Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 57 (1959)

Heft: 11

Artikel: La formation de l'image plastique pour un couple indépendant d'après

la méthode du Prof. A. Brandenberger

Autor: Cladas, C.

DOI: https://doi.org/10.5169/seals-215262

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

als um die Schaffung und Erhaltung eines wirtschaftlich und geistig freien Bauernstandes. Wir alle sind aufgerufen, an der Lösung dieser volkswirtschaftlich, soziologisch und staatspolitisch gleich bedeutsamen Aufgabe mitzuwirken. Jeder an seinem Platze.

La formation de l'image plastique pour un couple indépendant d'après la méthode du Prof. A. Brandenberger

Par Dr. C. Cladas

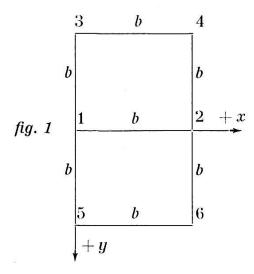
Je donne dans ce qui suit une application de la méthode d'orientation relative d'après le Prof. A. Brandenberger pour un couple indépendant de prises de vues aux appareils de restitution Wild A 7, A 8 et A 9. Des exemples, basés sur les chambres Wild RC 5a, RC 7a, RC 8 et RC 9 munies des objectives Aviotar et Aviogon, sont donnés. Par cette méthode on obtient des formules pour les corrections des éléments d'orientation relative facilement applicable dans la pratique.

1º Calcul des erreurs des éléments d'orientation relative

La formule bien connue de la parallaxe verticale en fonction des erreurs d'orientation pour les cas des levers nadiraux et un couple indépendant est prise en considération. Si on utilise pour l'orientation relative les éléments κ' , κ'' , φ' , φ'' , et ω'' , on a d'après le Prof. W. K. Bachmann¹:

$$p_{m{
u}'}=-p_{m{
u}''}=f\left(1+rac{y^2}{z^2}
ight)d\omega''-rac{f\left(x-b
ight)y}{z^2}darphi''+rac{fxy}{z^2}darphi'$$
 $+rac{f\left(x-b
ight)}{z}d\kappa''-rac{fx}{z}d\kappa'.$

Pour les 6 points charactéristiques d'un modèle horizontal (fig. 1), on trouve:


$$p_{\nu_1}'' = -f d\omega'' + \frac{f b}{z} d\kappa''$$

$$p_{\nu_2}'' = -f d\omega'' + \frac{f b}{z} d\kappa'$$

$$p_{\nu_3}'' = -f \left(1 + \frac{b^2}{z^2}\right) d\omega'' + \frac{f b^2}{z^2} d\varphi'' + \frac{f b}{z} d\kappa''$$

¹ Théorie des erreurs de l'orientation relative, Lausanne 1943.

$$p_{
u_4}" = -f\left(1 + rac{b^2}{z^2}\right) d\omega" + rac{fb^2}{z^2} d\varphi' + rac{fb}{z} d\kappa'$$
 $p_{
u_5}" = -f\left(1 + rac{b^2}{z^2}\right) d\omega" - rac{fb^2}{z^2} d\varphi" + rac{fb}{z} d\kappa''$
 $p_{
u_6}" = -f\left(1 + rac{b^2}{z^2}\right) d\omega" - rac{fb^2}{z^2} d\varphi' + rac{fb}{z} d\kappa''$

Points	\boldsymbol{x}	y
1	0	0
2	+b	0
3	0	b
4	+b	— <i>b</i>
5	0	+b
6	+b	+b

De ces formules on calcule les erreurs des éléments d'orientation relative d'après la méthode des moindres carrés. Les cœfficients des inconnues sont pris de la table 1.

