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Le procédé indiqué ci-dessus pour l'orientation relative est basé sur
la mesure des parallaxes aux points 5 et 6 seulement, après qu'on a
éliminé la parallaxe aux points 1, 2, 3 et 4 facilement par les éléments
/c', /c", tp' et tp". La mesure des parallaxes se fait par estimation en la
comparant au diamètre apparent de l'index repère.

On constate aussi qu'il n'est pas nécessaire d'introduire dans l'appareil
les corrections calculées pour /c' et k", parce qu'il est toujours possible

d'éliminer ces parallaxes par une observation directe dans le restituteur.

A propos d'une forme générale de compensation

par la méthode des moindres carrés

Par A. Ansermet

Remarques préliminaires

Jusqu'à une date assez récente, on considérait comme forme générale
de compensation ([1], p. 209) celle basée sur le système ci-après d'équations

que nous appellerons initiales:

Ea \av] y Fa (x, y, z + wa 0

Eb [bv] y Fb (x, y, z. + wb 0

E, [rv] y Fr (x, y, z + wr 0

où les fonctions F sont linéaires

aa y [aL] wa; ft0 + [ftL] wb r0 + [rL] wr (2)

sont les équations dites aux discordances.

Le système d'équations normales résulte de la condition:

[pvv] — 2 ka.Ea — 2 kb.Eb — 2 kr.Er minimum (3)

(voir n° juin 1959, p. 216-224).

Il y a (r + m) équations normales, m inconnues x, y, z tandis
que les L; sont les éléments mesurés, (L,- + y,) les valeurs compensées,
(Li y ft) des valeurs provisoires et p; les poids ((' =1,2 n). Les ka,
kb kr sont les corrélatifs. Posons de plus L'i Li + /;.

Dans le numéro de juin dernier a donc paru un article fort intéressant
avec lequel cette très courte note n'est pas sans une certaine corrélation.
L'auteur donne au problème de l'extension en liant encore les inconnues
par des relations telles que:

Axx y Aty y A3z y A0 0 l
(4)

Bxx y B2y y B3z y B0 0 J
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mais au lieu d'éliminer au préalable deux des inconnues dans ce groupe
(4), ce qui paraîtrait judicieux à certains égards, il développe une solution
non fractionnée, donc d'un seul jet (aus einem Guß) et calcule le poids
d'une fonction contenant les (L; + »;) et les x, y, z ainsi que l'erreur
quadratique moyenne de cette fonction.

Cette solution est au premier abord bien séduisante, et il convient
de féliciter l'auteur, mais il n'est pas certain cependant qu'une telle façon
de traiter le problème donnera toujours entière satisfaction aux praticiens
pour la raison suivante: au moment de l'établissement des systèmes
d'équations (1), (2), (3) le calculateur ignore parfois qu'il sera mis en
présence, ultérieurement, de nouvelles conditions (4). Il effectue donc la
compensation avant l'adjonction de ces équations ([4], p. 107). Il est
alors amené à fractionner le calcul.

C'est le but de ces lignes de rechercher une solution, qui ne sera pas
nécessairement la seule, en traitant deux cas concrets mais fictifs et de
caractère plutôt didactique. Il n'est pas facile de trouver dans la pratique
courante un exemple revêtant vraiment cette forme très générale de
compensation.

Faisons donc momentanément abstraction des équations de
condition (4), lesquelles peuvent résulter de mesures de contrôle effectuées
bien après le calcul de la compensation basée sur les systèmes (1) à (3)
et déterminons le poids d'une fonction:

F (x, y, z (Lx y vx), (L., + v2) ou L; L't — fi
à cet effet posons:

x x0 y dx, y y0 + dy, z z0 + dz

où les valeurs provisoires x0, y0, z0 sont arbitraires moyennant cette
réserve que les accroissements dx, dy, dz, nouvelles inconnues, soient
suffisamment petits. En d'autres termes ces x0, y0, z0 sont des éléments
auxiliaires du calcul. Dans la solution par calcul non fractionné la loi de Gauss
est appliquée aux x0, y0, z„ en leur attribuant les erreurs quadratiques
moyennes ± mx, ± my, ± mz. Ce groupe de termes a du reste été éliminé
par la suite (p. 221, n° de juin1).

En ce qui concerne la fonction, on peut envisager deux cas :

1° les inconnues x, y, z ou plutôt dx, dy, dz sont éliminées par la
méthode usuelle des coefficients indéterminés.

2° Si cette élimination n'a pas lieu, on retrouve une forme connue, mais,
en général, il y a corrélation entre les inconnues, ce qui exclut
l'application de la loi de Gauss.

