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feldes der Erde. Nach meiner Auffassung würde die Verwendung des
metrischen Systems unter Ausschaltung des dynamischen Systems eine
Verarmung der Geodäsie bedeuten. Ich erinnere daran, daß nach der
Auffassung von H. Bruns die Geodäsie die Beschreibung des Schwerefeldes

der Erde bedeutet. Es ist nicht möglich, mit Hilfe der metrischen
Auffassung ein in sich geschlossenes Höhensystem aufzustellen. Die von
Herrn Jessen entwickelte Idee ist keine allgemeine Lösung.
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Normalsphäroid und Mveauellipsoid
Von K. Ledersteger, Wien

Unter dem Normalsphäroid der Erde versteht man bekanntlich die
Figur des vollkommenen hydrostatischen Gleichgewichtes der Erde oder
das künstliche Geoid und gleichzeitig die freie Oberfläche der regularisierten

Erdmasse. Seine hypothesenfreie Bestimmung stößt auf große
Schwierigkeiten, zumal das Gesetz, nach dem die Massen der Erdkruste
zur Erreichung des hydrostatischen Gleichgewichtes umgruppiert werden

müßten, das sogenannte «Regularisierungsgesetz», unbekannt ist.
Für jede gedachte Massenanordnung, für welche das künstliche Geoid
vom Potentialwert W0 des tatsächlichen Geoides äußere Niveaufläche
und gegebenenfalls auch Rand der Erdmasse wird, kann die in
Kugelkoordinaten oder in rotationssymmetrischen Ellipsoidkoordinaten
entwickelte Kräftefunktion formal in

W U + T W„ (1)

zerlegt werden, wobei die von der Länge unabhängigen Glieder bis
einschließlich der 4.0. das Rotations-Niveausphäroid 4. Ranges definieren.
Man erhält so in Kugelkoordinaten das Helmertsche Niveausphäroid:

k2E\ K co2l3
UKn= l-i (1 — 3 sin2 cp') -{ cos2 cp' +Ä l [ 2l2 Y ' 2 k2E Y

Dl 6 3
+ yi9 Js[n2T + 35

(2)

W0
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mit
1 / AyB

und in rotationssymmetrischen Ellipsoidkoordinaten:

UE k2E -arctg — + —(u2 + e2)
e \ u 3

öao(
e

)v20 —

(u2 + e2) I Pw (cos ff) + Ö4o I '-"-
wi0 Pi0 (cos &) W0.

(3)

In der ersten Formel bedeutet / den Radiusvektor des Niveausphäroides,
cp' die geozentrische Breite, E die Erdmasse, während A < B < C die
Hauptträgheitsmomente der umgruppierten Erdmasse sind. In der
zweiten Formel ist e die lineare Exzentrizität der konfokalen Koordi-
natenellipsoide mit dem laufenden Polarradius u und & die reduzierte
Poldistanz. Q20 und Q40 sind Legendresche Funktionen zweiter Art,
v20 und wi0 Konstante.

Die Beschränkung der beiden Kräftefunktionen U auf die A-freien
Glieder ist völlig gerechtfertigt, da das Normalsphäroid der Erde a priori
eine Rotationsfigur sein muß. Dies schließt aber bereits ein, daß die
«Restfunktion» T für die vollkommen regularisierte Erde verschwinden
muß oder, anders ausgedrückt, daß das Normalsphäroid zu jenen
künstlichen Geoiden gehören muß, die mit ihren eigenen Niveau-
sphäroiden zusammenfallen, wie dies F. Hopfner [1] formuliert hat.
Außerdem gibt es zu jedem Niveausphäroid U W0 ein achsengleiches
Rotationsellipsoid, und wir haben den Unterschied dieser beiden Flächen
näher ins Auge zu fassen.

Führt man bei Verwendung von Kugelkoordinaten den Parameter S

D/a* ein, wobei a natürlich den Äquatorradius des Niveausphäroides
bedeutet, so ist die Erhebung des Niveausphäroides über sein
achsengleiches Rotationsellipsoid durch

h a~
52 a2 — aß — 8 J sin2 2 cp' + Gl, (4)

gegeben. Sie erreicht ihr Maximum unter 45° Breite. In (4) ist a die
Abplattung und ß der Hauptkoeffizient der Formel für die normale
Schwere

y y.U + ß sin2 cp — ^4sin2 2cp\. (5)

