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Zur Frage des Dichtegesetzes
der einparametrigen heterogenen Gleichgewichtsfiguren

Von K. Ledersteger, Wien

Die bisherigen Untersuchungen der aus dem Helmertschen Ansatz
für das Rotations-Niveausphäroid vierten Ranges

k2E
U.

/

K 8 D „ co2l3 ~]

— P2 (cos ») + — — P4 (cos 0) + ^_ sin2 fl (1)

hervorgehenden Näherungen für die sphäroidischen Gleichgewichtsfiguren
haben zu dem Schluß geführt, daß alle diese oo3-Näherungsfiguren ihr

streng individuelles Dichtegesetz besitzen, das heißt, daß jeder dieser
Figuren mit der freien Oberfläche S (a, a, f) eine und nur eine
Massenanordnung im hydrostatischen Gleichgewicht entspricht, und zwar nur
für eine ganz bestimmte Rotationsgeschwindigkeit. Da es nämlich zu
jedem System Stokesscher Elemente E, co, S (a, a, f) verschiedene
Stokessche Konstanten gibt, darunter die beiden Massefunktionen K
und D, welche für alle möglichen zugehörigen Massenanordnungen
Integralinvariante sind, andererseits aber durch (E, w, K, D) eindeutig eine
heterogene oder homogene Gleichgewichtsfigur bestimmt ist, gibt es zu
jedem System Stokesscher Elemente, sofern in Anbetracht des bedingten
Charakters der Parameter überhaupt eine physikalisch sinnvolle Lösung
möglich ist, unter den sonstigen unendlich vielen Massenanordnungen
nur eine Massenanordnung im Gleichgewicht, derart, daß die gegebene
Fläche S entweder freie Oberfläche oder äußere Niveaufläche ist. Ein
zweiter Beweis für die Eindeutigkeit des Dichtegesetzes ergibt sich aus
dem klassischen Ergebnis, demzufolge für Gleichgewichtsfiguren auch
die Trägheitsmomente selbst - und nicht bloß deren Differenz - wenigstens

mit sehr guter Annäherung Stokessche Konstanten sind. Dies ist
aber nur dann mit der eigentlich selbstverständlichen Tatsache in
Einklang zu bringen, daß die Trägheitsmomente sehr wesentlich von der
Massenkonfiguration abhängen, wenn sich bei den Gleichgewichtsfiguren

die Trägheitsmomente zwar als Funktionen der Stokesschen
Elemente darstellen lassen, welche aber nicht mehr den Sinn von
Integralinvarianten für unendlich viele Massenanordnungen haben, die es gar
nicht gibt1.

Wenn nun die späteren Ausführungen für die Näherungen mit dem
Potentialausdruck (1) ein sehr einfaches, stetiges Dichtegesetz liefern, so

zwingt dies im Verein mit der Eindeutigkeit des Dichtegesetzes zu der
logischen Folgerung, daß diese Figuren noch lange nicht die Gesamtheit
aller Gleichgewichtsfiguren darstellen. Denn sonst bliebe kein Raum für
die sicherlich möglichen unstetigen Dichteverteilungen. Man braucht
dabei noch gar nicht an den wirklichen Erdkörper zu denken, der zumin-

1 K. Ledersteger, Die Stokesschen Konstanten und die Trägheitsmomente
einer Gleichgewichtsfigur. Ost. ZfV, 1959, S. 97-114.
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dest in seiner Kruste offensichtlich beträchtliche Abweichungen vom
hydrostatischen Gleichgewicht aufweist. Wir müssen daher nochmals die
Frage nach der Mannigfaltigkeit der überhaupt möglichen Gleichgewichtsfiguren

aufgreifen, wobei zu betonen ist, daß diese selbstverständlich als
völlig exakte Figuren und nicht bloß als Näherungen zu betrachten sind.

Wir gehen von den sukzessiven Näherungen der Potentialentwicklung
der Gleichgewichtsfiguren aus und finden die erste Näherung, wenn

wir in (1) bereits die Massefunktion 4.O., das heißt den Koeffizienten D
der zonalen Kugelfunktion P4, unterdrücken. Es resultiert als Sphäroid
zweiten Ranges das Brunssche Niveausphäroid von Rotationsform U2.
Wollte man auf dieses das bekannte Helmertsche System von acht
Gleichungen anwenden, so hat letzteres wegen des Ausfalls des Parameters
8 D/a* nur mehr zwölf Parameter, also für die vorgegeben gedachte
Erdmasse nur mehr oo3 Lösungen, und ein einfacher Analogieschluß
zeigt, daß wir es mit den oo2 homogenen MacLaurinschen Ellipsoiden
mitsamt ihren äußeren Niveauflächen zu tun haben. Führen wir aber in
das Gleichungssystem den für alle homogenen Ellipsoïde gültigen Wert
für die statische Abplattung

