid der Erde. Geofisica pura e applicata, Bd. 44, 8. 1-19, Milano
1959.
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dem zugehorigen Gleichungssystem die fehlende Gleichgewichtsbedin-
gung in irgendeiner Form als elfte Gleichung anzuschlieBen. Variert
man w, so erhédlt man im Innern von S eine lineare Reihe von Gleichge-
wichtsfiguren, und wir diirfen in Analogie zu den fritheren Untersuchun-
gen? schlieBen, daB diese Reihe mit einer einparametrigen Figur von ma-
ximaler Rotationsgeschwindigkeit beginnt und in jener Gleichgewichts-
figur mit minimalem w endet, fiir welche die gegebene Fldche S zur freien
Oberflache wird. Die eigenartige Wechselbeziehung zwischen den Nihe-
rungen und den strengen Gleichgewichtsfiguren wirft aber noch mancher-
lei Fragen auf. Denn wihrend zum Beispiel fiir eine zweiparametrige
- Figur alle héheren Formparameter fg, f;o... streng Null sind, gilt dies
nicht fiir die Massefunktionen D;, D, ..., welche in den dritten Nihe-
rungen (U,) bloB vernachlissigt sind.

Nachdem somit die strenge Eindeutigkeit der Dichteverteilung in
jeder exakten Gleichgewichtsfigur hinreichend geklart ist, erhebt sich die
Frage, ob sich die Dichtegesetze fiir jede beliebige Anzahl von Form-
parametern f; ebenso in einem einheitlichen Ausdruck zusammenfassen
lassen, wie dies bekanntlich fiir die homogenen Ellipsoide oder «null-
parametrigen Gleichgewichtsfiguren» der Fall ist. Hier weist das allge-
meine Dichtegesetz p = const eine Konstante (spéter allgemein als mitt-
lere Dichte p,, bezeichnet) auf, die fiir alle volumgleichen Ellipsoide den-
selben Wert besitzt. Es scheint daher die Annahme sehr naheliegend, dal3
sich das Dichtegesetz der einparametrigen Gleichgewichtsfiguren, das die
Dichte der inneren Niveauflichen in Funktion ihrer Aquatorradien dar-
stellt: p; = f (a;), in einen Ausdruck mit zwei ‘Konstanten zusammen-
fassen 140t. :

Zur Ableitung des Dichtegesetzes diirfen wir mit hinreichender An-
niaherung die Niveauflichen der sphiroidischen Gleichgewichtsfiguren
als Ellipsoide betrachten. Um die Bedingungen fiir das Dichtegesetz auf-
zustellen, gehen wir sodann von den elementaren Massefunktionen fiir
das homogene Ellipsoid aus. Bezeichnet man die Aquator- und die Pol-

4
~achse des Ellipsoides mit a und ¢, so ist bekanntlich das Volumen 37 azc,

so daB sich fiir die mittlere Dichte die einfache Beziehung ergibt:

4 4
E=—§Wa2cpm=—3~ﬂa3(1—'a)pm, (5)

. worin a und q die freie Oberfliche bestimmen. Setzt man nun fir das
Dichtegesetz zunichst ganz allgemein an:

p = pmax [ ( - )’ (6)

a
unter x den Aquatorradius einer inneren Niveaufliche verstanden, so
ergibt sich fiir den heterogenen Koérper unmittelbar

3 Siehe FubBnote 2,
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a

E =4‘n‘pmax[‘(1—a)f(—§~) 2? dr =

[ §

0 a

= 47 pmax (1 —ﬁz)ff (%) z2de,  (5a)

0

wobei @, einen durch die Gleichung definierten Mittelwert der inneren
Abplattungen darstellt, der kleiner als die Abplattung a der Oberflidche
ist, weil die Abplattung nach innen, also mit abnehmendem x, stindig
abnimmt. Aus der Gleichsetzung der beiden Gleichungen (5) folgt bereits
die Bedingung fiir die mittlere Dichte:

1 —
_Cl __ _Pmax iff (_x_) x2 dx, (7)
1 e az Pm a3 a

in welcher die .linke Seite < 1 ist, wihrend das Verhiltnis n = (pmax:
pm) = 1 ist.

