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Über einen besonderen Fall der Krcisausgleicbuncj
nach der Methode der kleinsten Quadrate

(Ausgleichung nach den bedingten Beobachtungen mit Unbekannten:
1. mit Bedingungsgleichungen zwischen den Unbekannten;
2. durch Vorelimination der Unbekannten aus den Bedingungsgleichungen

zwischen den Unbekannten.)

Von Dipl.-Ing. Christo Capanov, Haskovo, Bulgarien

Die Kurve und besonders der Kreis finden in den städtebaulichen
Entwürfen immer größere Anwendung. Vom verkehrstechnischen Standpunkt

aus ist die Kurve ein unerläßliches Element zum sanften Übergang

von einem geraden Straßenabschnitt zum andern. Aber auch in
städtebaulicher Beziehung ist die Kurve ein erwünschtes Element, denn
der konkave Teil der Straße in einer Kurve, mit der entsprechenden
architektonisch-künstlerischen Ausgestaltung, ist von verhältnismäßig
größerer ästhetischer Wirkung als die Straße in der Geraden.

Eine charakteristische Besonderheit der Straßenbauplanung ist, daß
bei der Festlegung der Straßenlinie unbedingt auf die bestehenden massiven

Bauwerke, wie Gebäude, Brücken, Strebemauern, Flußregulierungen
usw., Rücksicht zu nehmen ist; andernfalls würden sich unerwünschte
Folgen ergeben, die entweder die architektonisch-künstlerische Gestaltung

und die Silhouette des Straßenbildes beziehungsweise die Fassadenfront

beeinträchtigen oder aber die neuen Bauvorhaben in ein ungünstiges,

nicht harmonisches, ja sogar unmögliches Verhältnis zu den bereits
vorhandenen Bauwerken bringen würden.

Um eine maximale Annäherung der trassierten Kurve an die im
Straßenbauplan vorgesehene Krümmung zu erreichen, darf die
Absteckung der Kurve nicht nach den Werten der sich aus dem Plan ergebenden

Elemente vorgenommen werden (denn die erzielten Ergebnisse
würden infolge von Meß- und Ablesefehlern erheblich vom Plan abweichen),

sondern es muß die Absteckung der Krümmungen nach jenen Werten

erfolgen, die man nach dem Ausgleichungsverfahren erhält. Dies sind
die wahrscheinlichsten Werte der notwendigen Trassierungselemente und
ergeben sich aus den für die beobachteten Größen - Abszissen und
Ordinaten der Kurvenpunkte - gemessenen Werten. In diesen Fällen
sprechen wir von wahrscheinlichster oder ausgeglichener Kurve. Wenn
aber die ausgeglichene Kurve einige zwingende Nebenbedingungen zu
erfüllen hat, die wegen etwa vorhandener massiver Bauwerke von
vornherein bestanden haben, so haben wir es mit einem ausgeglichenen Kreis
mit Nebenbedingungen, das heißt mit einem eigenen (besonderen) Fall
der Kreisausgleichung, zu tun.

¦Die in der Praxis am häufigsten vorkommenden besonderen Fälle der
Kreisausgleichung (oder zwingenden Bedingungen, die der ausgeglichene
Kreis zu erfüllen hat) sind:
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I. der ausgeglichene Kreis soll durch einen gegebenen Punkt 71/

führen;
II. der ausgeglichene Kreis soll durch zwei gegebene Punkte M und

N führen, deren Abstand 2d beträgt;
III. der ausgeglichene Kreis soll eine gegebene Gerade / berühren;
IV. der ausgeglichene Kreis soll
a) zwei gegebene Geraden, die einen Winkel S einschließen,
b) zwei gegebene parallele Geraden, deren Abstand 2d beträgt,

berühren;
V. der ausgeglichene Kreis soll eine gegebene Gerade / berühren und

durch einen gegebenen Punkt M führen, wobei
a) M auf der Geraden /,
b) M nicht auf der Geraden /

liegen soll;
VI. der ausgeglichene Kreis soll einen gegebenen Radius R haben.
Jede Zwangsbedingung erfordert eine Nebengleichung, die die

mathematische Form der Nebenbedingung darstellt. Nachdem zur
Definition eines Kreises drei Elemente gehören, muß gefolgert werden:

1. die Anzahl der Zwangsbedingungen kann nicht > 3 sein;
2. bei drei Zwangsbedingungen erhalten wir einen eindeutig definierten

Kreis;
3. um einen ausgeglichenen Kreis mit Nebenbedingungen zu erhalten,

muß die Anzahl der Zwangsbedingungen < 2 sein.
Im nachstehenden soll Fall Vb eingehender behandelt und dessen

Arbeitsformeln abgeleitet werden. Für die übrigen Fälle geschieht die
Ableitung der Arbeitsformeln in analoger Weise.

Einen Kreis trassieren bedeutet, wenigstens drei Punkte des Kreises
auf dem Terrain zu ermitteln, deren Lage durch die bestehenden Triangulations-

oder Polygonpunkte oder aber durch die bestehenden Bauwerke
bestimmt wird. Ist der wahrscheinlichste Kreis zu suchen, so muß die
Punkteanzahl mehr als drei betragen. Infolge Ablese- und Absteckfehler
definieren die trassierten Punkte nicht einen Kreis, das heißt, sie liegen
nicht auf dem Kreis, sondern in einer gewissen Entfernung vom Kreis,
was den Fehler darstellt. Diese Abweichung ds ist nach Richtung und
Größe unbekannt, das heißt ein Zufallsfehler. Es muß die wahrscheinlichste

Lage des Kreises gefunden werden, wobei die Summe der Quadrate
dieser Entfernungen (Fehler) ein Minimum sein soll:

[ds2] Min. (1)

Je nachdem, wie diese Fehler angenommen werden, können zwei
Fälle vorliegen:

a) die Fehlerrichtung liegt parallel oder senkrecht zu einer beliebig
angenommenen Richtung;

b) die Fehlerrichtung liegt in Richtung der Normalen eines gegebenen
Kurvenpunkts.

Es soll nur der zweite Fall hier behandelt werden, der verhältnismäßig

viel genauer ist, weil die Fehler in Richtung der Normalen eines
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Kurvenpunktes angenommen werden. In dieser Richtung liegt bekanntlich

die kürzeste Entfernung zwischen dem beobachteten Punkt und der
beobachteten Krümmung (Kreis).

Es werden angenommen :

1. die gegebene Gerade (Achslinie, Straßenachse) als Ordinatenachse
/ Y und die Abszissenachse, als durch den gegebenen Punkt M
verlaufend;

2. die Abszissen und Ordinaten der trassierten Kreispunkte als
beobachtete Größen, wobei folgende Bezeichnungen gelten:

für wahrscheinlichste Weite: X Y
für Näherungswerte: x y
für wahrscheinlichste Verbesserungen: vx vu;

es bedeuten: .V r. '',- und Y — y ¦'- vy; (2)

3. die Koordinaten des Kreismittelpunktes a und ß und der
Kreisradius R als erforderliche, den wahrscheinlichsten Kreis definierende
Elemente, wobei folgende Bezeichnungen gelten:

für die wahrscheinlichsten Werte: a, ß, R;
für die Näherungswerte: a0, ß0, R0;
für die wahrscheinlichsten Verbesserungen: Aa, Aß, AR;

es bedeuten: a a0 — Aa, ß - ß0 + Aß, R R0 + AR (3)

Es werden die Beobachtungsgleichungen (Bedingungsgleichungen)
aufgestellt, die in allgemeiner l'orni die Kreisglcichung darstellen:

a2 -r ß2 — 2aX 2/3 Y + X2 + Y* — R2 0 (4)

Letztere ist eine nichtlineare Gleichung, aus der durch Taylorsche
Reihenentwicklung nach (2) und (3) folgende lineare Gleichung erhalten
wird:

Dvx + Evu + AAa BAß s CAR y W - 0, (5)
wobei

yY (6)

Die Gleichungen (5), deren Anzahl sich mit der Anzahl der
beobachteten Punkte deckt, stellen in Wirklichkeit das allgemeine Bild der
Fehlergleichungen (Verbesserungsgleichungen) dar. Diesen sind die beiden

Gleichungen der für den Fall Vb zwingenden Bedingungen hinzuzufügen,

wonach der Kreis eine gegebene Gerade berühren und durch einen
gegebenen Punkt M führen soll, dessen mathematische Formen nach
Ziffer 1 der obigen Annahme wie folgt aussehen:

R a und ß V R2 — (a — Xm)2 (7)
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Die Gleichungen (7) sind nichtlinear; durch Taylorsche Reihenentwicklung

nach (3) erhalten wir folgende lineare Gleichungen:

A"Aa y CAR y W" 0 und A'Aa + B'Aß + CAR + W' 0 (8)

wobei A" —1 C" y 1 W" R0 — o-o (Ç))

A' 2(a0—Xm) B' 2ß0 C — 2R0 W'= Ri2—R02

Die Aufgabe wird gelöst, wenn wir aus den Gleichungen (5)1 und
(8)2 die Unbekannten Aa, Aß und AR unter der Bedingung (1) finden.
Zu diesem Zweck bedienen wir uns der

Ausgleichung nach den bedingten Beobachtungen mit Unbekannten
mit Bedingungsgleichungen zwischen den Unbekannten

Zunächst wird (1) umgeformt. Es ist leicht zu beweisen, daß

ds2 vx2 y vu2 (10)

Gleichung (1) erhält gemäß (10) folgendes Aussehen:

[»x2] + W] Min,

oder bei Einführung der Gewichte px auf x und pu auf y,

[Px vx2] y [py vu2] Min. (12)

Wir bilden die sogenannte «Hauptfunktion»:

F F (vx, v,j, Aa, Aß, AR) (13)

Letztere ist ein Minimum bei:

0, M 0, .„ =0 und —— 0 (14)
dAa SAß dAR v '

dF
dvx

y>,
dF
dVy

Hieraus finden wir

vx
D

Px
K

l'u
E

Pu
K

(15)

[Ak] y A'k' + A"k" 0

[Bk] y B'k' y B"k" 0 (16)

[Ck] y Ck' + C"k" 0

Hierbei sind K, K' und K" Korrelate. Die Verbesserungen vx und vu
aus (15) substituieren wir in (5):

1 Bedingungsgleichungen mit Unbekannten.
2 Bedingungsgleichungen zwischen Unbekannten.
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DD EE\
+ )k+ Aâa+ BAß+ CAR-\ W 0

Px Py
(17)AB C W

oder —k - Aa + - Aß + — ARy -
wobei:

DD EE
H + (18)

Px Py

Die Gleichungen (16) erhalten nach (17) folgende Form:

[A/|àa+[¥]Aß+[ah]ar ' A'k'+A'k"+[AI] - *

[ABl \Blf\ .„ \BC\ A [BWl

A' Aa + B' Aß + C AR y 0k' + 0k" + W' 0
A" Aa + 0 Aß+ C AR + 0k' + 0k" + W" 0

Die letzten beiden Gleichungen sind die Gleichungen (8). Die
Gleichungen (19) haben vollkommen den Charakter normaler Gleichungen;

deren Lösung kann nach dem Gaußschen Algorithmus erfolgen.

Arbeitsformeln: (6), (9), (18) und (19).

Kontrollen: —[kW] [px vx2] + [pg vy*] (20)

V(a — x)*+(ßyy)2 R

V (a— xm)2'+J2 R (21)

o R

Aus den Gleichungen (19) kann der Schluß gezogen werden, daß
jede Zwangsbedingung die Anzahl der Normalgleichungen um eins
erhöht; dies hat aber eine umfangreiche Rechenarbeit zur Folge. Daher
ist das Gegenteil anzustreben: jede Zwangsbedingung soll die Anzahl der
Normalgleichungen um eins ermäßigen, was die Rechenarbeit kürzt.
Dies kann erreicht werden durch

Vorelimination der Unbekannten aus den Bedingungsgleichungen
zwischen den Unbekannten

Allgemeines Bild der Gleichungen:

(4) — F F(XYaßR) (22)

(7) — R R (a) und ß ß (aR) (23)
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Aus (22) und (23), die in Wirklichkeit die Beobachtungsgleichungen
darstellen, geht hervor, daß wir eine zusammengesetzte Funktion
vorliegen haben. Aus der Differenzierung der letzteren ergibt sich:

8F dF \8F dF(8ß 8ß\ dF
Sx

Vx +
Sy "" + [ Sa

+ TJ\8a + SR) + SRy _ M« +

+ F0 (x, y, a0, ß0, R0) 0
(24)

wobei R0 und ß0 nach (7) berechnet werden.
Setzen wir

SF SF SF 8F
D, E, — + -wsSx 8y 8a Sß

Sß 8ß\ 8F
Sa

+ SRI +Yr~
(25)

und F0 (x, y, a0,ß,„ R0) W,

so erhält (24) folgendes Aussehen:

D vx + E Vy + A Aa + W =0 (26)

Die partiellen Differentiale der Gleichung (4) zeigen nach (7) folgendes

Bild:

8F 8F Sß a0Xm 8F
— 2(a0— x); _ 2(oo — x); f —; - -=-2fl,;Sx oa da ß0 SR

SF „ SF „ Sß R0
-8y-=-2(ß°-y);-3ß =2(ß°-y);8R -ßT

Hieraus lassen sich nach Formeln (25) berechnen:
Xm

D —2(a0 — x) A =—2i+2 (ß0 — y) —
Po

E — 2 (ß0 — y)

(27)

(28)

Das gleiche Ergebnis kann aber auch erreicht werden, wenn aus
jeder Bedingungsgleichung zwischen den Unbekannten je eine
Unbekannte gefunden und in (4) substituiert wird. Im Fall (7) finden wir R
und ß, die wir in (4) substituieren, und erhalten:

2 aXm — 2 aX — 2 Y V~2 aXm — Xm2 + X2 + Y2 — Xm2 0 (29)

was das allgemeine Bild der Beobachtungsgleichungen darstellt. Letztere
sind nichtlineare Gleichungen. Aus ihnen lassen sich durch Taylorsche
Reihenentwicklung nach (2) und (3) folgende lineare Gleichungen bilden,
die in Wirklichkeit die Verbesserungsgleichung (Fehlergleichung)

Dvx + Evy + AAa + W 0 (30)
darstellen, wobei

D — 2 (a0 — x); A — 2 x + 2 (ß0 — y) -^"-;

E -2(ß0-y)
(31)
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Ein Vergleich von (31) mit (28) zeigt, daß die entsprechenden
Ergebnisse vollkommen gleich sind, ohne Rücksicht darauf, ob mit einer
zusammengesetzten Funktion operiert oder die Unbekannten aus den
Bedingungsgleichungen zwischen den Unbekannten im voraus eliminiert
wurden (die Anzahl der eliminierten Unbekannten ist der Anzahl der
Bedingungsgleichungen zwischen den Unbekannten gleich). Die Wahl der
einen oder andern Methode bleibt jedem überlassen.

Aus den Lösungen von (26) und (30), die mit den beobachteten
Punkten unter Bedingung (1) beziehungsweise (11) gleich an der Zahl
sind, ergeben sich die gesuchten Unbekannten. Zu diesem Zweck stellen
wir die sogenannte «Ilauptfunktion» auf:

F F (vx, Vy, Aa). (32)

SF ^ SF ^ SF
Letztere ist ein Minimum bei — 0; 0; --¦ 0.

Svx Svy SAa

Hieraus finden wir:

fc

Px

E
k

Py

(33) — [kA] 0 (34)

(k ist das Korrelat).

Die Verbesserungen vx und va aus (33) substituieren wir in (26) und
erhalten:

/DD EE\+ )k+ AAa y W 0 oder
V Px Py 1

—fc
A W

' II + II ' (35)

wobei DD EE
H +

Px Py
(36)

Aus (35) erhalten wir nach (34):

was eine Normalgleichung darstellt, aus deren Lösung die Unbekannte
Aa gefunden wird.

Beim Vergleich von (19) mit (37) läßt sich feststellen, daß durch
Vorelimination von Unbekannten aus den Bedingungsgleichungen
zwischen den Unbekannten jede Zwangsbedingung die Anzahl der
Normalgleichungen um eins vermindert.

Arbeitsformeln: (31) und (37),

Kontrollen: —[kW] [px vx2] + [p„ vu2] (38)

und V~(a — x)2 + (ß — y)2 0 (39)
(Schluß folgt)
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