Nun ist der fundamentale Parameter der Theorie der Gleichgewichts-
figuren, das Verhältnis Fliehkraft zur Schwere am Äquator, weitgehend
unabhängig von einem Fehler in der Achse a und in der Äquatorschwere

y0, so daß man mit den bekannten internationalen Näherungswerten

a 63783.104 cm; y0 978,049 cm sec"2 (6a)
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hierfür findet
w2a

y«
34678.10-7,

worin die 7. Dezimale als gesichert gelten darf, s ist ebenso wie o und
ß eine Größe 2.O., 8 und /J4 sind Größen 4.0. Führt man daher in den
Gliedern 4.0. von (4) die weiteren internationalen Näherungswerte

a 0,0033670; ß 0,0052 884 (6b)

ein, so resultiert für die maximale Erhebung des Niveausphäroides

hm =^(105.10-7—S).
4

(8)

Jedes Niveausphäroid, für das 8 +105.IO"7, fällt bis auf Größen 6.0.
mit seinem achsengleichen Rotationsellipsoid zusammen und darf
dementsprechend als «Niveauellipsoid» bezeichnet werden. Im allgemeinen
ist Uk eine Fläche 22.0., worauf K. Jung [2] aufmerksam gemacht hat.
Für 8=0 fällt Uk mit dem ßrwnsschen Niveausphäroid vom zweiten
Range zusammen, das eine Fläche 14.0. ist.

Etwas anders liegen die Verhältnisse bei den rotationssymmetrischen

Ellipsoidkoordinaten. Zunächst erkennt man aus (3) unmittelbar,
daß allgemein das Niveausphäroid Ue für wi0 0 mit dem entsprechenden

Niveausphäroid zweiten Ranges zusammenfällt, woraus sich bereits
eine gewisse Analogie zwischen wi0 und dem Parameter S des Helmert-
schen Niveausphäroides ergibt. In der Theorie identifiziert man aber
mit Vorteil die lineare Exzentrizität des Koordinatensystems mit der
Exzentrizität des Niveausphäroides (3), wodurch das achsengleiche
Rotationsellipsoid ein Koordinatenellipsoid (u c) wird, und man
findet mit K. Jung (Seite 547):

Vit, ö2 (c2 + e2)
12

ic
y40 V40 l )• (9)

In diesem Falle nimmt die Gleichung (3) des Niveausphäroides die
Gestalt an:

UE k2E-arctg! -J + — (u2 + e2) [1 — P20 (cos &)] +

Ö2o —
+

Qt
%
m<

,2 5 / ic\ I
_ (c2 + e2) — — Ö4o —j ">4o Pw (cos ff)

Ô40 — »40 ^40 (COS ff) Wo.

(3a)
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Ist jetzt abermals u>40 0, so verschwindet für u c der Koeffizient der
Kugelfunktion P20, und das Niveausphäroid fällt streng mit dem
Koordinatenellipsoid u c zusammen, welches damit zum Niveau-
ellipsoid wird.

Bezeichnet man die zweite numerische Exzentrizität des mit dem
Niveausphäroid Ue achsengleichen Koordinatenellipsoides u c mit rj
(rj e/c), so kann man die Gleichung (9) wegen

^ ic\ 45 k2 c2 17 -n2

2 3 '

IC\ 8
O4O \ * I _ QI ff ^

V ~ v\

"o \ e j 315

bei gleichzeitiger Multiplikation mit eb/(k2E c") in die Form bringen:

T[(1+T)arctg"-"l(l~t
<u2 c3 2 1 c

T}5 (1 + 712) + VW Wi0.
3k2E ' v " 189 /c2£ '

Die eckige Klammer wird mit der arctg-Reihe in

4 / 6

45
"5 l1 - 7 *

transformiert, so daß sich schließlich

K if w2 c2 13 \ 2 1 c- 1+ -r>2 )— - r,bwi0 (Oa)
c2 3 3 k2E \ 7 ' / 189 /c2£ ' 40 ^ '

ergibt. Abermals mit K. Jung läßt sich dann zeigen, daß die Erhebung
des Niveausphäroides über sein achsengleiches Rotationsellipsoid u c

durch die Entwicklung

T 8 8 „32 1

15 + 21
P™ (C0S } ~ 35

Pt0 (C0S } h" (10)

gegeben ist, wobei der Maximalwert hm der Erhebung mit wt0 durch die
Relation

k2E
rfwu=—l—-36hm (11)

c2
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zusammenhängt. Damit läßt sich (9a) noch schreiben:

K r,2 co2c3 I 13 \ 8 hm

c2 3"3^(1+ f*)- 21 c- (9b)

Die allgemeine Entwicklung (1) gilt bei Verwendung von
Kugelkoordinaten außerhalb einer die ganze Erdmasse einschließenden Kugel
und bei Verwendung der rotationssymmetrischen Ellipsoidkoordinaten
außerhalb des die Erdmasse einschließenden Koordinatenellipsoides
u --= cü. Bei letzterer Entwicklung gibt es überhaupt keine Konvergenzbedenken,

wenn nur die lineare Exzentrizität der Koordinatenellipsoide
entsprechend der gedachten Massenkonfiguration gewählt wird. Je
vollkommener dabei die Erdmasse regularisiert ist, desto geringer wird der
Höhenunterschied (c0 — c) der beiden Koordinatenellipsoide u c0

und u c sein. Versteht man nämlich unter der Geoidhöhe die Erhebung
des künstlichen Geoides W W0 über sein zugehöriges Niveausphäroid
Ue W0, so braucht man bloß eine ungefähr um die maximale Geoidhöhe

höher gelegene Niveaufläche W W0 — A W zu betrachten, die
ganz außerhalb des Ellipsoides u c0 verläuft, welches das künstliche
Geoid gerade einschließt. Die Abplattung des zugehörigen
Niveausphäroides darf dann völlig mit der des Niveausphäroides Ue W0

identifiziert werden. Besonders einfach liegen die Verhältnisse, wenn, wie
im Falle des Normalsphäroides, die Restfunktion T und damit die Geoidhöhen

verschwinden. Dann kommt nur die maximale Erhebung des

Niveausphäroides oder eben des künstlichen Geoides über sein
achsengleiches Ellipsoid u c in Frage; hm ist aber etwa von der Größenordnung
20 m ~3.10-6 a, also eine Größe 5.0., zumal ja aus dem internationalen
Näherungswert ij 0,0823 folgt: -q0 ~ 38.10 7. Bei Verwendung der
üblichen Kugelkoordinaten liegt aber selbst im Idealfall des
Normalsphäroides die die Erdmasse einschließende Kugel am Pol um rund 21 km
über der Erdoberfläche. Um daher die Brauchbarkeit der gewöhnlichen
Kugelfunktionsentwicklung wenigstens für das Helmertsche
Niveausphäroid bis an die Erdoberfläche nachzuweisen, müssen die
Kräftefunktion (3) und ebenso die zugehörige Formel für die theoretische
Schwere bei einer Transformation in Kugelkoordinaten bis auf Größen
6.0. auf die Helmertschen Formeln zurückführen. Der Beweis hierfür
wurde von K. Jung erbracht, es genügt aber ebenso zu zeigen, daß alle
in beiden Formelsystemen abgeleiteten physikalischen Größen bis auf
kleine Glieder der 6.0. übereinstimmen, was tatsächlich der Fall ist. So

hat Helmert zum Beispiel für die uns später besonders interessierende
Größe K, welche die Trägheitsmomente mit der Gesamtmasse E verbindet,

den Ausdruck
- a2 I „ 3 6 \K

3
Ue —2j8—4o"+ 2

£2+
7 Sj (12)

allgeleitet, der wirklich mit der gewünschten Genauigkeit mit (9b)
zusammenstimmt.
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Bei dieser Sachlage ist es nach wie vor am bequemsten, von den
Helmertschen Entwicklungen auszugehen und alle physikalisch wichtigen
Größen in Funktion der Erdmasse E, von Achse und Abplattung des

Niveausphäroides und in Funktion des Parameters 8 auszudrücken.
Führt man in die Glieder 4.0. wieder die internationalen Näherungswerte
ein, so kann das Formelsystem auf folgende einfachste Form gebracht
werden [3]:

ß 86524.10-7— a +—8

yo

3 8— 81.IO-7

k2E•2e r 4 i1— 1 — 51919.10-7 + a + — S
«2 L 7 J

2 a2 r 1 T\
K -—- a + _

S — 17304.10-7

k2E T 1 2 1
W„ 1 + 11540.10-7 + - a + — 8

a L 3 15 J

(13)

(105.10-7 — 8) sin2 2 <p'

Will man diese Gleichungen auf das Normalsphäroid der Erde
anwenden, so liegt wegen der Unkenntnis des Regularisierungsgesetzes die
erste Schwierigkeit in der Bestimmung des zugehörigen Parameters 8,
der die Abweichungen des Normalsphäroides von seinem achsengleichen
Rotationsellipsoid, dem sogenannten mittleren Erdellipsoid, mißt. Mehrere