Table 1

darphi'	darphi''	$d\omega''$	dκ'	$d\kappa''$	pν
0	0	+ 1	0	$-\frac{fb}{z}$	$p_{ u_1}{''}$
0	0	+ 1	$-\frac{fb}{z}$	0	$p_{oldsymbol{ u_2}''}$
0	$\frac{fb^2}{z^2}$	$\boxed{+ f \left(1 + \frac{b^2}{z^2}\right)}$	0	$-\frac{fb}{z}$	p_{ν_3} "
$-\frac{fb^2}{z^2}$	0	$\boxed{ + f\left(1 + \frac{b^2}{z^2}\right)}$	$\frac{fb}{z}$	0	$p_{V_4}"$
0	$+\frac{fb^2}{z^2}$	$\boxed{ + f \left(1 + \frac{b^2}{z^2}\right)}$	0	$\frac{fb}{z}$	$p_{\nu_5}{''}$
$+\frac{fb^2}{z^2}$	0	$\boxed{ + f \left(1 + \frac{b^2}{z^2}\right)}$	$-\frac{fb}{z}$	0	$p_{oldsymbol{ u}_6}''$

La table 2 donne les cœfficients des équations normales.

Table 2

$2 f^2 \frac{b^4}{z^4}$	0	0	0	0	$\int \frac{b^2}{z^2} (p \nu_6'' p \nu_4'')$
0	$2 f^2 \frac{b^4}{z^4}$	0	0	0	$f \frac{b^2}{z^2} (p \nu_5'' - p \nu_3'')$
0	0	$2f^2 + 4f^2\left(1 + rac{b^2}{z^2} ight)^2$	$-\frac{2f^2b}{z}\left(1+\frac{b^2}{z^2}\right)$ $-f^2\frac{b}{z}$	$\frac{2f^2b}{z}\left(1+\frac{b^2}{z^2}\right)$ $-\cdot f^2\frac{b}{z}$	$f(p u_1'' + p u_2'') + \\ + f\left(1 + \frac{b^2}{z^2}\right)(p u_3'' + \\ + p u_4'' + p u_5'' + p u_6'')$
0	0	$-\frac{2f^2b}{z}\left(1+\frac{b^2}{z^2}\right)$ $-f^2\frac{b}{z}$	$3 f^2 \frac{b^2}{z^2}$	0	$-\int \frac{b}{z} \left(p u_2'' + p u_4'' + p u_6''\right)$
0	0	$-rac{2\int^2 b}{z}\left(1+rac{b^2}{z^2} ight) \ -\int^2 rac{b}{z}$	0	$3f^2 \frac{b^2}{z^2}$	$-f\frac{b}{z}(p u_1"+p u_3"+p u_5")$

Les équations normales sont:

$$2 f^2 \frac{b^4}{z^4} d\varphi' = f \frac{b^2}{z^2} (p \nu_4'' - p \nu_6'')$$
 (1a)

$$2f^{2}\frac{b^{4}}{z^{4}}d\varphi'' = f\frac{b^{2}}{z^{2}}(p\nu_{3}'' - p\nu_{5}'')$$
 (1b)

$$\left[2f^{2} + 4f^{2}\left(1 + \frac{b^{2}}{z^{2}}\right)^{2}\right]d\omega'' - \left[2f^{2}\frac{b}{z}\left(1 + \frac{b^{2}}{z^{2}}\right) + f^{2}\frac{b}{z}\right]d\kappa' - \left[2f^{2}\frac{b}{z}\left(1 + \frac{b^{2}}{z^{2}}\right) + f^{2}\frac{b}{z}\right]d\kappa'' = -f\left(p\nu_{1}'' + p\nu_{2}''\right) - \left(1c\right) - f\left(1 + \frac{b^{2}}{z^{2}}\right)\left(p\nu_{3}'' + p\nu_{4}'' + p\nu_{5}'' + p\nu_{6}''\right)$$

$$-\left[2f^{2}\frac{b}{z}\left(1+\frac{b^{2}}{z^{2}}\right)+f^{2}\frac{b}{z}\right]d\omega''+3f^{2}\frac{b^{2}}{z^{2}}d\kappa'=f\frac{b}{z}(p\nu_{2}''+p\nu_{4}''+p\nu_{6}'')$$
(1d)

$$-\left[2f^{2}\frac{b}{z}\left(1+\frac{b^{2}}{z^{2}}\right)+f^{2}\frac{b}{z}\right]d\omega''+3f^{2}\frac{b^{2}}{z^{2}}d\kappa''=f\frac{b}{z}(p\nu_{1}''+p\nu_{3}''+p\nu_{5}'')$$
(1e)