ein, so liefert dies

K/a2 — (2a — a2) (2)
o

tu2a3 4 1

~a+-a\ (3)
k2E 5 5

was besagt, daß sich die transformierte MacLaurinsche Bedingung
bereits in den Gliedern 4.0. falsch ergibt; dies ist gar nicht verwunderlich,
weil ja im Näherungspotential U2 gleichfalls ein Parameter 4.0. (8 0)
unterdrückt wurde. Der Fehler der Lösung kommt am klarsten darin
zum Ausdruck, daß sie auf einen positiven Formparameter / führt, was
physikalisch sinnlos ist. Wir müssen bei dieser Näherung demnach
konsequenterweise sämtliche Parameter 4.0., 8, j84 und /, unterdrücken, dürfen

also die abgeleiteten Gleichungen ebenfalls nur bis einschließlich der
Glieder 2.0. entwickeln. Mit /J4 und / entfallen aber zwei Gleichungen, so
daß nur sechs Gleichungen mit insgesamt zehn Parametern vorliegen,
welche für die gegebene Masse tatsächlich oo3 Lösungen besitzen, eben
in der entsprechenden Näherung die oo2 MacLaurinschen Ellipsoïde mit
ihren äußeren Niveauflächen. Jedes Ellipsoid S (a, a) ist, wie wir wissen,
für eine bestimmte Rotationsgeschwindigkeit streng eine homogene
Gleichgewichtsfigur, auf der vorliegenden Näherungsstufe aber gleichzeitig

für unendlich viele andere Werte von a> äußere Niveaufläche anderer

homogener Ellipsoide.
Die Verallgemeinerung ist nun recht einfach. Im Potentialausdruck

(1) für Ut, in welchem wir die Massefunktion 4.0. statt mit D besser mit
Di bezeichnen, sind alle höheren Massefunktionen Dß, D8 vernachlässigt.

Es wäre somit sinnlos, die Helmertschen Gleichungen über die
vierte Ordnung hinaus zu entwickeln, das heißt in der Formel für die
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theoretische Schwere einen Koeffizienten ße und in der Differenz der
Radienvektoren von Sphäroid und achsengleichem Rotationsellipsoid

(' — ») ^[/4sin22? + ...] (4)

neben dem ersten Formparameter 4.0. (/ /4) etwa einen Parameter 6.0.
(/6) mitzunehmen. Die oo4 Lösungen des Helmertschen Systems für die
gegebene Masse E umfassen die oo3 überhaupt möglichen zweiten
Näherungen S (a, a, ft) der viel größeren Mannigfaltigkeit aller Gleichgewichts-
flguren, deren jede gleichzeitig auch äußere Niveaufläche von unendlich
vielen anderen dieser «Näherungsfiguren» ist.

Geht man zu einem Niveausphäroid sechsten Ranges C7« über,
erweitert also (1) um die zonale Kugelfunktion Pe, so tritt eine
Massefunktion Ds hinzu, und man muß die Formeln bis einschließlich der
Glieder 6.0. entwickeln, wodurch die zusätzlichen Parameter ße und /,
und zwei weitere Gleichungen auftreten. Man wird also zehn Gleichungen
für sechzehn Parameter und damit für die gegebene Masse co5 Lösungen
erhalten, nämlich œ4 dritte Näherungen S (a, a, fi, /6) mitsamt ihren
äußeren Niveauflächen. So kann man zu immer höheren Näherungen
fortschreiten.

Wenn wir aber von Gleichgewichtsfiguren sprechen, so denken wir
an völlig strenge Lösungen des geschlossenen oder des vollständig
entwickelten Potentialausdruckes. So werden für ganz bestimmte Werte der
Massefunktionen K, Dt, De... in aller Strenge die co2 homogenen,
MacLaurinschen Ellipsoïde als die «nullparametrigen» Gleichgewichtsfiguren
S (a, a) resultieren. Die nächste Stufe stellen die co3 «einparametrigen»
Gleichgewichtsfiguren S (a, a, /4) dar, wie sie bisher in ihren zweiten
Näherungen mit dem Potentialausdruck (1) allein untersucht wurden2.
Es folgen die oo4 «zweiparametrigen» Gleichgewichtsfiguren S (a, a, /4,
/6), welche natürlich die vorhergehenden mit einschließen usf.