Forscher - E. Wiechert, W. Klußmann, G.H. Darwin, H. Haalck,
E. C. Bullard - haben nun unter verschiedenen hypothetischen Annahmen

über die Dichteverteilung im Erdinnern Normalfiguren berechnet,
für die sich 8-Werte zwischen +123.10 7 und +132.IO-7 ergeben. Für
den Mittelwert 8 +128.10"7 folgt mit der letzten Gleichung (13)
hm —3,7 m, das heißt das Normalsphäroid wird vom mittleren
Erdellipsoid vollkommen umschlossen, wobei die maximale Abweichung in
radialer Richtung bloß 3,7 m beträgt. Es liegt demnach eigentlich recht
nahe, zwecks Umgehung aller Hypothesen das Normalsphäroid per
deflnitionem als Niveauellipsoid festzulegen, das heißt 8 +105.10-7 zu
fordern. Trotzdem wäre es erwünscht, entweder die Annahme des Niveau-
ellipsoides gleichfalls hypothesenfrei stützen oder den wirklichen Wert
von 8 hypothesenfrei ableiten zu können.

Die Lösung des Stokesschen Problems nach Pizzetti und Somigliana
[4] kann hier nicht weiterhelfen. Denn diese Theorie geht von der
Voraussetzung aus, daß es für die mit vorgegebener Winkelgeschwindigkeit
um eine feste Achse rotierende Erde eine Massenanordnung gibt, bei
welcher die freie Oberfläche eine Niveaufläche von rotationsellipsoidischer
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Gestalt ist. Die allgemeine Lösung des Problems gipfelt nämlich in dem
Satz, daß für jeden beliebigen Körper, dessen freie Oberfläche eine Niveaufläche

ist, das Schwerefeld dargestellt werden kann aus der um die Fliehkraft

vermehrten Anziehung der homogen im Innern verteilten Gesamtmasse

und einer über die Oberfläche verteilten Flächenbelegung, die den
Effekt der Inhomogenität zum Ausdruck bringt, teils positiv, teils negativ

ist und in ihrer Summe verschwindet. Diese Lösung wendet Somigliana
auf das Niveauellipsoid an. Ausgehend vom Potential des homogenen
Ellipsoides werden zwei im. Außenraum des Ellipsoides harmonische
Funktionen mit den Randwerten 1 und (x2 + y2) bestimmt, derart, daß
das Gravitationspotential des inhomogenen Niveauellipsoides als eine
bestimmte äquivalente Linearkombination dieser beiden Funktionen
dargestellt werden kann. Diese fiktive Theorie vermag natürlich keinen
Beweis für die physikalische Berechtigung des Niveauellipsoides zu
liefern.

Es scheint sich aber die Möglichkeit einer Prüfung der physikalischen
Berechtigung des Niveauellipsoides beziehungsweise die Möglichkeit
einer exakten, hypothesenfreien Bestimmung des tatsächlichen Normal-
sphäroides der Erde mit Hilfe der obigen Größe K zu eröffnen.
Glücklicherweise ist, wie bereits oben festgestellt wurde, der fundamentale
Parameter e stark unempfindlich gegen Fehler in a und y0, so daß wir
seinen numerischen Wert (7) auch unverändert für das Normalsphäroid
beibehalten können, wie wir es in den Gleichungen (13) bereits allgemein
für die Niveausphäroide aller gedachten künstlichen Geoide postuliert
haben. Der physikalische Inhalt dieses Postulates ist die Konstanz des

Drehimpulses der Erde, wodurch der Kreis der möglichen
Massenumgruppierungen natürlich stark eingeschränkt wird. Denn nimmt man
nach irgendeiner Vorschrift Massenverschiebungen lediglich mit dem
Ziel vor, daß das entstehende künstliche Geoid äußere Niveaufläche oder
Rand der umgruppierten Erdmasse wird, so wird eine Verlagerung des

Erdschwerpunkts und der Hauptträgheitsachsen sowie eine Änderung
der Hauptträgheitsmomente und damit im allgemeinen eine Änderung
des Drehimpulses eintreten.

Um die Frage zu studieren, welche Änderung die Trägheitsmomente
bei der Regularisierung der Erdmasse erfahren, dürfen wir die Erde mit
weit ausreichender Genauigkeit als starren Körper betrachten. Die
tatsächliche Erde habe die zentralen Hauptträgheitsmomente A < B < C;
die Achse des größten Trägheitsmomentes C durch den Schwerpunkt ist
die Figurenachse. Bezogen auf das mitrotierende Koordinatensystem
i,l,t der Trägheitshauptachsen des Schwerpunkts, ist der in die instantané
Drehungsachse fallende Rotationsvektor

vt> a»! i + w2 j + w31 (14)

und der bei Abstraktion vom Drehmoment der äußeren Kräfte konstante
Drehimpulsvektor, der die invariable Achse definiert,

© A w,, i + B w2 i + C w3 Î. (15)
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Die Absolutbeträge dieser beiden Vektoren sind:

(;2„ - A2 w2l + B2 w\ + C2 w23; co2 w

und die Eulerschen Rotationsgleichungen lauten

dw,
A

B

(16)

dt + (C — B) w2 w3

dw2

dt
+ (A-- C) w3 w1

dw3

0

<#
+ (B — A) wl w2

(17)

Bekanntlich sind nun die beiden äquatorialen Trägheitsmomente der
Erde A und B fast gleich groß. Außerdem sind w, und w2 so klein gegenüber

w3, daß ihr Produkt und ihre Quadrate vernachlässigt werden
können. Somit ist w3 fast konstant und fast gleich w. Für A B ist
streng w3 n const, das heißt, die Erde dreht sich mit der konstanten
Winkelgeschwindigkeit n um die Figurenachse; die Periode t dieser
Drehung (n 2 n/r) ist sehr nahe gleich dem Sterntag t* (co =2 it/t*).
Jetzt ist auch streng (w2, + w22) e2 const, und die Integration von
(17) liefert

Wy e cos Arf; ii>2 e sin A7, (18)

wobei A' das Produkt aus n und der zweiten dynamischen Abplattung
bedeutet:

2 77 C — A
k - fri 0,003281 n. (18a)

Die Kurve, die der Endpunkt des Rotationsvektors im mitrotierenden
Koordinatensystem, also im Erdkörper, beschreibt, die «Polhodie», ist
ein Kreis vom Radius c, dessen Ebene senkrecht zur Figurenachse liegt.
Die Periode des Umlaufs in diesem Kreis, die «freie Nutation» der
starren Erde, ist

2 77 / A
304,8 Sterntage. (19)

Der Öffnungswinkel v des Polhodienkegels, dessen Spitze im Erdschwerpunkt

liegt, wird

tgv 0,3" ^ 15.10-7; v2 «* 2.10- (19a)

wobei der numerische Betrag den Beobachtungen der Polhöhenschwankung

der allerdings elastisch deformierbaren Erde entnommen ist.
Ähnlich ist die «Herpolhodie», die Bahn der Spitze des Rotationsvektors

im Räume um die invariable Achse, im Falle A B ein Kreis
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vom Radius d kcA/G0, dessen Ebene senkrecht zur Impulsachse liegt.
Die Periode des Umlaufs in ihr ist

r -^- (20a)

oder, da G0 sehr nahe gleich nC ist,

277 A
(T

A
C

(20b)

also etwas kürzer als der Sterntag. Für das Verhältnis der beiden Radien
von Polhodie und Herpolhodie ergibt sich aber leicht mit großer
Annäherung die erste dynamische Abplattung:

kA
«* n

G.

C — A
~A~~

A
nC

C — A 1

305,8
(21)

und man erkennt, daß die Bewegung des Rotationsvektors im Räume
gänzlich vernachlässigt werden darf: die Instantanachse fällt in jedem
Augenblick fast völlig mit der invariablen Achse zusammen.

Nach dieser gedrängten Darstellung der klassischen Resultate für
die Rotation des starren Körpers wenden wir uns den Folgerungen für
die regularisierte Erde zu. Für das Normalsphäroid werden wir mit gutem
Recht Gleichheit der äquatorialen Hauptträgheitsmomente fordern:

A' B' (22)

Mit gleichem Recht fordern wir:

0 und damit c' 0, (22a)

das heißt, es müssen die Figurenachse und die instantané Drehachse mit
der Impulsachse zusammenfallen. Die Konstanz des Drehimpulses
liefert dann die einzige Bestimmungsgleichung:

G\ A2w12 + B2w2 + C2w32 C'2 co2

Der erste Teil dieser Gleichung kann leicht transformiert werden:

(23)

G\

C2üj2

^ cw

A2c2

C2-

1

C2 w2 A2c2 + C2 (co2 — c2)

C2
cy y--

0,00655 C2w2 [1

C

13.10-1

Mit sehr großer Annäherung muß also werden:

C C; A' B' £ (A B) (24)

Mithin muß auch das Verhältnis K der Differenz der Hauptträgheitsmomente

zur Erdmasse unverändert bleiben. (Schluß folgt)
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