Fiir das Trigheitsmoment C des homogenen Ellipsoides findet man
leicht

C=pf@*+y))dr =p [ ptdr; dr =2pmrdpdz,

Ell
also: Po € c :
L |
C =2wpfpsdpdz=4npf[p3dpdz =4wpf%dz.
L ¢
Ell 00 0
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Nun folgt aus der Ellipsengleichung

a?

po® = o (¢ — 2%

und daher

C=-,rrpa—‘l [ed—2¢222 |- 2f dz = o frpa‘*c—EEaz (8)
ot 15 5

Fir das dquatoriale Trigheitsmoment

. 2 1
A=B=pf[x;y_+z;| 2C+P[‘22d1'

Ell Ell
findet man mit .
d’T == pozﬂ' dz
leicht
fz’dr =27 fzzpoﬂ dz =27 ~—fz* (c2 —z2) dz
El 0
und damit
A -—-é 4 mpatc + iﬂ'p a’cs. 9)
15 15

Fiir die Differenz der Trﬁgheitsmomente und damit fiir die erste Masse-
funktion K folgt:

4 .
(C— A)=KE = Eﬂ-p[cﬁc—a’c"]

und weiter mit ¢ = a (1 — a)

4 4
KE = 15 P ate (20 — a?) = g a*(2a—3a2 +a®)  (10)

oder auch
K 1

az
Aus
1 2
(C—A) = 5 Ea? (2qa—a?; C = 5 Ea?

folgt aber die dynamische Abplattung

C—A :
ey (11a)

d =
Cc 2
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Aus (8) und (6) ergibt sich jetzt fiir das Trigheitsmoment C eines
heterogenen Korpers

a a
8 x 8 - x
C = 3 '”'Pmaxf(l - a)f(?) xtdr = 3 m(l—a,) Pmaxff (_(;) rtdx =
0 0
a
4 1—a; pmax 1 T
= B b o : ZYxd
S I
0
oder
a
2 1—a, 5 :
C =— Ea? - - : 1
= a(lfa)na5ff(a)x4dx (12)
0
Ganz analog folgt aus (10)
a
4 - - - x
KE = E) 7 (2a, — 30,2 + a®) Pmaxff (E‘) xt dx
0
oder
a
K=(2a4—3a43+643) Pmax .i f(i)x‘dx
1—a Pm ad a
0
und nach entsprechender Erweiterung
, o |
K 1 = - 1—a, 5 x
= _ m2 . X
- = (24, m)(l_a)naBII(a)x‘dx (13)
' 0

In den beiden letzten Gleichungen ist natiirlich @, abermals ein be-
stimmter Durchschnittswert der Abplattungen der innern Niveauflichen.
Zu seiner Bestimmung bilden wir aus (12) und (13) fiir den gemeinsamen
Faktor

a
1—a C K
(1 “‘)nisff(f)ﬁd;c=2 = =g (14)
e EJ S B - Qa—a) e
0 5 5

oder

C—A a,?
5
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Die dynamische Abplattung unserer heterogenen Gleichgewichtsfigur ist
also dieselbe wie die eines homogenen Ellipsoides (vgl. 11 a) mit der Ab-
plattung ap = a,. Da wir selbstverstindlich die Rotationsgeschwindig-
keit festhalten miissen, handelt es sich um die homogene Ausgangsfigur
der linearen Reihe (w, d). Damit ist offensichtlich eine wichtige Bedin-
gung fir die Abplattungsfunktion im Innern der heterogenen Gleichge-
wichtsfigur gegeben: die aus der Prizessionskonstante mit groler Sicher-
heit ableitbare dynamische Abplattung definiert den Durchschnittswert
a, der inneren Niveauflichen des Normalsphiroides.

Andererseits ist in (13) die Grofle g mit der statischen Abplattung
(11) desselben homogenen Ellipsoides multipliziert, das ja auch durch w
und ap eindeutig gegeben ist. Von diesem Ellipsoid geht demnach sicher-
lich auch eine Figurenreihe (w, Kj) aus. Gehort unsere heterogene Figur
dieser Reihe an, ist also K = Kj, so mul

g = (ap: a)® (16)
sein, wobei natiirlich a, die Aquatorachse des homogenen Ellipsoides
bedeutet. Damit folgt aber aus (12)

2 2
C =~5Ea2(ah=a)2=gEahz = Cp,

womit bereits die Identitiit der Reihen (w, C) = (w, K) = (w, d) bewiesen
ist. Denn die Annahme, daf} die gegebene Figur nicht der Reihe (w, Kj)
angehort, fihrt auf einen Widerspruch. Wohl bleibt die dynamische
Abplattung auch unverindert, wenn sich die Trigheitsmomente propor-
tional dndern. Dies ist aber nur bei einer véllig gleichférmigen Expansion
oder Kontraktion der Figur moéglich und daher unweigerlich mit einer
Anderung der Rotationsgeschwindigkeit verbunden, wie bereits die
homogenen Ellipsoide zeigen.