1 Cette application de la loi de Gauss aux x0, y0, z0 a certainement surpris les
lecteurs.

Dieser grundlegende Fehler ist leider bei der Durchsicht durch den Redaktor
nicht bemerkt worden. - Herrn Prof. Ansermet gebührt Dank für die
Richtigstellung.
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Dans les deux éventualités, la fonction F sera finalement exprimée
linéairement au moyen des L ou plutôt des / ([1], p. 154-156) en passant
par les k et les w.

La première phase de la compensation étant terminée on se trouve
en présence, ultérieurement, des conditions (4).

La seconde phase comporte le fractionnement du calcul des poids
qui nous intéresse spécialement ici: de plus, aux corrections dx, dy, dz, il
faut ajouter des surcorrections (dx), (dy), (dz). Enfin aux »; viendront
s'ajouter des v'p.

Vi Vi y v'i et [pVV] [pvv] + [pv'v']

Le problème n'est donc plus nouveau dès que les équations initiales
ont été transformées en vue d'isoler mutuellement les vx, v2, vn
(formes (5') et (8')).

Deux exemples le montreront, où les w sont exprimés en fonction
des /.

Première application

1. Considérons le système conçu pour faciliter l'élimination des v:

— 1.693 dx y 1.907 dy vx + vt v3 f y4 + v6

— 1.693 dx y 0.493 dy vx + »2 >- v3 + y4

— 0.386 dx y 0.400 dy vx + v2 + v3 + y5

— 0.186 dx y 1.800 dy vx + v2 + vt + y5

— 0.986 dx y 0.200 dy vx + v3 + y4 + p5

+ 0.014 dx + 1.200 dy + «2 + v3 + w„ + y5

f Wl

o6 + U>3

*>6 + h>4

»e + «'s
f« + Wb

(5)

avec les poids ci-après:

Pi Pz 1; Ps P4 1.5; p5 Pe 1-25

On obtient sans peine un nouveau système de forme générale:

— / + v adx + bdy où a2 + ft2 1

que l'on rencontre en telemetrie; il y a 12 coefficients

a b

[pab] 0; Q12 =0
[pad] [pbb] 3.75

1

1 — 1.00 0.00 Pi 1

2 0.00 + 1.00 Pi 1

3 — 0.8 — 0.6 Pa 1.5
4 — 0.6 + 0.8 Pi 1.5
5 + 0.707 + 0.707 Ps 1.25
6 + 0.707 — 0.707 Pe 1.25

(5')

Qu Q.2
3.75
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--2

' /

T-X

avec le contrôle

[p:P] 2x -3.75

1.5 1.25
2 x (- 2 x

3.75 3.75

où les P sont les poids amplifiés grâce à la compensation.

Les côtés télémétrés sont deux à deux mutuellement égaux et
perpendiculaires.

Seconde phase des calculs. Elle résulte de la mesure, à titre de
contrôle, d'une 7e distance MO que l'on admet exempte d'erreur (trait
double sur la figure) d'où la condition nouvelle:

0,6 (dx) — 0,8 (dy) 0 (6)

relation facile à interpréter géométriquement. L'ellipse d'erreur pour le
point calculé devient complètement aplatie.

Poids de fonctions. Considérons comme fonctions les six distances
1-0, 2-0, 6-0 déterminées en tenant compte de (6) ; soient P' les

poids nouveaux

1 1

_ [(Am2 3i7_32i)P' P [A (A)] l J v (7)

où les A sont les coefficients dans (6) et les /' les 12 coefficients a et ft pris
deux à deux.

(Ax) AXQ1X y A2QX2

d'où les résultats:
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1
1

3?75~- 0.096 x 1 0.171

2
1

§775"-0.171 xl 0.096

Calcul
3

1.5
3775 ~-0.246 xl.5 0.031

des (p:P')
4

1.5

3/75
~-0.021 xl.5 0.369

5
1.25

3/75
~-0.261 xl.25 0.007

6
1.25

Tsa~-0.0053x1.25 0.326

ip'-n 1.000

La répartition des poids est bouleversée par l'équation de condition
(6) ce que l'on pouvait présumer. Les valeurs 0.007 et 0.326 ci-dessus par
exemple prouvent: la première que le poids P' y relatif est très grand
tandis que pour la seconde le poids a été très peu influencé par la relation

(6). Il suffit d'examiner la figure pour interpréter ces résultats.