Des équations (1a) et (1b) on trouve:

$$darphi' = rac{p {
u_4}'' - p {
u_6}''}{2 \, f \, rac{b^2}{z^2}} \ darphi'' = rac{p {
u_3}'' - p {
u_5}''}{2 \, f \, rac{b^2}{z^2}}$$

Du système des équations (1c), (1d) et (1e) on obtient:

$$d\omega'' = \frac{2(p\nu_1'' + p\nu_2'') - p\nu_3'' - p\nu_4'' - p\nu_5'' - p\nu_6''}{4f\frac{b^2}{z^2}}$$

$$d\kappa' = \frac{2p\nu_2''\left(1 + \frac{b^2}{z^2}\right) - p\nu_4'' - p\nu_6''}{2f\frac{b^3}{z^3}}$$

$$d\kappa'' = \frac{2p\nu_1''\left(1 + \frac{b^2}{z^2}\right) - p\nu_3'' - p\nu_5''}{2f\frac{b^3}{z^3}}$$

Si on élimine les parallaxes dans les points 1, 2, 3 et 4 avec κ' , κ'' , φ' et φ'' , on peut écrire:

$$p\nu_1'' = p\nu_2'' = p\nu_3'' = p\nu_4'' = 0$$

et par conséquence les formules précédentes se réduisent à:

$$darphi' = rac{-p
u_6''}{2frac{b^2}{z^2}}, \qquad darphi'' = rac{-p
u_5''}{2frac{b^2}{z^2}}$$
 $d\omega'' = rac{-p
u_5'' - p
u_6''}{4frac{b^2}{z^2}}$
 $d\kappa' = rac{-p
u_6''}{2frac{b^3}{z^3}}, \qquad d\kappa'' = rac{-p
u_5''}{2frac{b^3}{z^3}}$

De ces formules on calcule les corrections aux éléments d'orientation relative en utilisant le diamètre de l'index repère de l'appareil de restitution comme unité pour la mesure des parallaxes.

Les formules finales sont:

$$darphi'^{
m c} = rac{-a \cdot p
u_6}{2 f rac{b^2}{z^2}} 6366^{
m c} \qquad darphi''^{
m c} = rac{-a \cdot p
u_5}{2 f rac{b^2}{z^2}} 6366^{
m c}$$

$$d\omega''^{
m c} = rac{-a \cdot (p
u_5 + p
u_6)}{4 f rac{b^2}{z^2}} 6366^{
m c}$$

$$d\kappa'^{
m c} = rac{-a \cdot p
u_6}{2 f rac{b^3}{z^3}} 6366^{
m c} \qquad d\kappa''^{
m c} = rac{-a \cdot p
u_5}{2 f rac{b^3}{z^3}} 6366^{
m c}$$

a = le diamètre apparent de l'index repère.

2º Application à l'autographe Wild A7

Le diamètre apparent de l'index repère est 0,042 mm. Le recouvrement longitudinal de prises de vues soit 60%.