So gesehen, wird die strenge Eindeutigkeit des jeweiligen
Dichtegesetzes unmittelbar evident. Denn zu jeder Figur, etwa zu einer
bestimmten zweiparametrigen Figur S (a, a, /4, /6), gehören außer einer
bestimmten Rotationsgeschwindigkeit nicht nur bestimmte Werte für die
Massenfunktionen K, Dt und D6, sondern auch für alle bei der dritten
Näherung Uß vernachlässigten weiteren Massefunktionen D8, D10...
Wählt man ein beliebiges System Stokesscher Elemente E, co, S (a, a, ft,
/e), so sind dafür alle diese Massefunktionen Stokessche Konstante, das
heißt Integralinvarianten für sämtliche mögliche Massenkonfigurationen
von E im Innenraum von S, unter denen sich, wenn überhaupt, so nur
eine Massenanordnung im hydrostatischen Gleichgewicht befindet, die
durch (E, co, K, Dt, D6... streng definiert ist und die sich aus C76 mit
(E, co, K, Dt, De) eindeutig als dritte Näherung ergibt, wenn es gelingt,

2 K. Ledersteger, Die heterogenen sphäroidischen Gleichgewichtsfiguren und
das Normalsphäroid der Erde. Geofisica pura e applicata, Bd. 44, S. 1-19, Milano
1959.
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dem zugehörigen Gleichungssystem die fehlende Gleichgewichtsbedingung
in irgendeiner Form als elfte Gleichung anzuschließen. Variert

man ca, so erhält man im Innern von S eine lineare Reihe von
Gleichgewichtsfiguren, und wir dürfen in Analogie zu den früheren Untersuchungen3

schließen, daß diese Reihe mit einer einparametrigen Figur von
maximaler Rotationsgeschwindigkeit beginnt und in jener Gleichgewichtsfigur

mit minimalem w endet, für welche die gegebene Fläche S zur freien
Oberfläche wird. Die eigenartige Wechselbeziehung zwischen den
Näherungen und den strengen Gleichgewichtsfiguren wirft aber noch mancherlei

Fragen auf. Denn während zum Beispiel für eine zweiparametrige
Figur alle höheren Formparameter /8, /10... streng Null sind, gilt dies
nicht für die Massefunktionen Ds, D10..., welche in den dritten
Näherungen (U6) bloß vernachlässigt sind.

Nachdem somit die strenge Eindeutigkeit der Dichteverteilung in
jeder exakten Gleichgewichtsfigur hinreichend geklärt ist, erhebt sich die
Frage, ob sich die Dichtegesetze für jede beliebige Anzahl von
Formparametern fi ebenso in einem einheitlichen Ausdruck zusammenfassen
lassen, wie dies bekanntlich für die homogenen Ellipsoïde oder
«nullparametrigen Gleichgewichtsfiguren» der Fall ist. Hier weist das
allgemeine Dichtegesetz p const eine Konstante (später allgemein als mittlere

Dichte pm bezeichnet) auf, die für alle volumgleichen Ellipsoide
denselben Wert besitzt. Es scheint daher die Annahme sehr naheliegend, daß
sich das Dichtegesetz der einparametrigen Gleichgewichtsfiguren, das die
Dichte der inneren Niveauflächen in Funktion ihrer Äquatorradien
darstellt: pt f (ai), in einen Ausdruck mit zwei Konstanten zusammenfassen

läßt.
Zur Ableitung des Dichtegesetzes dürfen wir mit hinreichender

Annäherung die Niveauflächen der sphäroidischen Gleichgewichtsflguren
als Ellipsoide betrachten. Um die Bedingungen für das Dichtegesetz
aufzustellen, gehen wir sodann von den elementaren Massefunktionen für
das homogene Ellipsoid aus. Bezeichnet man die Äquator- und die Pol-

4
achse des Ellipsoides mit a und c, so ist bekanntlich das Volumen — tt a2c,

so daß sich für die mittlere Dichte die einfache Beziehung ergibt:

4 4
E — ir a2c pm —- tt a3 (1 — a) pm, (5)

worin a und a die freie Oberfläche bestimmen. Setzt man nun für das

Dichtegesetz zunächst ganz allgemein an:

(TP Pmax/ 1 — 1. (6)

unter x den Äquatorradius einer inneren Niveaufläche verstanden, so

ergibt sich für den heterogenen Körper unmittelbar
3 Siehe Fußnote 2.
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4 rr pmax,/«.-«,$ x2 dx

4 tt pmax (1 — a2) (5 a)

0

wobei 52 einen durch die Gleichung definierten Mittelwert der inneren
Abplattungen darstellt, der kleiner als die Abplattung a der Oberfläche
ist, weil die Abplattung nach innen, also mit abnehmendem x, ständig
abnimmt. Aus der Gleichsetzung der beiden Gleichungen (5) folgt bereits
die Bedingung für die mittlere Dichte:

1 —q
1 — a2

Pmax

Pm \m x2 dx, (7)

0

in welcher die linke Seite < 1 ist, während das Verhältnis n (pmax -

pm) > 1 ist.
Für das Trägheitsmoment C des homogenen Ellipsoides findet man

leicht
C pj (x2 + y2) dr pj p2 dr; dr 2prr dp dz,

Ell
also: Po c

> i ps dp dz 4-rrp i j p3 dp dz 4-np IC 2-n p i p3 dp dz 47TO

Ell 0 0

P 4
3 dp dz 4-np J -j- dz.

dz

Po
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Nun folgt aus der Ellipsengleichung
a2

Po2 =-r(c2 — z2)
c2

und daher
c

2ff""C 7TO —- I [c4 — 2 c2z2 + z4] dz —- 7rpa4c — £ a2 (8)„4i 15 5

0

Für das äquatoriale Trägheitsmoment

A=B =p C^-~- + Z21 dr i C + p fz2dr

£ZZ BH
findet man mit

dr p02 w dz

leicht
c

i z2dr 2tt j z2p„2 dz 2tt -^- | z2 (c2 — z2) dz

EZZ 0 0

und damit
4 4

A JS — -rrp a*c + — irp a2(?. (9)
15 15

Für die Differenz der Trägheitsmomente und damit für die erste
Massefunktion K folgt:

(C — A) KE — rrp [a^c — a*<?]
15

und weiter mit c a (1 — a)

KE =~-TTp a*c (2a — a2) — ttP a5 (2 a — 3a2 + a3) (10)
15 15

oder auch

A=A(2a_a2). (11)
a2 5

Aus

(C — A) =~ Ea2 (2a —a2); C — Ea2
5 5

folgt aber die dynamische Abplattung

d=^lA=a-^. (Ha)
C 2

V '
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Aus (8) und (6) ergibt sich jetzt für das Trägheitsmoment C eines
heterogenen Körpers

a a

C =y7rpmax J (1 — a)/I—\xidx= — 7t(1—ä4)pmax I / I—I X*dx

0 0

a

2 M-7ra3(l — a)Pm¦]t^-^/'(t)-*
0

oder
a

C — Ea2
5 (^r)"lf'(lK

Ganz analog folgt aus (10)

KE =^TT (2a, — 3û42 + 5.») ftnax I / |-| x1 dxÖ.3) pmax j / tì
oder

--(*-;-.+*)^4/'(7)-«
0

und nach entsprechender Erweiterung

^«-H^K/'®* dar. (13)

0

In den beiden letzten Gleichungen ist natürlich d4 abermals ein
bestimmter Durchschnittswert der Abplattungen der innern Niveauflächen.
Zu seiner Bestimmung bilden wir aus (12) und (13) für den gemeinsamen
Faktor

a
C K

• dx — g (14)(4=*K/'tö- ^Ea2 1(25, —S42)a2
0 5 5

oder
C — A

C 2
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Die dynamische Abplattung unserer heterogenen Gleichgewichtsfigur ist
also dieselbe wie die eines homogenen Ellipsoides (vgl. IIa) mit der
Abplattung üh ä4. Da wir selbstverständlich die Rotationsgeschwindigkeit

festhalten müssen, handelt es sich um die homogene Ausgangsfigur
der linearen Reihe (w, d). Damit ist offensichtlich eine wichtige Bedingung

für die Abplattungsfunktion im Innern der heterogenen
Gleichgewichtsfigur gegeben: die aus der Präzessionskonstante mit großer Sicherheit

ableitbare dynamische Abplattung definiert den Durchschnittswert
d4 der inneren Niveauflächen des Normalsphäroides.

Andererseits ist in (13) die Größe g mit der statischen Abplattung
(11) desselben homogenen Ellipsoides multipliziert, das ja auch durch cu

und üh eindeutig gegeben ist. Von diesem Ellipsoid geht demnach sicherlich

auch eine Figurenreihe (co, K/A aus. Gehört unsere heterogene Figur
dieser Reihe an, ist also K K^, so muß

g=(ah:a)2 (16)

sein, wobei natürlich a^ die Äquatorachse des homogenen Ellipsoides
bedeutet. Damit folgt aber aus (12)

C =jEa2(ah: a)2 — E ah2 C,„

womit bereits die Identität der Reihen (co, C) (co, K) (co, d) bewiesen
ist. Denn die Annahme, daß die gegebene Figur nicht der Reihe (co, Kf,)
angehört, führt auf einen Widerspruch. Wohl bleibt die dynamische
Abplattung auch unverändert, wenn sich die Trägheitsmomente proportional

ändern. Dies ist aber nur bei einer völlig gleichförmigen Expansion
oder Kontraktion der Figur möglich und daher unweigerlich mit einer
Änderung der Rotationsgeschwindigkeit verbunden, wie bereits die
homogenen Ellipsoide zeigen.

Man sieht demnach, daß sich die beiden Gleichungen (12) und (13)
nur um einen Proportionalitätsfaktor unterscheiden. Weil die statische
Abplattung zu den Stokesschen Konstanten gehört, gebührt sogar der
Gleichung (13) der Vorzug vor (12), während man bisher allgemein
angenommen hat, daß die Differenz der Trägheitsmomente keine brauchbare
Bedingung für die Aufstellung des Dichtegesetzes liefert, weil die
Abplattungsfunktion unbekannt ist. Die Gleichungen (7) und (13) liefern
also die beiden notwendigen Bedingungen für das gesuchte Dichtegesetz
mit zwei Konstanten:

a

[1 —a + a8] =n-l | /f^j x2 dx(t)"
0

a

ffl\l-a + iü-n±ff\ß*dz
0

(17)
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Hierin ist a > â4 > ö2 und ö4 gleich der Abplattung des homogenen Aus-
gangsellipsoides der Reihe (co, K) (co, C).

Wir prüfen zunächst einige der konventionellen Dichtegesetze am
Normalsphäroid. Für dieses haben wir in der in Fußnote 2 zitierten
Arbeit gefunden:

a 33 6267.10-8; a/, 32 7773.10"8; a 6 378 290 m;
ah 5 819 382 m; also (ah: a)2 0,832 425; pm 5.5168.

Die linke Seite der ersten Gleichung läßt sich wegen der Unkenntnis von
ä2 bloß schätzen und wurde mit 0,9995 angenommen. Somit gilt für das
Normalsphäroid

a

-4/'(ï)0.99950 n —- f |— | a:2 dx

0

0.83236 n^Çf (!)*
a

l r,\
dx.

(17a)

0

Der erste Versuch sei mit dem am häufigsten verwendeten Dichtegesetz
von Roche* gemacht:

¦[-imP Pmax 1 — * I-1 (18)

Die Konstante k liegt dabei zwischen den Grenzen 0 und 1. k 0 liefert
das homogene Ellipsoid und 7c 1 für x a die Oberflächendichte Null.
Man findet:

a

0.99950 n — j (x2 — k — J dx nil k)
a3J \ a2) \ 5 /

0

a

0.83236 n — | (x4 — k — I dx n fl k)

0

und daraus

/c 0,77916; n 1,87698; pmax 10,355; pmin 2,287. (18a)

4 E. Roche, Note sur la loi de densité à l'intérieur de la terre. Acad. Paris,
C. R. 39, 1854.
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Eine Verallgemeinerung des Dichtegesetzes von Roche nahm R.
Lipschitz6 vor, indem er den Exponenten 2 durch À ersetzte:

HfflPmax 1 —* - • (19)

Es sei dieses Gesetz noch für A 1 und 3 ausgewertet:

A 1 : k 0,80109; n 2,50382; pmax 13,813; pmin 2,747
A 3 0,80160 1,66806 9,202 1,826

(19 a)

Noch allgemeiner ist der Ansatz von M. Levy6

P=Pmaxfl — *(-VT (20)l'-'ffl
Wir wollen ihn versuchsweise für A 1,2,3 und p 2 auswerten:

A 1

A =2
A =3

k 0,56415; n 2.89938; pn,ax 15,995; pmin 3,038

0,50990 2,00082 11,038 2,651 (20a)
0,51196 1,73704 9,583 2,282

Eine Entscheidung über die Wahl der Parameter A und p könnte aus
dem Normalsphäroid allein nur auf Grund der resultierenden
Oberflächendichte

Pmin Pmax (1 — kf n (1 — kf ¦ pm

getroffen werden, da diese ja nicht als Bedingung mit angesetzt wurde.
Demnach hätte die Wahl A 2, p =2 die größte Wahrscheinlichkeit für
sich. Doch könnte dies natürlich auch Zufall sein, solange dieser Ansatz
nicht auch theoretisch fundiert ist. Wollte man beliebige andere einpara-
metrige Gleichgewichtsfiguren heranziehen, so bieten diese überhaupt
keine Kontrollmöglichkeit, weil wir über ihre zu erwartende Oberflächendichte

nichts aussagen können. Anders verhält sich dies mit den
Grenzfiguren in der Hüllfläche, für die sich die Oberflächendichte sehr klein
ergeben muß, und zwar so, daß die Poincarésche Ungleichung erfüllt ist.
Die Grenzfiguren ermöglichen dann gleichzeitig den gewünschten
Einblick in das mögliche Maß der Massenkonzentration.

Die Massenkonzentration hat sich am klarsten in der Figurenreihe
(co, a) gezeigt. Wir wählen jene Reihe, der das Normalsphäroid der Erde
angehört: co2 5,317496.10"9, a 6 378 290 m. In dieser Reihe ergab

5 R. Lipschitz, Versuch zur Herleitung eines Gesetzes, das die Dichtigkeit für
die Schichten im Innern der Erde annähernd darstellt, aus den gegebenen Beobachtungen.

Journal für reine und angewandte Mathematik, Bd. 62 und 63, 1863.
6 M. Lévy, Sur la théorie de la terre. Acad. Paris, C. R., Bd. 106, 1888.
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sich die Grenzfigur mit folgenden hier allein interessierenden
Bestimmungsstücken7:

a 23 8036.10"8; e 34 7128.10"8; K/a2 4 3555.10"8

K 17 719,3.1010; Pm 5,5113.