Man sieht demnach, daf3 sich die beiden Gleichungen (12) und (13)
nur um einen Proportionalititsfaktor unterscheiden. Weil die statische
Abplattung zu den Stokesschen Konstanten gehoért, gebiihrt sogar der
Gleichung (13) der Vorzug vor (12), wihrend man bisher allgemein ange-
nommen hat, da3 die Differenz der Tragheitsmomente keine brauchbare
Bedingung fiir die Aufstellung des Dichtegesetzes liefert, weil die Ab-
plattungsfunktion unbekannt ist. Die Gleichungen (7) und (13) liefern
also die beiden notwendigen Bedingungen fiir das gesuchte Dichtegesetz
mit zwei Konstanten:

a
1 —a + &l =niaff(£)x2dx
a a

0
a
(ﬂi)2 (1—a+ay =n~.5—sfl (3) atdx
a at a
0

(17)
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Hierin ist a > a, > a, und q, gleich der Abplattung des homogenen Aus-
gangsellipsoides der Reihe (w, K) = (w, C).

Wir priifen zunichst einige der konventionellen Dichtegesetze am
Normalsphiroid. Fiir dieses haben wir in der in FuBlnote 2 zitierten
Arbeit gefunden:

a = 33 6267.10°8; q, = 32 7773.10°%; a = 6 378 290 m;
an = 5819 382 m; also (ay: @)* = 0,832 425; p, = 5.5168.

Die linke Seite der ersten Gleichung 143t sich wegen der Unkenntnis von
a; bloB schitzen und wurde mit 0,9995 angenommen. Somit gilt fiir das

Normalsphiroid
a
3 x
0.99950 = n ——ff (»—) x? dx
ad a
0

a
5 r
0.83236 = n %ff (%) rdzx.
ad a
0

Der erste Versuch sei mit dem am héufigsten verwendeten Dichtegesetz
von Roche* gemacht:
e '
P = Pmax [1 e g (;) ] (18)

Die Konstante k liegt dabei zwischen den Grenzen 0 und 1. k = 0 liefert
das homogene Ellipsoid und k = 1 fiir x = a die Oberflichendichte Null.
Man findet: :

a
3 xt 3
0.99950 = n — 2—k——)de =nj|1——&k
ad a? 5
0

(17a)

-a

5 (° x® 5
0.83236 = n — —k—)de =n|1l——k
ad a? 7

0
und daraus

k = 0,77916; n = 1,87698; pmax = 10,355; pmin = 2,287. (18a)

4 E. Roche, Note sur la loi de densité & intérieur de la terre. Acad. Paris,
C. R. 39, 1854.
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Eine Verallgemeinerung des Dichtegesetzes von Roche nahm R.
Lipschitzt vor, indem er den Exponenten 2 durch A ersetzte:

x\A
P = Pmax [1 —& (;{) ] (19)

Es sei dieses Gesetz noch fiir A = 1 und 3 ausgewertet:

A=1:k = 0,80109; n = 2,50382; pmax = 13,813; pmin = 2,747

19
A=3 0,80160  1,66806 9,202 1,86 (7%
Noch allgemeiner ist der Ansatz von M. Lévy®
x\A
p = pmax [1 —k (“a") ]" (20)

Wir wollen ihn versuchsweise fiir A = 1,2,3 und p = 2 auswerten:

A=1:k = 0,56415; n = 2.89938; pmax = 15,995; pmin = 3,038
A =21 0,50990 2,00082 11,038 2,651 (20a)
A =3 0,51196 1,73704 9,583 2,282