Pour les diverses chambres photographiques Wild on trouvera:

$\begin{array}{ c c c c c c c c }\hline b & 2f \frac{b^2}{z^2} & 2f \frac{b^3}{z^3} & 4f \frac{b^2}{z^2} & d\varphi'^c & d\varphi''^c & d\omega''^c & d\kappa''^c \\ \hline & a) \text{ Chambre grand-angulaire RC 7a, } f & = 100 \text{ mm, } \\ & \text{format des clichés } 140 \times 140 \text{ mm} \\ \hline & 056 & 62,7 & 35,1 & 125,4 & 4,3 p\nu_6{}^c & 4,3 p\nu_5{}^c & 2,1 (p\nu_5+p\nu_6){}^c & 7,6 p\nu_6{}^c & 7,6 p\nu_5{}^c \\ \hline & b) \text{ Chambres grand-angulaires RC 5a et RC 8, } f & = 115 \text{ mm, } \\ & \text{format des clichés } 180 \times 180 \text{ mm} \\ \hline & 0,627 & 90,4 & 56,7 & 180,8 & 3,0 p\nu_6{}^c & 3,0 p\nu_5{}^c & 1,5 (p\nu_6+p\nu_5){}^c & 4,7 p\nu_6{}^c & 4,7 p\nu_5{}^c \\ \hline & c) \text{ Chambres grand-angulaires RC 5a et RC 8, } f & = 152 \text{ mm, } \\ & \text{format des clichés } 229 \times 229 \text{ mm} \\ \hline & 0,6 & 109 & 65,7 & 219 & 2,5 p\nu_6{}^c & 2,5 p\nu_5{}^c & 1,2 (p\nu_5+p\nu_6){}^c & 4,1 p\nu_6{}^c & 4,1 p\nu_5{}^c \\ \hline & d) \text{ Chambre à angle normal RC 7a, } f & = 170 \text{ mm, } \\ & \text{format des clichés } 140 \times 140 \text{ mm} \\ \hline & 0,33 & 37,0 & 12,2 & 74,1 & 7,2 p\nu_6{}^c & 7,2 p\nu_5{}^c & 3,6 (p\nu_5+p\nu_6){}^c & 21,9 p\nu_6{}^c & 21,9 p\nu_5{}^c \\ \hline & e) \text{ Chambres à angle normal RC 5a et RC 8, } f & = 210 \text{ mm, } \\ & \text{format des clichés } 180 \times 180 \text{ mm} \\ \hline & 0,343 & 49,4 & 16,9 & 98,8 & 5,4 p\nu_6{}^c & 5,4 p\nu_5{}^c & 2,7 (p\nu_5+p\nu_6){}^c & 15,8 p\nu_6{}^c & 15,8 p\nu_6{}^c \\ \hline \end{array}$	1									
format des clichés 140×140 mm $\begin{array}{ c c c c c c c c c c c }\hline & format des clichés & 140 \times 140 \text{ mm} \\ \hline 056 & 62,7 & 35,1 & 125,4 & 4,3 p\nu_6{}^c & 4,3 p\nu_5{}^c & 2,1 (p\nu_5 + p\nu_6){}^c & 7,6 p\nu_6{}^c & 7,6 p\nu_5{}^c \\ \hline b) Chambres grand-angulaires RC 5a et RC 8, f = 115 mm, format des clichés 180 \times 180 mm \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{b}{z}$	$2f\frac{b^2}{z^2}$	$2f\frac{b^3}{z^3}$	$4f\frac{b^2}{z^2}$	$darphi'^{ m c}$	dφ″c	dω″ ^c	dκ'c	dκ″c	
b) Chambres grand-angulaires RC 5a et RC 8, $f = 115$ mm, format des clichés 180×180 mm 0,627 90,4 56,7 180,8 3,0 $p\nu_6{}^c$ 3,0 $p\nu_5{}^c$ 1,5 $(p\nu_6 + p\nu_5){}^c$ 4,7 $p\nu_6{}^c$ 4,7 $p\nu_5{}^c$ c) Chambres grand-angulaires RC 5a et RC 8, $f = 152$ mm, format des clichés 229×229 mm 0,6 109 65,7 219 2,5 $p\nu_6{}^c$ 2,5 $p\nu_5{}^c$ 1,2 $(p\nu_5 + p\nu_6){}^c$ 4,1 $p\nu_6{}^c$ 4,1 $p\nu_5{}^c$ d) Chambre à angle normal RC 7a, $f = 170$ mm, format des clichés 140×140 mm 0,33 37,0 12,2 74,1 7,2 $p\nu_6{}^c$ 7,2 $p\nu_5{}^c$ 3,6 $(p\nu_5 + p\nu_6){}^c$ 21,9 $p\nu_6{}^c$ 21,9 $p\nu_5{}^c$ e) Chambres à angle normal RC 5a et RC 8, $f = 210$ mm, format des clichés 180×180 mm		,								