Für das homogene Ausgangsellipsoid der zugehörigen Reihe (co, K) finden
wir

ah 18 9081.IO"8; aft 4 842 548 m; (ah: a)2 0,576420

und erhalten damit aus (17) die beiden Bedingungsgleichungen

a

0,99930 -W
0,57614 -V'ß

x2 dx

x* dx,

(17b)

0

in denen der linksstehende Wert der ersten Gleichung wieder auf Schätzung

beruht, jedoch höchstens um ein bis zwei Einheiten der vierten
Dezimale falsch sein kann.

Die Auswertung auf Grund des Ansatzes (19) liefert mit A 1,2,3
stets unmögliche Werte von k > 1. Dennoch sei das Ergebnis ganz
gegeben:

A =1
A =2
A =3

k 1,05620; n 4,80780; pmax 26,497; pmin —1,489
1,14957 3,22089 17,751 —2,655 (19b)
1,25756 2,69194 14,836 —3,821

Mit diesen gänzlich unmöglichen Resultaten sind die Dichtegesetze von
Roche und Lipschitz vollständig ad absurdum geführt. Hingegen liefert
der Ansatz von Levy, abermals für A 1,2,3 und p — 2 der Reihe nach:

A =1
A =2
A =3

k 0,90117; n 7,37431; pmax 40,642; pmin 0,397

0,96344 4,13486 22,788 0,030 (20b)
1,10120 3,29791 18,176 0,186

Wieder erweist sich die Lösung für A 2 und p 2 als sehr plausibel.
Die Oberflächendichte ergibt sich, wie es sein muß, sehr gering; außerdem

ist die Poincarésche Ungleichung erfüllt:

5,3.10 -9 _ co2 < 2 tt k2 pmin 12,6.10" (21)

7 K. Ledersteger, Zur Theorie des Normalsphäroides der Erde. Veröffentlichung
der Deutschen Geodätischen Kommission, Reihe A, Heft 36, München 1960.
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Es wäre natürlich sehr wünschenswert, das gefundene Dichtegesetz

P Pmax f1 — k (4)T (20b)

an weiteren Figuren zu erproben. Nun wissen wir nur beim
Normalsphäroid und bei den Grenzfiguren der Hüllfläche, welche Oberflächendichte

wir zu erwarten haben. Bei den Grenzfiguren erweist sich aber die
linke Seite der zweiten Gleichung (17 b) bis auf eine geringfügige Abhängigkeit

von der Rotationsgeschwindigkeit als konstant. Wegen des
maximalen Formparameters \ft\ =3 a2/2 erhalten wir für die Figuren der
Hüllfläche die Bedingung

3 5 25
-2aa + Ta£-T6£2=0' (22)

welche auf die Wurzel

a =0,68573 e (22 a)

führt. Damit kann aber die Gleichung für die statische Abplattung

1 T 1 109 1

K/a2=J\2a-e-a2--ae + ^e^
leicht in

K/a2 0,12382 e + 0,47574 e2 (23)

transformiert werden. Andererseits gilt für jedes MacLaurinsche Ellipsoid

1 .„ 4 138

5 x " " " 5 175

und daher

K/ah2 0,50000 eh — 1,54464 eh2. (24)

Durch Division von (23) durch (24) findet man für die Grenzfigur jeder
Reihe (co, K)

• [1 + 3,84219 e + 3,08928 eh] 1 — a + —e + a/, — -| sh\

oder
(ah : af 0,24764 [1 + 4,65646 e + 2,83928 eh]

und weiter

(aft: a)2 0,57217 [1 + 1,86258 e + 1,13571 eh].

Ili



Dies ist gemäß (17) noch mit
(1 — a + ah) (1 — 0,68573 e + 1,25 eh)

zu multiplizieren, womit folgt
(ah: a)2 (1 — a + ah) 0,57217 (1 + 1,17685 e + 2,38571 eh).

Hierin darf mit derselben Genauigkeit e durch (co2a3/k2E) ersetzt und
dementsprechend Sh e (ah : a)3 0,43280 s geschrieben werden und
wir erhalten schließlich

(ah: a)2 (1 — a + ah) 0,57217 (l + 2,20939 -^jjl (25)

In der Form (20 b) enthält das Dichtegesetz nur zwei Konstanten,
nämlich pmax und k. In Wahrheit liegen aber selbstverständlich drei
Konstanten vor, weil noch die mittlere Dichte pm mit der Bestimmungsgleichung

(5) hinzutritt. Es kommt dies auch darin zum Ausdruck, daß
in (17) an Stelle von pmax das Verhältnis n (pmax : pm) auftritt.
Schreibt man also

HföTp =npm 1 — kl — I (20c)

so erkennt man deutlich die strenge Individualität der Dichtefunktion:
jede der oo3 einparametrigen Gleichgewichtsfiguren hat ihr eigenes, durch
ein Wertetripel n, pm und k gekennzeichnetes Dichtegesetz. Für die
homogenen Ellipsoide ist n =1 und k 0, während in der Hüllfläche n
etwas über 4 und k knapp unter 1 liegt. Dies entspricht der Tatsache, daß
in der Reihe (co, a) die beiden Massefunktionen K und D} ungefähr auf
ein Viertel ihres homogenen Ausgangswertes absinken. Klarerweise
bedarf das gefundene Dichtegesetz noch einer streng physikalischen
Begründung. Die vorliegende Untersuchung konnte wohl viele der bisherigen

Ansätze für das Dichtegesetz widerlegen und für künftige
Untersuchungen die Richtung weisen; die definitive Entscheidung bleibt aber
noch offen.

So darf zum Beispiel nicht verschwiegen werden, daß auch der
Ansatz von Ökinghaus8 nicht ganz hoffnungslos erscheint. Mit

TT'
P Pmax e V a / (26)

findet man nämlich für das Normalsphäroid

k 1,3395; n 1,82118; pmax 10,047; pmln pmaxe~ 2,606

und für dieselbe Grenzfigur wie oben

k 3,9433; n 4,01852; pmax 22,169; pmin 0,430.

8 E. Ökinghaus, Eine Hypothese über das Gesetz der Dichtigkeit im Innern
der Erde. Archiv für Mathematik und Physik, Bd. 13, 1895, und Akademie Wien,
Bd. 107, 1898.
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Man sieht deutlich, daß zumindest die Oberflächendichte in der Grenzfigur

nicht genügend klein ist. Auch ist der Ansatz wegen der langsamen
Konvergenz der Reihenentwicklung praktisch recht unbequem.

Abschließend sei noch die Poincarésche Schranke (21) transformiert.
Durch einfache Multiplikation folgt mit (20 c) -

0,2(13
^

1
9 „3

3 1 Proin 3 n(l-k)2<— Atto? pmin • (27)
k*E E Hmla 2 (1 — a) pm 2 (1 — a)

y '

Es ist nun bekannt, daß für die homogenen Ellipsoide der Quotient
co2j2-TTk2p nicht nur kleiner als 1, sondern vielmehr < 0,224666 ist, daß
also die Poincarésche Schranke dort weit unterboten wird. Man zog
hieraus vielfach den Schluß, daß diese Schranke eine wesentliche
Verschärfung erfordert. Dies erweist sich jetzt aber als Trugschluß. Denn
zum Beispiel in der Figurenreihe (a, a), die man auch als «Vertikalreihe »

im Koordinatensystem mit den Achsen a, a, ft bezeichnen darf9, wächst
mit zunehmender Entfernung vom homogenen Ausgangsellipsoid ständig
co, während umgekehrt dank dem Fortschritte in der Massenkonzentration

gleichzeitig die Oberflächendichte ständig abnimmt. Mit der Annäherung

an die Hüllfläche nähert sich das Verhältnis co2/2tt k2pmin der
Einheit. Wählt man die Achse und die Abplattung des Normalsphäroides,

so ist in der entsprechenden Vertikalreihe pm mit sehr großer
Annäherung konstant 5,5168. Für das Ausgangsellipsoid ist co2 4,143.IO-9,
also co2j2Trk2pi— 0,0018. In der Grenzfigur ist demgegenüber co2

7,503.10-9, und es muß daher pmin > 0,018 sein. Während das Quadrat
der Rotationsgeschwindigkeit nur auf das l,81fache des Ausgangswertes
anwächst, sinkt die Oberflächendichte auf den 306. Teil herab.

Wenn auch die Frage des Dichtegesetzes der einparametrigen
Gleichgewichtsfiguren noch nicht definitiv geklärt ist, so haben die vorstehenden
Betrachtungen doch fünf wesentliche Erkenntnisse gezeitigt:

1. Das Dichtegesetz der einparametrigen Gleichgewichtsfiguren ist
eine stetige Funktion mit den drei Konstanten pm, n und k, womit die
strenge Individualität des Dichtegesetzes nochmals erwiesen ist.

2. Die Identität der Reihen (co, K) (co, C) (co, d) konnte exakter
nachgewiesen werden.

3. Ein bestimmter Durchschnittswert (ö4) der Abplattung der inneren

Niveauflächen fällt mit der Abplattung des. homogenen Ausgangs-
ellipsoides der Reihe (co, K) zusammen, womit ein wichtiger Anhaltspunkt
für die Abplattungsfunktion gegeben ist, der über die Clairautsche
Differentialgleichung hinausgeht.

4. Die früher gefundene Hüllfläche der Gleichgewichtsfiguren hat
eine klare Bestätigung erfahren. Die Sphäroide der größten Massenkonzentration

sind jene heterogenen Gleichgewichtsfiguren, deren freie
Oberfläche stets durch den maximalen Absolutbetrag des Formparameters
| fi\ — 3a2/2 ausgezeichnet ist, also gleichzeitig eine Niveaufläche des mit

Siehe Fußnote 2.
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einer größeren Winkelgeschwindigkeit rotierenden Massenpunktes
darstellt. Es sei nochmals betont, daß man früher diese äußeren Niveauflächen

des rotierenden Massenpunktes in irreführender Weise mangels
besserer Einsicht selbst als Sphäroide der größten Massenkonzentration
bezeichnet hat.

5. Die Poincarésche Schranke bedarf keiner Verschärfung. Das wichtige

Verhältnis coa/27r/c2pmin nähert sich in der Hüllfläche der
Gleichgewichtsfiguren der Einheit.

Zusammenfassung:

Es wird gezeigt, daß es con Gleichgewichtsfiguren mit (n — 2)
Formparametern gibt. Für die oo3 einparametrigen Gleichgewichtsfiguren ist
das streng individuelle Dichtegesetz eine stetige Funktion mit drei
Konstanten. Für die Bestimmung dieser Konstanten liegen drei Gleichungen
vor, und zwar eine Doppelgleichung für die Erdmasse sowie eine
Bestimmungsgleichung für das Hauptträgheitsmoment C oder, besser, eine
hierzu streng proportionale Gleichung für die statische Abplattung. Hieraus

kann die Identität der heterogenen Figurenreihen (co, C) und (co, K)
erwiesen werden. Ein bestimmter Durchschnittswert der Abplattung der
inneren Niveauflächen fällt mit der Abplattung des homogenen Ausgangs-
ellipsoides der Reihe (co, K) zusammen. Die meisten der klassischen
Annahmen für das Dichtegesetz erweisen sich in der Hüllfläche der
Gleichgewichtsfiguren als gänzlich unmöglich. Hingegen paßt das Gesetz von
Levy mit A p 2 vorzüglich. Gleichzeitig erfährt damit die Hüllfläche
der Gleichgewichtsfiguren, welche aus dem Maximum des Absolutbetrages
des Formparameters | /4| 3a2/2 definiert wurde, eine einwandfreie
Bestätigung. Die «Sphäroide der größten Massenkonzentration» fallen
jeweils mit einer äußeren Niveaufläche des mit einer größeren
Winkelgeschwindigkeit rotierenden Massenpunktes zusammen. Die Poincarésche

Schranke co2 < 2tt k2 pmjn bedarf keiner Verschärfung; das Verhältnis

co2/2tt k2 pmjn nähert sich in der Hüllfläche der Einheit.

Summary:

It is shown that oon equilibrium figures with (n-2) form-parameters
exist. The strictly individual density-law of the a.3 figures with one form-
parameter is a continuous function with three constants. For the
determination of these constants three equations are at hand: one dual equation
for the earth's mass as well as an equation for the principal moment of
inertia C, or better a strictly proportional equation for the static flattening.

It follows that the series of inhomogeneous figures (co, C) and (co, K)
are identical and that a certain average value of the flattenings of the
inner level surfaces coincides with the flattening of the homogeneous
original ellipsoid of the series (co, K). Most of the classical assumptions
for the density-law prove to be impossible in the envelope of the
equilibrium figures. On the other hand the law of Levy with A p 2 seems
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to fit excellently. Simultaneously the envelope of the equipotential
surfaces, defined by the maximum of the absolute value of the form-parameter

| /4| 3o2/2, is verified beyond question. The "spheroids of greatest
mass-concentration" coincide with the outer level surfaces of the mass-
point, which rotates with greater angular velocity. Poincaré's barrier
co2 < 2Trk2pmin needs no improvement; in the envelope the ratio
co2/2irk2pmin approaches unity.

Optimale Dimensionierung von Planplattenmikrometern

Von E. Jänich, Heerbrugg

Die Parallelversetzung e eines Lichtstrahls, der durch eine
planparallele Glasplatte hindurchgeht, ist abhängig vom Einfallswinkel a des

Strahls, der Brechzahl n des Glases und der Dicke d der Glasplatte.

*r ^n

Abb. 1

Aus Abb. 1 erhält man e d (sin <x — cos a tang ß) oder, wenn ß
unter Verwendung des Brechungsgesetzes n sin oc/sin ß durch n und <x

ausgedrückt wird,
cosa

(1)d sin oc 1

Vn2 — sin2 c

Läßt man die Plattendicke d zunehmen, so wird der Einfallswinkel a,
der auch als Kippwinkel der Planplatte aufgefaßt werden kann, bei
konstanter Parallelversetzung e immer kleiner, so daß man statt (1)

e dsina (l (2)¦¦K)
setzen kann. Da jedoch der Klammerausdruck von (1) bei wieder
zunehmendem a ebenfalls zunimmt, hat man in (2) zum Ausgleich statt des
Sinus den Tangens des Kippwinkels gesetzt, womit eine sehr brauchbare
Näherungsgleichung für die Praxis gefunden worden war:

«Me =dtanga |1— — (3)
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