Eine Entscheidung iiber die Wahl der Parameter A und i kénnte aus
dem Normalsphiroid allein nur auf Grund der resultierenden Ober-
flichendichte

pmin = pmax (1 —K)* = n (1 —k)*- pp

getroffen werden, da diese ja nicht als Bedingung mit angesetzt wurde.
Demnach hiitte die Wahl A = 2, up = 2 die grofite Wahrscheinlichkeit fiir
sich. Doch kdnnte dies natiirlich auch Zufall sein, solange dieser Ansatz
nicht auch theoretisch fundiert ist. Wollte man beliebige andere einpara-
metrige Gleichgewichtsfiguren heranziehen, so bieten diese iiberhaupt
keine Kontrollmoglichkeit, weil wir iber ihre zu erwartende Oberflichen-
dichte nichts aussagen konnen. Anders verhilt sich dies mit den Grenz-
figuren in der Hiillflache, fiir die sich die Oberflichendichte sehr klein
ergeben mufB3, und zwar so, da3 die Poincarésche Ungleichung erfiillt ist.
Die Grenzfiguren ermdéglichen dann gleichzeitig den gewiinschten Ein-
blick in das maogliche Maf3 der Massenkonzentration.

Die Massenkonzentration hat sich am klarsten in der Figurenreihe
(w, a) gezeigt. Wir wihlen jene Reihe, der das Normalsphiroid der Erde
angehort: w? = 5,317496.10°, a = 6 378 290 m. In dieser Reihe ergab

5 R. Lipschitz, Versuch zur Herleitung eines Gesetzes, das die Dichtigkeit fiir
die Schichten im Innern der Erde annéhernd darstellt, aus den gegebenen Beobach-
tungen. Journal fiir reine und angewandte Mathematik, Bd. 62 und 63, 1863.

§ M. Lévy, Sur la théorie de la terre. Acad. Paris, C. R., Bd. 106, 1888.

109



sich die Grenzfigur mit folgenden hier allein interessierenden Bestim-
mungsstiicken’:

a = 23 8036.10°8; ¢ = 347128.108; K/a? = 4 3555.10-8
K =17 1719,3.10'% p,, = 5,5113.
Fiir das homogene Ausgangsellipsoid der zugehorigen Reihe (w, K) finden
wir
an = 18 9081.10-8; a = 4 842 548 m; (ap: a)* = 0,576420

und erhalten damit aus (17) die beiden Bedingungsgleichungen

a
3
0,99930 — n — f f (f) 2 dx
asd a
0

057614mn—-—f x4dx

(17b)

in denen der linksstehende Wert der ersten Gleichung wieder auf Schit-
zung beruht, jedoch hochstens um ein bis zwei Einheiten der vierten
Dezimale falsch sein kann.

Die Auswertung auf Grund des Ansatzes (19) liefert mit A =1, 2 3
stets unmdogliche Werte von & > 1. Dennoch sei das Ergebnis ganz ge-
geben:

A =1:k =1,05620; n = 4,80780; pmax = 26,497; pmin = —1,489
A =2: 1,14957 3,22089 17,751 —2,655 (19b)
A = 3: 1,25756 2,60194 14,836 —3,821

Mit diesen gédnzlich unmdoglichen Resultaten sind die Dichtegesetze von
Roche und Lipschitz vollstindig ad absurdum gefiihrt. Hingegen liefert
der Ansatz von Lévy, abermals fiir A = 1,2,3 und p = 2 der Reihe nach:

A=1:k =090117; n = 7,37431; pmax = 40,642; pmin = 0,397
A =2: 0,96344 4,13486 22,788 0,030 (20Db)
A =3 1,10120 3,29791 18,176 0,186

Wieder erweist sich die Losung fiir A = 2 und g = 2 als sehr plausibel.
Die Oberflichendichte ergibt sich, wie es sein mull, sehr gering; auller-
dem ist die Poincarésche Ungleichung erfiillt:

5,3.10° = w? <27 k? pin = 12,6.10°°. (21)

? K. Ledersteger, Zur Theorie des Normalsphéroides der Erde. Versffentlichung
der Deutschen Geodatischen Kommission, Reihe A, Heft 36, Miinchen 1960.
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Es wiire natiirlich sehr wiinschenswert, das gefundene Dichtegesetz

P = Pirkex [1 g (3‘3)] (20D)

a

an weiteren Figuren zu erproben. Nun wissen wir nur beim Normal-
sphiroid und bei den Grenzfiguren der Hiillfliche, welche Oberflichen-
dichte wir zu erwarten haben. Bei den Grenzfiguren erweist sich aber die
linke Seite der zweiten Gleichung (17b) bis auf eine geringfiigige Abhéin-
gigkeit von der Rotationsgeschwindigkeit als konstant. Wegen des maxi-
malen Formparameters |f4| = 3 a?/2 erhalten wir fiir die Figuren der
Hiillfliche die Bedingung