format des clichés 180×180 mm $0,627 90,4 56,7 180,8 3,0 pv_6^c 3,0 pv_5^c 1,5 (pv_6 + pv_5)^c 4,7 pv_6^c 4,7 pv_5^c$ c) Chambres grand-angulaires RC 5a et RC 8, $f = 152$ mm, format des clichés 229×229 mm $0,6 109 65,7 219 2,5 pv_6^c 2,5 pv_5^c 1,2 (pv_5 + pv_6)^c 4,1 pv_6^c 4,1 pv_5^c$ d) Chambre à angle normal RC 7a, $f = 170$ mm, format des clichés 140×140 mm $0,33 37,0 12,2 74,1 7,2 pv_6^c 7,2 pv_5^c 3,6 (pv_5 + pv_6)^c 21,9 pv_6^c 21,9 pv_5^c$ e) Chambres à angle normal RC 5a et RC 8, $f = 210$ mm, format des clichés 180×180 mm	056	62,7	35,1	125,4	$4,3 p_{\nu_6}$ ^c	$4,3 p_{\nu_5}^{\ c}$	$2,1 (p_{\nu_5} + p_{\nu_6})^c$	$7,6 p_{\nu_6}$ e	$7,6 p_{\nu_5^{\mathbf{c}}}$	
c) Chambres grand-angulaires RC 5a et RC 8, $f = 152$ mm, format des clichés 229×229 mm 0,6 109 65,7 219 2,5 $p\nu_6{}^c$ 2,5 $p\nu_5{}^c$ 1,2 $(p\nu_5 + p\nu_6){}^c$ 4,1 $p\nu_6{}^c$ 4,1 $p\nu_5{}^c$ d) Chambre à angle normal RC 7a, $f = 170$ mm, format des clichés 140×140 mm 0,33 37,0 12,2 74,1 7,2 $p\nu_6{}^c$ 7,2 $p\nu_5{}^c$ 3,6 $(p\nu_5 + p\nu_6){}^c$ 21,9 $p\nu_6{}^c$ 21,9 $p\nu_5{}^c$ e) Chambres à angle normal RC 5a et RC 8, $f = 210$ mm, format des clichés 180×180 mm]									
format des clichés $229 \times 229 \text{ mm}$ 0,6 109 65,7 219 2,5 $p\nu_6^c$ 2,5 $p\nu_5^c$ 1,2 $(p\nu_5 + p\nu_6)^c$ 4,1 $p\nu_6^c$ 4,1 $p\nu_5^c$ d) Chambre à angle normal RC 7a, $f = 170 \text{ mm}$, format des clichés 140 × 140 mm 0,33 37,0 12,2 74,1 7,2 $p\nu_6^c$ 7,2 $p\nu_5^c$ 3,6 $(p\nu_5 + p\nu_6)^c$ 21,9 $p\nu_6^c$ 21,9 $p\nu_5^c$ e) Chambres à angle normal RC 5a et RC 8, $f = 210 \text{ mm}$, format des clichés 180 × 180 mm	0,627	90,4	56,7	180,8	$3,0 p_{\nu_6}^{c}$	$3,0 p_{\nu_5}^{\mathbf{c}}$	$1,5 (p_{\nu_6} + p_{\nu_5})^c$	$4,7 p_{\nu_6^{\mathbf{c}}}$	$4,7 p_{\nu_5^{\mathbf{c}}}$	
d) Chambre à angle normal RC 7a, $f = 170$ mm, format des clichés 140×140 mm 0,33 37,0 12,2 74,1 7,2 $p\nu_6$ c 7,2 $p\nu_5$ c 3,6 $(p\nu_5 + p\nu_6)$ c 21,9 $p\nu_6$ c 21,9 $p\nu_5$ c e) Chambres à angle normal RC 5a et RC 8, $f = 210$ mm, format des clichés 180×180 mm	, ,									
format des clichés 140×140 mm 0,33 37,0 12,2 74,1 7,2 $p\nu_6$ ^c 7,2 $p\nu_5$ ^c 3,6 $(p\nu_5 + p\nu_6)$ ^c 21,9 $p\nu_6$ ^c 21,9 $p\nu_5$ ^c e) Chambres à angle normal RC 5a et RC 8, $f=210$ mm, format des clichés 180×180 mm	0,6	109	65,7	219	$2,5p_{ u_6}{}^{ m c}$	$2,5 p_{\nu_5}^{c}$	1,2 $(pv_5 + pv_6)^c$	$4,1 p_{\nu_6^c}$	$4,1 p_{\nu_5}^{c}$	
e) Chambres à angle normal RC 5a et RC 8, $f=210$ mm, format des clichés 180×180 mm										
format des clichés 180 × 180 mm	0,33	37,0	12,2	74,1	$7,2p_{ u_6}$ c	$7,2p_{\nu_5}{}^{\mathrm{c}}$	$3,6 (pv_5 + pv_6)^c$	$21.9~p u_6^{ m c}$	21,9 pv5c	
$0,343 \mid 49,4 \mid 16,9 \mid 98,8 \mid 5,4 p_{\nu_6}^{\text{c}} \mid 5,4 p_{\nu_5}^{\text{c}} \mid 2,7 (p_{\nu_5} + p_{\nu_6})^{\text{c}} \mid 15,8 p_{\nu_6}^{\text{c}} \mid 15,8 p_{\nu_5}^{\text{c}} \mid 15,8$		The control of the co								
	0,343	49,4	16,9	98,8	$5,4 p_{\nu_6}^{\rm c}$	$5,4 pv_5^c$	$2,7 (p_{\nu_5} + p_{\nu_6})^c$	$15.8 pv_6^c$	15,8 pv5c	