Seconde application

2. Cet exemple présente quelques particularités d'où son intérêt.
Ici encore les données numériques sont simples, et le groupe des équations
initiales reçoit une structure permettant l'élimination rapide des vx, v2, v3

On a encore n r

u>x y [v]\— vx + dx + 1.00 dy + 2.00 dz

w2 y [v] — v2 + dx y 0.057 dy + 0.667 dz

»3 y [v] —v3 + 1.816 dx + 1.4714 dy + 0.667 dz

u>i y [v] —vi + 0.184 dx + 1.4714 dy + 0.667 dz

"'s + [v] — i>6 + 0.00 dx + 1.00 dy + 1.00 dz

w, + [v] — v3 + dx + 0.00 dy + 1.00 dz

Wr +[»]—», + dx y 1.00 dy + 0.00 dz

(8)

système transformable sous la forme générale

— f + v adx y bdy + cdz où a2 + ft2 + c2 1 (8')

rentrant encore dans le domaine de la telemetrie et donnant lieu à 21
coefficients:
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avec le contrôle:

1 0 0 - 1 Pi 1

2 0 f 0.943 + 0.333 P2 1

3 — 0.816 — 0.4714 + 0.333 Ps 1

4 + 0.816 — 0.4714 + 0.333 P4 1

5 + 1 0 0 Ps 1.5
6 0 1 1 0 Pe 1.5
7 0 0 f 1 P7 1.5

[pab] [pac] [pbc] — 0

Qu Ö13 Q.3 0

[paa] [pbb] [pcc] 17/6
Ou Q.* Q33 6/17

6 6
[p:P] =4x- + 3x1,5 —

les P étant les poids des sept distances après compensation.

Seconde phase des calculs. Résulte de nouvelles mesures de distances
effectuées ultérieurement et admises exemptes d'erreurs d'où les
conditions:

0.577 (dx) + 0.577 (dy) + 0.577 (dz) + A0 0

0.408 (dx) — 0.408 (dy) + 0.816 (dz) + B0 0
(9)

où les inconnues sont encore les surcorrections à ajouter aux corrections
déterminées au cours de la première phase des calculs. Les coefficients
des inconnues dans les équations (9) sont Ax, A2, A3 respectivement Bx,
B2, B3.

(Ax) (A2) (A3) + 0.577—- et
17

{Bd (B2) 0.408-^ ; (B3) + 0.816-t67

[A(A)] 6/17 [B(B)]; [A(B)] [B(A)]

[{A)fV

([S], p. 317-321)

et
1

P7

1

P
[{B)f'V

[A(A)] [B(B)]

où les /' sont les 21 coefficients, groupés trois par trois, permettant de
calculer les poids de sept fonctions, c'est-à-dire les poids P' des sept
distances en tenant compte des équations (9). Ce même calcul peut être
étendu à d'autres fonctions sans difficulté.
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1 6/17-- 2/17 — 4/17 0.00
2 6/17 --3,26/17) —0.076/17) =2.664/17)

Calcul 3 6/17--1,82/17 6/17 — 3.62/17 4/17=0.36/17 8/1
des 4 6/17-- 0.92/17 j — 0.104/17 j =4.976/17]
(p:P') 5 9/17-- 3/17 — 1.5/17 4.5/17

6 9/17-- 3/17 — 1.5/17 4.5/17
7 9/17-- 3/17 — 6/17 0.00

Sommes: 3 — 1 — 1 1 [p:P']

Ces deux valeurs 0,00 (P' oo), sous chiffres 1 et 7, peuvent au
premier abord surprendre, mais l'interprétation géométrique des équations

(9) est immédiate. Dans un domaine spatial très restreint, on a le
point provisoire (x0, y0, z0), puis les points calculés (première et deuxième
phases), et on voit que les équations (9) sont celles de portions très petites
de plans dont la droite d'intersection est parallèle au plan x — y. Ces

équations (9) suffisent pour fixer la coordonnée z indépendamment de la
compensation (deuxième phase).

Cas où n < r. Admettons par exemple n 6 et r — 7.

Dans une des sept équations, on peut, en s'aidant des six autres
équations, éliminer les »; on est ramené au cas où n 6 et r =6 avec,
en plus, une équation de condition entre les inconnues.

Cas où n > r. Emettons l'hypothèse: n 8 et r 7.

On assimilera alors une des valeurs » à une inconnue ([2], p. 286).
En résumé, il faut reconnaître l'intérêt que présente la solution publiée en
juin dernier (p. 216-224). Toutefois, si le calculateur est mis en présence
initialement et simultanément des systèmes d'équations (1) à (4), il faut
prendre aussi en considération la méthode consistant à éliminer autant
d'inconnues qu'il y a d'équations (4) ce qui ramène le problème à une
forme connue. Dans de nombreux cas la solution par fractionnement du
calcul est également à considérer. Le but de ces lignes était de formuler
quelques suggestions et nullement d'épuiser le sujet.
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