3 5 25
B —ae— — g2 =0, 22
5 a? + i ag 16 £ (22)
welche auf die Wurzel
a =0,68573¢ (22a)

fiihrt. Damit kann aber die Gleichung fiir die statische Abplattung

1 1 109
Kla® = — —e—aq— — o
ja 3[2(1 £E—a 12 ae + 56 8]

leicht in _
Kfla® = 0,12382 ¢ 4 0,47574 &2 (23)

transformiert werden. Andererseits gilt fiir jedes MacLaurinsche Ellipsoid

1 4 138
K 2= 2 — 2 ’ = — SO 2
[ap 5 (2 ap — an?); en = O - T
und daher
Kjap? = 0,50000 g5, — 1,54464 g2, (24)

Durch Division von (23) durch (24) findet man fiir die Grenzfigur jeder
Reihe (w, K)

. 3
(an: a@)* = 0,24764 —‘3[ 1 4350018 8] — 0,24764 (ﬁ) -

en | 1—3,08928 ¢, an

3
[1 + 3,84219 ¢ + 3,08928 &p] [1 —a -+ e+ an _% eh]

oder
(ap: a)® = 0,24764 [1 + 4,65646 ¢ + 2,83928 gp]

und weiter
(ap: a)® = 0,57217[1 4 1,86258 ¢ + 1,13571 gp].
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Dies ist gemélB (17) noch mit
(1—a+ap) =1 —0,68573 ¢ + 1,25 gp)
Zu mulﬁplizieren, womit folgt
(ap: @) (1 —a + ap) = 0,57217 (1 + 1,17685 ¢ + 2,38571 &p).
Hierin darf mit derselben Genauigkeit & durch (w?a®/k2E) ersetzt und
dementsprechend e, = e (a: a)® = 0,43280 ¢ geschrieben werden und
wir erhalten schlie3lich

. 2 3
(an: a@)*(1 —a + ap) = 0,57217 (1 + 2,20939 ‘;’{22 ) (25)

In der Form (20b) enthilt das Dichtegesetz nur zwei Konstanten,
nidmlich pp,x und k. In Wahrheit liegen aber selbstverstidndlich drei
Konstanten vor, weil noch die mittlere Dichte p;, mit der Bestimmungs-
gleichung (5) hinzutritt. Es kommt dies auch darin zum Ausdruck, daB
in (17) an Stelle von pp,x das Verhiltnis n = (pmax : pm) auftritt.

Schreibt man also
p=npm[1—-k(—a—)], (20¢c)

so erkennt man deutlich die strenge Individualitidt der Dichtefunktion:
jede der co?® einparametrigen Gleichgewichtsfiguren hat ihr eigenes, durch
ein Wertetripel n, p,, und k gekennzeichnetes Dichtegesetz. Fiir die
homogenen Ellipsoide ist n = 1 und k = 0, wihrend in der Hillfliche n
etwas iiber 4 und k knapp unter 1 liegt. Dies entspricht der Tatsache, daB
in der Reihe (w, a) die beiden Massefunktionen K und D, ungefihr auf
ein Viertel ihres homogenen Ausgangswertes absinken. Klarerweise be-
darf das gefundene Dichtegesetz noch einer streng physikalischen Be-
griindung. Die vorliegende Untersuchung konnte wohl viele der bisheri-
gen Ansédtze fiir das Dichtegesetz widerlegén und fir kiinftige Unter-
suchungen die Richtung weisen; die definitive Entscheidung bleibt aber
noch offen. ,

So darf zum Beispiel nicht verschwiegen werden, dafl auch der An-
satz von Okinghaus® nicht ganz hoffnungslos erscheint. Mit

7 2\
()
P = Pmax € a (26)

findet man némlich fir das Normalsphéiroid
= 1,3395; n = 1,82118; ppax = 10,047; pmin = pmaxe-ﬁk = 2,606
und fir dieselbe Grenzfigur wie oben
k = 3,9433; n = 4,01832; pmax = 22,169; pmin = 0,430.

8 E. Okinghaus, Eine Hypothese iiber das Gesetz der Dichtigkeit im Innern
der Erde. Archiv fir Mathematik und Physik, Bd. 13, 1895, und Akademie Wien,
Bd. 107, 1898.

112



Man sieht deutlich, da zumindest die Oberflichendichte in der Grenz-
figur nicht geniigend klein ist. Auch ist der Ansatz wegen der langsamen
Konvergenz der Reihenentwicklung praktisch recht unbequem.

Abschlieflend sei noch die Poincarésche Schranke (21) transformiert.
Durch einfache Multiplikation folgt mit (20c¢)

w?ad® 1 3 1 Pmin 3 n(1 —k)?
2 9 s, s o ., 27
KE ~F 7% Pmin =5 1—a) pm 2 1—a) =D

Es ist nun bekannt, dal fir die homogenen Ellipsoide der Quotient
w?/2m k?p nicht nur Kkleiner als 1, sondern vielmehr < 0,224666 ist, da3
also die Poincarésche Schranke dort weit unterboten wird. Man zog
hieraus vielfach den Schlull, dall diese Schranke eine wesentliche Ver-
schirfung erfordert. Dies erweist sich jetzt aber als Trugschluf3. Denn
zum Beispiel in der Figurenreihe (a, a), die man auch als «Vertikalreihe»
im Koordinatensystem mit den Achsen a, a, f, bezeichnen darf®, wichst
mit zunehmender Entfernung vom homogenen Ausgangsellipsoid stindig
w, wihrend umgekehrt dank dem Fortschritte in der Massenkonzentra-
tion gleichzeitig die Oberflachendichte stindig abnimmt. Mit der Annihe-
rung an die Hiillfliche n#hert sich das Verhiltnis w?/27 k2pnyi, der
Einheit. Wihlt man die Achse und die Abplattung des Normalsphi-
roides, so ist in der entsprechenden Vertikalreihe p,, mit sehr grofler An-
niherung konstant 5,5168. Fiir das Ausgangsellipsoid ist w? = 4,143.10°,
also w?/27kp ~ 0,0018. In der Grenzfigur ist demgegeniiber w? =
7,503.107%, und es muB daher pyin > 0,018 sein. Wahrend das Quadrat
der Rotationsgeschwindigkeit nur auf das 1,81fache des Ausgangswertes
anwichst, sinkt die Oberflichendichte auf den 306. Teil herab.

‘Wenn auch die Frage des Dichtegesetzes der einparametrigen Gleich-
gewichtsfiguren noch nicht definitiv geklirt ist, so haben die vorstehenden
Betrachtungen doch fiinf wesentliche Erkenntnisse gezeitigt:

1. Das Dichtegesetz der einparametrigen Gleichgewichtsfiguren ist
eine stetige Funktion mit den drei Konstanten p;,, n und k, womit die
strenge Individualitit des Dichtegesetzes nochmals erwiesen ist.

2. Die Identitit der Reihen (w, K) = (w, C) = (w, d) konnte exakter
nachgewiesen werden.

3. Ein bestimmter Durchschnittswert (a,) der Abplattung der inne-
ren Niveauflichen fillt mit der Abplattung des homogenen Ausgangs-
ellipsoides der Reihe (w, K) Zusammen, womit ein wichtiger Anhaltspunkt
fiir die Abplattungsfunktion gegeben ist, der iiber die Clairautsche
Differentialgleichung hinausgeht.

4, Die frither gefundene Hiillfliche der Gleichgewichtsfiguren hat
eine klare Bestitigung erfahren. Die Sphiroide der grofiten Massenkon-
zentration sind jene heterogenen Gleichgewichtsfiguren, deren freie Ober-
fliche stets durch den maximalen Absolutbetrag des Formparameters
|fJ| = 3a2/2 ausgezeichnet ist, also gleichzeitig eine Niveaufliche des mit

? Siehe FuBnote 2.
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einer groleren Winkelgeschwindigkeit rotierenden Massenpunktes dar-
stellt. Es sei nochmals betont, dal man frither diese dulleren Niveau-
flichen des rotierenden Massenpunktes in irrefithrender Weise mangels
besserer Einsicht selbst als Sphiroide der gré3ten Massenkonzentration
bezeichnet hat.

5. Die Poincarésche Schranke bedarf keiner Verschiarfung. Das wich-
tige Verhiltnis w?/27 k®pmin néhert sich in der Hiillfliche der Gleichge-
wichtsfiguren der Einheit.