3º Application au stéréorestituteur Wild A8

Le diamètre apparent de l'index repère est 0,069 mm. Le recouvrement longitudinal des prises de vues soit 60%.

Pour les diverses chambres photographiques Wild on trouvera:

b z	$2f\frac{b^2}{z^2}$	$2f \frac{b^3}{z^3}$	$4f \frac{b^2}{z^2}$	$darphi'^{ m c}$	$darphi''^{ m c}$	dω″ ^c	dκ' ^c	dκ″ ^c	
¥	a) Chambre grand-angulaire RC 7a, $f=100$ mm, format des clichés $140 imes 140$ mm								
0,56	62,7	35,1	125,4	$7,0~p_{ u_6}$ e	$7,0 p_{\nu_5}$ ^c	$3,5 (pv_5 + pv_6)^c$	$12,5 p_{\nu_6}^{c}$	$12.5~p_{oldsymbol{ u}_5}^{f c}$	
1	b) Chambres grand-angulaires RC 5a et RC 8, $f=115$ mm, format des clichés 180×180 mm								
0,627	90,4	56,7	180,8	$4,9 p_{\nu_6}^{c}$	$4,9 p_{\nu_5}^{c}$	$2,4 (pv_5 + pv_6)^c$	$7,7 p_{\nu_6^{\rm c}}$	$7,7 p_{\nu_5}^{\rm e}$	
	c) Chambres grand-angulaires RC 5a et RC 8, $f=152$ mm, format des clichés 229×229 mm								
0,6	109	65,7	219	$4,0 p_{\nu_6^{c}}$	$4,0~p_{\nu_5}$ e	$2,0 (p_{\nu_5} + p_{\nu_6})^c$	$6,7 p_{\nu_6^{c}}$	$6,7 p_{\nu_5^{c}}$	
	d) Chambre à angle normal RC7a, $f=170$ mm, format des clichés 140×140 mm								
0,33	37,0	12,2	74,1	11,9 $p_{\nu_6^c}$	11,9 pv5°	$5,9 (pv_5 + pv_6)^c$	$35,9 p \nu_6^{\rm c}$	35,9 pv5c	
	e) Chambres à angle normal RC 5a et RC 8, $f=210$ mm, format des clichés 180×180 mm								
0,343	49,4	16,9	98,8	$8,9 p_{\nu_6^{c}}$	$8,9 p_{\nu_5}$	$4,4 (p_{\nu_5} + p_{\nu_6})^c$	$26.0 p v_6^{ m c}$	$26.0 \ p_{\nu_5}{}^{ m c}$	