Zusammenfassung:

Es wird gezeigt, dall es oo™ Gleichgewichtsfiguren mit (n — 2) Form-
parametern gibt. Fiir die co® einparametrigen Gleichgewichtsfiguren ist
das streng individuelle Dichtegesetz eine stetige Funktion mit drei Kon-
stanten. Fiir die Bestimmung dieser Konstanten liegen drei Gleichungen
vor, und zwar eine Doppelgleichung fiir die Erdmasse sowie eine Be-
stimmungsgleichung fiir das Haupttrigheitsmoment C oder, besser, eine
hierzu streng proportionale Gleichung fiir die statische Abplattung. Hier-
aus kann die Identitit der heterogenen Figurenreihen (w, C) und (w, K)
erwiesen werden. Ein bestimmter Durchschnittswert der Abplattung der
inneren Niveaufldchen f4llt mit der Abplattung des homogenen Ausgangs-
ellipsoides der Reihe (w, K) zusammen. Die meisten der klassischen An-
nahmen fiir das Dichtegesetz erweisen sich in der Hiillfliche der Gleich-
gewichtsfiguren als gdnzlich unméglich. Hingegen pallt das Gesetz von
Lévy mit A = p = 2 vorziiglich. Gleichzeitig erfahrt damit die Hiillfliiche
der Gleichgewichtsfiguren, welche aus dem Maximum des Absolutbetrages
des Formparameters |f,| = 3a2/2 definiert wurde, eine einwandfreie Be-
statigung. Die «Sphiiroide der grofiten Massenkonzentration» fallen je-
weils mit einer duBeren Niveaufliche des mit einer gréfleren Winkel-
geschwindigkeit rotierenden Massenpunktes zusammen. Die Poincaré-
sche Schranke w? < 27 k? ppmin bedarf keiner Verschiarfung; das Verhilt-
nis w?/27 k? pmin néhert sich in der Hiillfliche der Einheit.

Summary:

It is shown that oo™ equilibrium figures with (n—2) form-parameters
exist. The strictly individual density-law of the o« figures with one form-
parameter is a continuous function with three constants. For the deter-
mination of these constants three equations are at hand: one dual equation
for the earth’s mass as well as an equation for the principal moment of
inertia C, or better a strictly proportional equation for the static flatten-
ing. It follows that the series of inhomogeneous figures (w, C) and (w, K)
are identical and that a certain average value of the flattenings of the
inner level surfaces coincides with the flattening of the homogeneous
original ellipsoid of the series (w, K). Most of the classical assumptions
for the density-law prove to be impossible in the envelope of the equi-
librium figures. On the other hand the law of Lévy with A = u = 2 seems
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to fit excellently. Simultaneously the envelope of the equipotential sur-
faces, defined by the maximum of the absolute value of the form-para-
meter [f4i = 3a%/2, is verified beyond question. The ““spheroids of greatest
mass-concentration’ coincide with the outer level surfaces of the mass-
point, which rotates with greater angular velocity. Poincaré’s barrier
w? < 27 k?ppin needs no improvement; in the envelope the ratio
w?/ 27 k®pyin approaches unity.

Optimale Dimensionierung von Planplattenmikrometern

Von E. Jdnich, Heerbrugg

Die Parallelversetzung e eines Lichtstrahls, der durch eine plan-
parallele Glasplatte hindurchgeht, ist abhéingig vom Einfallswinkel « des
Strahls, der Brechzahl n des Glases und der Dicke d der Glasplatte.

Abb. 1

Aus Abb. 1 erhilt man e = d (sin &« — cos « tang f) oder, wenn 8
unter Verwendung des Brechungsgesetzes n = sin «/sin 8 durch n und «
ausgedriickt wird,

COS o
e=dsina (1 — — o (1)
( ‘\/nz*-sinaoc)

L4t man die Plattendicke d zunehmen, so wird der Einfallswinkel ¢,
der auch als Kippwinkel der Planplatte aufgefalt werden kann, bei kon-
stanter Parallelversetzung e immer kleiner, so dall man statt (1)

e——-dsina(l—l) (2)

n

setzen kann. Da jedoch der Klammerausdruck von (1) bei wieder zuneh-
mendem o ebenfalls zunimmt, hat man in (2) zum Ausgleich statt des
Sinus den Tangens des Kippwinkels gesetzt, womit eine sehr brauchbare
Niherungsgleichung fiir die Praxis gefunden worden war:

1
e =dtang a (1 _E) (3)
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