4º Application à l'autographe Wild A 9

Le diamètre apparent de l'index repère est 0,06 mm. Le recouvrement longitudinal des prises de vues soit 60%.

Chambre super-grand-angulaire Wild RC9, f=88 mm, format des clichés 229×229 mm.

$$\frac{b}{z} = 1,041$$

$$2f \frac{b^2}{z^2} = 190,7, \qquad 2f \frac{b^3}{z^3} = 198,5, \qquad 4f \frac{b^2}{z^2} = 381,4$$

$$d\varphi'^c = 2,0 \ p\nu_6{}^c \qquad d\varphi''^c = 2,0 \ p\nu_5{}^c \qquad d\omega''^c = 1,0 \ (p\nu_5 + p\nu_6)^c$$

$$d\kappa'^c = 1,9 \ p\nu_6{}^c \qquad d\kappa''^c = 1,9 \ p\nu_5{}^c$$

Le procédé indiqué ci-dessus pour l'orientation relative est basé sur la mesure des parallaxes aux points 5 et 6 seulement, après qu'on a éliminé la parallaxe aux points 1, 2, 3 et 4 facilement par les éléments κ' , κ'' , φ' et φ'' . La mesure des parallaxes se fait par estimation en la comparant au diamètre apparent de l'index repère.

On constate aussi qu'il n'est pas nécessaire d'introduire dans l'appareil les corrections calculées pour κ' et κ'' , parce qu'il est toujours possible d'éliminer ces parallaxes par une observation directe dans le restituteur.

A propos d'une forme générale de compensation par la méthode des moindres carrés

Par A. Ansermet

Remarques préliminaires

Jusqu'à une date assez récente, on considérait comme forme générale de compensation ([1], p. 209) celle basée sur le système ci-après d'équations que nous appellerons initiales:

$$E_{a} = [av] + F_{a}(x, y, z...) + w_{a} = 0$$

$$E_{b} = [bv] + F_{b}(x, y, z...) + w_{b} = 0$$

$$...$$

$$E_{r} = [rv] + F_{r}(x, y, z...) + w_{r} = 0$$
(1)

où les fonctions F sont linéaires

$$a_a + [aL] = w_a; b_0 + [bL] = w_b \dots r_0 + [rL] = w_r$$
 (2)

sont les équations dites aux discordances.

Le système d'équations normales résulte de la condition:

$$[pvv]$$
 — $2 k_a.E_a$ — $2 k_b.E_b...$ — $2 k_r.E_r$ = minimum (3) (voir n° juin 1959, p. 216–224).

Il y a (r+m) équations normales, m inconnues $x, y, z \ldots$ tandis que les L_i sont les éléments mesurés, $(L_i + v_i)$ les valeurs compensées, $(L_i + f_i)$ des valeurs provisoires et p_i les poids $(i = 1, 2, \ldots, n)$. Les k_a , $k_b \ldots k_r$ sont les corrélatifs. Posons de plus $L'_i = L_i + f_i$.

Dans le numéro de juin dernier a donc paru un article fort intéressant avec lequel cette très courte note n'est pas sans une certaine corrélation. L'auteur donne au problème de l'extension en liant encore les inconnues par des relations telles que: