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Der Eintritt in eine Vermessungstechnikerschule (zum Beispiel
Gewerbeschule von 2 Semestern) sollte frühestens nach vierjähriger Tätigkeit
als Vermessungszeichner erfolgen. Als Aufnahmebedingung wäre überdies
die Note « gut » in Zeichnen und Beschriften durch Prüfung nachzuweisen.

Die abgelegte theoretische Prüfung würde, wie heute beim
Geometerkandidaten, die Berechtigung einschließen, sich bei einem Grundbuchgeometer

während zweier Jahre auf das praktische Examen als Techniker

vorzubereiten. Wichtig ist ferner, daß nur noch ein Vermessungstechniker

ausgebildet wird, das heißt alle 7 heutigen Fachausweise
zusammengefaßt werden. Die bisherige extreme Spezialisierung ist
unsinnig.

Zweifellos verlangt diese Lösung gewisse finanzielle Opfer. Der Preis
besteht aber im Technikerausweis. Es gibt kaum technische Berufe, die
mit weniger Ausbildungszeit auskommen und dabei sofort eine ähnlich
gute Bezahlung erhalten.

Für die rein bautechnischen Arbeiten stehen Tiefbauzeichner und
Tiefbautechniker zur Verfügung.

Das mittlere Fehlerellipsoid
Die Berechnung seiner Achsen und die Richtungen derselben.

Von Jon Holsen

Wir denken uns die Lage eines Punktes P im Räume durch
Beobachtungen bestimmt. Durch eine Ausgleichung zum Beispiel finden wir
den wahrscheinlichsten Ort, P (X, Y, Z), des Punktes in einem
orthogonalen Raumkoordinatensystem und weiterhin die mittleren Koordinatenfehler

mx, mg und mz längs der drei Achsenrichtungen. Wir fragen
nun aber nach dem mittleren Fehler in einer von P ausgehenden,
willkürlich gewählten Richtung, deren Richtungswinkel a, ß und y sein
mögen. Sei nun Px (X1Y1Z1) ein in dieser Richtung fest gelegener aber frei
gewählter Punkt, so ist es klar, daß der mittlere Fehler in dieser Richtung
gleich dem mittleren Fehler der Strecke PP, Mppx MT m-\/Qrr ist.

m ist der mittlere Fehler der Gewichtseinheit, und —— ist das Funktions-
Qrr

gewicht der Strecke PPX r.

Wir suchen zunächst Qrr:

r2 (Xx — X)2+(YX— Y)2 + (Zx — zy

(Xx — X) (Yx—Y) (Zx — Z)
dr -^ dX + y± '- dY + y ; dZ
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¦X'i — X Yx— Y „ Zx — Z
COS a, cos ß, cos yr r r

(1)

dr cos a dX + cos ß d Y + cos y dZ (2)

Nach der Tienstraschen Regel [2] folgt:

Qr cos a Qx + cos ß Qy + cos y Qz

M2r m2Qrr m2 (Qxx ¦ cos2 a + 2Qxy COS a cos ß + 2QXZ COS a cos y)

Qm cos2 ß + 2Qyz cos ß cos y\ (3)

+ Qzz COS2 y j

Um den Ausdruck (3) zu deuten, betrachte man nun den Punkt P als
Ursprung eines xi/z-Systems, dessen Achsen bzw. der X-, Y- und Z-Achse
paralleli sind. Dann ist:

MT ¦ cos a x Mr ¦ cos ß y Mr - cos y z

M2r x2 + y2 + z2

(3) mit M\ multipliziert gibt:

(x2 +y2 + z2)2 m2 (Qxx ¦ x2 + 2Qxy ¦ xy + 2QXZ ¦ xz j

Q„y ' V2 + 2Gyz • yz (4)

Qzz ¦ z2 J

Durch eine orthogonale Koordinatentransformation können wir die
gemischten Glieder auf der rechten Seite eliminieren. Die Gleichung (4)
erhält durch diese Transformation eine quadratische Form im ^Ç-
System:

(I2 + i»» + £2)2 — m2 (Qg {* + Qm rf + Q^r ÏT) 0 (5)

Im ^-System sind also: Qfy 0, Q|£ 0, Q^£ 0 (6)

Abkürzungen: Qg ¦ m2 A2 Q^ ¦ m2 B2 Q^ - m2 C2

(£2 + i?2 + C2)2 — (A2p + J9V + C2£2) 0 (7)

Das ist die Gleichung der Fußpunktfläche eines Ellipsoids mit den
Halbachsen A, B und C im frçÇ-System. Die Fußpunktfläche ist der Ort der
Fußpunkte aller vom Ursprung auf die Tangentialebenen des Ellipsoids
gefällten Lote. Die Gleichung (7) ist von der Gleichung des Ellipsoids,

£2 „2 £2
1 1 1, ausgehend, einfach herzuleiten.

A2 B2 C

Der gesuchte mittlere Fehler in irgendeiner Richtung ist also gleich
dem Radiusvektor der Fußpunktfläche in der gleichen Richtung.
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Die Fußpunktfläche und das „zugehörige" Ellipsoid haben im Ç-qt,-

System die gleichen Achsenabschnitte: ± A, ± B und ± C.

(5) ist die Gleichung der Fußpunktfläche im xyz-System.
Das Ellipsoid mit den Halbachsen A m VqTP' B m -y/g und

C m\y^Z wird das mittlere Fehlerellipsoid genannt. ([3] Seite 400).

Wir stellen uns nun die Aufgabe, die Halbachsen des mittleren
Fehlerellipsoids und die Richtungen der Halbachsen im Räume zu
berechnen.

Hierbei setzen wir voraus, daß die Gewichtsreziproken Qxx, Qyy,
Qzz, Qxy, Qxz und QyZ schon bekannt sind, die man zum Beispiel bei einer
Ausgleichung berechnet hat.

Es läßt sich leicht beweisen, daß die Extremwerte des Radiusvektors

der Fußpunktfläche eben die gesuchten Achsen des Fehlerellipsoids
sind. Der Vollständigkeit wegen nehmen wir diesen Beweis mit

und führen im f^-System Raumpolarkoordinaten (p, cp, A) ein.

Figur 1

f p sin tp cos À

¦g p sin tp sin À

£ p cos cp

Die Werte von £, -q und £ nach (8) in (7) eingesetzt:

(8)

-)2 CR2(B2 — A2) sin2 cp sin2 A + (A2 — C2) sin2 ip + C2 (9)

wo p Mr ist.

op 1 1
-s— — (B2 — A2) 2 sin cp cos cp sin2A + — (A2 — C2) 2 sin cp cos cp =0

ùcp p p

8p
_

1

IX" ~T
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([B2 — C2] — [B2 — A2] cos2 A) sin 2 cp =0
[B2 — A2] sin2 cp sin 2 A =0

Das heißt: a) cp 0 AgO -»p=±Cl
f A 0 -> p ± A | Aus (9) (9a)

[A 100-^p ±B Jb) p 1008

was zu beweisen war.
Um nun A, B und C zu bestimmen, gehen wir auf die Gleichung (3)

zurück und sehen, daß es sich lediglich darum handelt, die Extremwerte
von Qrr zu finden, wenn wir cos a, cos ß und cos y, unter der
Nebenbedingung, daß cos2 a + cos2 ß + cos2 y 1 bleibt, variieren lassen.

Wir bilden die Funktion H:

H (Qxx cos2 a + 2QXj, cos a cos ß + 2Qxz cos a cos y\
/-. io i <¦,/-. o —K (cos2 a + cos2ß +Qxy COS2ß+ 2Qyz COS ß COS y f+C0Sly_1)

Qzz cos2 y J (10)

wo — K einen Lagrangeschen Multiplikator bedeutet.

H ist also gleich Qrr — K (cos2 a + cos2 /? + cos2 y — 1).

Durch Differentiation von (10) erhalten wir, wenn wir gleichzeitig
die partiellen Ableitungen von H gleich Null setzen.

grr
0 =[(Qxx — K)-C0Sa + QxgCOsß+QxzCOSy] sina =0

Sa

SH

Jß
0 [

SH

Sy
0 [

SH

SK
0

Qxy • cosa+ (Qyy—Ä) • cos/?+Qyz-cosy]-sin/} =0

Qxz • cos a + QBz • cos/? + (Qzz—K) ¦ cosy] • sin y 0

cos2a+ cos2/3-|-cos2y—1 =0

Das heißt: Für die erste Gleichung:

a 0

oder (Qxx — K) ¦ COS a + Qxy ¦ cos ß + Qxz COS y =0

Für die zweite Gleichung:
ß =0

oder Qxy cos a + (Qsg — K) ¦ cos ß + Qyz - cos y =0

(11)

(12a)

(12b)
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Für die dritte Gleichung:

oder Qxz ¦ cos a + Qyz ¦ cos ß + (Qz K)
y 0

cos y 0
(12c)

Durch Kombination einer Gleichung von 12a, einer von 12b und
einer von 12c können wir Lösungen von a, ß und y finden, die aber der
Bedingung unterworfen sind, daß sie die vierte Gleichung (11) befriedigen

müssen.
Wir betrachten zuerst den Fall:

(Qxx — K) cos a + Qxy ¦ cos ß + Qxz ¦ cos y =0
Qxy ¦ cos a + (Qyy — K) ¦ cos ß + Qyz ¦ cos y =0
Qzz • cos a + QyZ ¦ cos ß + (Qzz — K) ¦ cos y =0

(13)

Multipliziert man jetzt die erste Gleichung (13) mit cos a, die zweite
Gleichung mit cos ß und die dritte Gleichung mit cos y und summiert
man die drei auf diese Weise erhaltenen Gleichungen, bekommt man eine
Gleichung, aus der man folgenden Ausdruck für K herleiten kann:

K (Qxx ¦ cos2 a 2Qxy cos a COS ß

Qyy cos2 ß

2Qxz cos a COS y
2Qyz cos ß cos y

Qzz cos2 y

(14)

Das heißt: Die Lösungen von K sind eben die gesuchten Extremwerte
von Q„. (Vergleiche (14) mit (3))

Die Gleichungen (13) bilden ein homogenes Gleichungssystem für
die Unbekannten cos a, cos ß und cos y. Dieses homogene Gleichungssystem

muß eine nichttriviale Lösung haben, da wegen der vierten
Gleichung (11) nicht alle drei Unbekannten Null sein können. Daher muß
die Determinante des Gleichungssystems (13) verschwinden.

{Qxx ~-K) Qxy Qxz

Qxy iQyy — K) Qyz

Qxz Qyz (Qzz K)
(15)

Durch die Entwicklung dieser Determinante erhält man eine kubische

Gleichung:

K3 — (Qxx + Qyy + Qzz) K2 + {Qa - Qyy + Qxx ¦ Qzz +
+ Qyy • Qzz — Qxy2 ~ Qxz2 " Qyz2) • K

(— Qxx Qyy Qzz — 2QXy Qgz Qxz + Qxz2 Qyy +
+ Q\y Qzz + Q2yz Qxx) 0

(16)

Aus dieser Gleichung berechnet man K und nachher a, ß und y aus
den Gleichungen (13) unter der Nebenbedingung cos2 a + cos2 ß + cos2 y

1
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Diskussion der Gleichung (16)

Infolge (14) sind die drei Lösungen von (16) eben die gesuchten
Extremwerte von Qrr. Das bedeutet, daß das Quadrat der Halbachsen
des mittleren Fehlerellipsoids den Lösungen der kubischen Gleichung
proportional sind. Es seien die drei Lösungen der kubischen Gleichung

Kx, K2 und K*. Dann ist: A2 m2Kx B2 m2 ¦ K2 C2 m2K3.

Das heißt: Die kubische Gleichung (16) hat immer drei reelle Lösungen.
(Siehe auch die Gleichungen (9a.)

Aus (16) folgt:
Kx + K2 + K3 QXX + Qyy + Qzz

m2Kx + m2K2 + m2K3 m2QXx + m2Qyg + m2Qzz

A2 +B2 +C2 m2x + m2y + m2z

Wenn man den mittleren Punktfehler im Räume entsprechend wie
in der Ebene definiert, so heißt das, daß der mittlere Punktfehler eine
Invariante ist und gleich der Summe der Quadrate der Halbachsen des
mittleren Fehlerellipsoids.

Das Ellipsoid geht in eine Kugel über, wenn A B C wird. Das
heißt, daß die drei Lösungen der Gleichung (16) zusammenfallen. Also
Kx K2 K3 Q. Aber da die Fußpunktfläche einer Kugel, die Kugel
selbst ist, so muß Qxx Qyy Qzz Q sein. (18)

Die Gleichung (16) lautet dann:

K3 — 3 Q K2 + 3 Q2 K — Q3 =0.
Diese Gleichung, verglichen mit (16) unter Berücksichtigung von (18),
gibt uns die Bedingung an, daß das Ellipsoid in eine Kugel übergeht,
nämlich:

Qxx Qyy Qzz Q

Qxy Qxz Qyz 0.

Man könnte auch die Bedingung herleiten, daß das Ellipsoid ein
Umdrehungsellipsoid wird. Zwei der Lösungen der Gleichung (16) müssen
dann zusammenfallen. Das gibt uns drei Gleichungen mit zwei
Unbekannten. Aus zwei Gleichungen findet man die Unbekannten. Die dritte
Gleichung gibt eben die erwähnte Bedingung an.

Wir betrachten nun ein Paar Sonderfälle.

1. Qxy Qzx Qyz 0 Qxx > 0 Qyy > 0 Qzz > 0

d. h. K3 — (Qxx + Qyy + Qzz) K2 + (QxxQyy + QxxQzz +
+ Qzz Qyy) K — Qxx Qyy Qzz 0

Kx + K2 + K3 Qxx + Qyy + Qzz

KXK2 + KXK3 + K2K3 Qxx Qgg + Qyy Qzz + Qxx Qzz
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KXK2K3 — QxxQyyQ:yyVzz

d.h. Ki =Qx

K*

K*

iyy

Qz

100

100

a

ß

Y

a 100

ß= 0

y 100

a 100

ß 100

y 0

m2Qx

B2 m2Qyy

C2 m2Qz

Das aber wußten wir schon, weil wir Qxg Qxz Qgz 0 vorausgesetzt

haben. Siehe übrigens Gleichung (6).

2. a. Qxz Qyz 0 Q.xy '¦ 0 QXX > 0 Qyy > 0 Qzz > 0

d.h. K* — (QxX + Qyy y QZZ) K2 + (Qxx Qyy + Qyy QZZ + QyyQZZ

— Q\y) K2 — QxxQyyQzz + QzzQ2xy 0

Wir sehen sofort, daß eine der Lösungen K3 Qzz ist, d. h.

(K — Qzz) [K2 — (Qxx + Qyy) K+ QxxQyy — Q2xy] 0

[ a3 1008

K3 Qzz > ß3 100
I

ra 0

K2 — (Qxx + Qyy) K + Qxx Qyy — Q2xy 0

(19)

Kx Î (Qxx + Qyy + V(Qxx — Qyy)2 + 4 Q2xy)

K2=i (Qxx + Qyy — V(Qxx — Qggy + 4Q2xg)

Da nun die drei Ellipsoidachsen senkrecht aufeinanderstehen, so müssen
zwei der Achsen in der xy-Ebene liegen.

19a

C2 m2Q

19b

(20)

Das heißt: yx 100 y2 100

ax=ßx+ 100 a2 ß2 + 100 ax + 100 =ßx + 200

Es folgt dann aus den zwei ersten Gleichungen (13):

tg ax

tg at

Q¦xy

— Qyy + Kx

Qxy

— Qyy + K2

- Qxx + Kx
Qxy

Qxx + K2

Qxy

(20b)
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Die Aufgabe, die Halbachsen in der xy-Ebene zu finden, reduziert sich
auf den zweidimensionalen Fall, also auf den Fall mit nur zwei
Unbekannten, x und y. (Siehe [1] die Seiten 139-140.)

b. Qxy Qxz 0 Qyz i: 0 Qxx > 0 Qyy > 0 Qzz > 0

Die Richtung der einen Halbachse fällt in diesem Falle mit der
Richtung der x-Achse zusammen. Die zwei anderen Achsen liegen in der
yz-Ebene.

C Qxy Qyz 0 Qxz S 0 Qxx > 0 Qgg > 0 Qzz > 0

Die Richtung der einen Halbachse fällt in diesem Falle mit der
Richtung der y-Achse zusammen. Die zwei anderen Achsen liegen in der
xz-Ebene.

Wir betrachten nun wieder die Gleichungen 12a, 12b und 12c. Sie

geben im ganzen acht Kombinationen an.

a 011 a 0

ß 0 /3=0
y 0 1 Qxz ¦

3.

cos a + Q,;z ¦ cos ß + (Qzz — K) ¦ cos y 0

a 0

Qxy • cos a + (Qyy — K) • cos ß + Qgz ¦ cos y 0

y 0

4.

(Qxx — K) ¦ cos a + Qxy ¦ cos ß + Qxz cos y 0

ß=0
y 0

5.

a 0

Qxy cos a + (Qyy — K) cos ß + Qy-. ¦ cos y 0

Qxz cos a + Qgz ¦ cos ß + (Qzz — K) cos y 0

(Qxx — K) • cos a + Qxy cos ß + Qxz ¦ cos y 0 \

/3=0
Qxz • cos a + QyZ ¦ cos ß + (Qzz — K) ¦ cos y 0 J

7.

(Qxx — K) ¦ COS a + Qxg - cos ß + Qxz COS y 0

Qxy ¦ cos a + (Qgg — K) ¦ cos ß + Qgz ¦ cos y 0

y 0

Die achte Kombination sind die Gleichungen (13), die wir schon behandelt
haben.
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Die vierte Gleichung (11) schließt die Kombinationen 1, 2, 3 und
4 aus. Die Kombinationen 5, 6 und 7 sind nur Sonderfälle der achten
Kombination, was auch aus den eben behandelten Fällen 1, 2a, 2b und
2c hervorgeht. Die achte Kombination repräsentiert demnach die
allgemeine Lösung der Gleichungen (11).

Die allgemeine Lösung der kubischen Gleichung (16)

QxySïO, Qxz=s0, QyzäEO, Qxx > 0, Qyy > 0, Qlz > 0

Abgekürzt schreiben wir die Gleichung (16)

K3 + aK2 + bK + c 0

Durch die Substitution K K' — —, (22), können wir, wie bekannt,

das quadratische Glied wegschaffen, also:

K'3 + pK' + g 0
(23)

p=—(b — ia2) q c — 2°v (9b — 2a2)

Durch trigonometrische Auflösung der kubischen Gleichung (23)
erhält man:

K\ — Vp (cos >fi + i V 3 sin i/r)

K'2 Vp (cos ifi — J V 3 sin tfi) Ì (24)

K'3= Vp f V3 ¦ sin >p

wo der Hilfswinkel xfi durch die Gleichung

2 3 ç ,—sin 3 (A — _ — • V3p bestimmt ist.

vr '
Aus (22) berechnet man dann Kx, K2 und Ks und weiter die Richtungswinkel

a, y8 und y aus den Gleichungen (13) in folgender Weise:

Qx,,2 — (Qxx — K) • (Qyy — K) T
cosy — • cosß — • cosoY

(Qxx — K) ¦ QyZ — Qxz -Qxy
H N

cosa jg^-^-Q^-feyQyz M
co

(Qxx ~ K) ¦ Qyz — Qxy -Qxz H N

Diese Ausdrücke für cosy und eoa a indie vierte Gleichung (11) eingesetzt,
geben:

JV

cos ß -, =y (25a)r VM2 + N2 + T2
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In der gleichen Weise erhalten wir:

M
VM2 + N2 + T2

(25b)

T
c°s y -s (25c)

V M2 + N2 + T2 y '

Für jedes K (jede Halbachse) bekommt man einen Wert für a, einen
Wert für ß und einen Wert für y. Damit ist unser Problem gelöst.

Das Problem könnte man auch durch andere Verfahren gelöst haben.
Zum Beispiel könnte man in die Gleichung (4) Raumpolarkoordinaten
einführen. Durch Differentiation von r im Raumpolarkoordinatensystem

S r S r
(r, tp, A) würde man, indem man =0 - — 0 setzte, zwei

otp 8 A

Gleichungen zur Bestimmung der gesuchten cp und A erhalten. Nachher

berechnet man die gesuchten r A, r B und r — C aus der
Gleichung (4) in Raumpolarkoordinaten. Dieses Verfahren, glaube ich,
wird eher kompliziert sein.

Wir haben gesehen, daß wir das Problem als eine Extremwertaufgabe
auffassen können, und wir haben es als solche gelöst. Es ist nicht

notwendig, das Problem so aufzufassen. Denn wir werden die
Halbachsen des gesuchten Ellipsoids durch die orthogonale
Koordinatentransformation, die die Gleichung (4) in die Gleichung (5) überführt,
erhalten. Diese Koordinatentransformation führt aber eben zu den
Gleichungen (13) mit der Nebenbedingung cos2 a + cos2 ß + cos2 y —1

0 und weiter zu der Gleichung (16).
Das ganze Problem ist eine Hauptachsentransformation.

Zusammenstellung der Formeln

Wir setzen voraus daß Qxx, Qgg, Qzz, Qxg, Qxz und Qyz, die
Gewichtsreziproken der Unbekannten, bekannt sind. Dann bilde man die
Gleichung:

K3 + aK2 + bK + c 0

wo:

a — (Qxx + Qyy + Qzz)

b Qxx • Qyy T Qxx " Qzz + Qyy • Qzz — Qxy — Qxz — Qzy

C Qxx " Qyy ' Qzz 2QXy • Qyz ' Qxz y Q xz' Qyy + Q xy " Qzz ~"r Q yz' Qxx

Weiter bilde man die Gleichung:

K'3 + pK' + q 0

b—\a2\ q=c— — (90 — 2a2)
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Kx — Vp cos <ji + — V3 ¦ sin ifi

K2 Vp Icostfi — - V3 ¦ sin ift j — —

K.
2 /— a

+ ~ V3p • sin./,— -
3 o /3<A=
2 -^-VTpfat.

A m Vkx
M

B m VK, Vk3

Vm2 + n2+ t2
cos ß

TV

VM5 + N2 + T2
cosy; Vm2+ N2+Y2

WO: M (Qyy — X) • Qxz — Qxy • Qyz

N (Qxx ~ K) • Qyz — Qxy ¦ Qxz

T =— (Qxx — K) ¦ (Qyy — K)+Q ist.

Zusammenfassung

Das mittlere Fehlerellipsoid dient als Charakteristikum für die Güte
der Punktbestimmung im Räume. Wenn es wünschenswert ist, das
mittlere Fehlerellipsoid zu berechnen, so ist die damit verbundene
Rechenarbeit, wenn die Gewichtsreziproken der Unbekannten schon
vorliegen, nicht größer, als daß man sie ohne allzugroßen Zeitverlust
durchführen kann.

Bei einer Triangulation wird man gewöhnlich die Horizontal- und
Höhenwinkel nicht gemeinsam, sondern getrennt ausgleichen. Erstens
auf Grund der kleineren Genauigkeit, in erster Linie wegen der Unsicherheit

der Höhenrefraktion, mit welcher die Höhenbestimmung erfolgt.
Zweitens, weil man in den meisten Fällen flache Visuren haben wird, so
daß die Korrelation zwischen Höhen- und Lagebestimmung nur klein
ist. Das heißt, daß man angenähert den Fall 2a hat. Durch eine gemeinsame

Ausgleichung der Höhen- und Horizontalwinkel würde man in
solchen Fällen nichts anderes erreichen als eine größere Rechenarbeit -
und keine bessere Bestimmung der Punktlage im Räume.

Bei einer Kleintriangulation mit steilen Visuren im Hochgebirge würde
eine gemeinsame Ausgleichung der Höhen- und Horizontalwinkelbeobachtungen

unter Umständen einen Sinn haben. Weil eben im Hochgebirge

die Höhenrefraktion nicht nur verhältnismäßig klein ist, sondern
auch wenig schwankt [4]. Man müßte selbstverständlich eine
Gewichtsabschätzung zwischen den Höhen- und Horizontalbeobachtungen vor
der Ausgleichung unternehmen.
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In der Luftphotogrammetrie, wo die Bestimmung der Höhe und
der Lage eines Punktes gemeinsam erfolgt, ist es natürlich, die
Punktgenauigkeit durch das mittlere Fehlerellispsoid anzugeben.

Die Wahrscheinlichkeit, daß der Punkt innerhalb des mittleren
Fehlerellipsoides liegt, ist gleich 0. 1988. Das wahrscheinliche Ellipsoid,
das ist dasjenige, für welches die äußere Wahrscheinlichkeit gleichkommt
der innern, erhält man durch Vergrößerung der Achsen des mittleren
Fehlerellipsoides in dem Verhältnisse 1:1.2559. Dadurch wird das Volumen

des Ellipsoides um etwa das doppelte vergrößert. [5]

Zahlenbeispiel:

Gegeben: Qxx 4.927.10~3

Qxz + 1.046.10"3

Qyz +1.831.10-8

Mittlerer Fehler der Gewichtseinheit m

a — 14.860.IO"3
b + 63.193733. IO"6 p
c

Qxg +2.279 .IO-3

Qyy +5.845..io-3
Qzz +4.088.,io-3

±4CC.5

+ 10.412800. IO-6

— 0.012353. IO"6— 0.082313. IO"6 q

— 4 ¦ 0.012353.IO-6 —6.177
sin 4 - —0.9553

V<
10.4128.IO-6 \3 6.466

3>fix 3198.11
302 2808.89

i/,x 1068.37
>b2 938.63

K, =—2.177.IO"3 +4.953.10-3 +2.776.10"3
K2 =— 1.532. IO"3 +4.953.10-3 +3.421.10"3
K3 + 3.708.10-3 +4.953.10-3 + 8.661.10"3

Mx — 0.963.10-6 cosa! =1278.4
Nx +1.555.10-6 cosft 52 .9 C ±2.4 cm
Tx =— 1.408.10-6 cosy! =141 .8

M2 —1.634.IO"6 cos a2 1518.30
N2 +0.374.10-6 cosft 89 .5 B ±2.6 cm
T2 +1.539.10-6 cosy2 52 .7

M3 —7.118.IO"6 cos a3= 1378.6
N3 =—9.221.IO"6 cosft 151 .2 A ±4.2 cm
T3 — 5.321.IO"6 cosy3=127 .2

Da die drei Achsen senkrecht zu einander stehen, haben wir als

Kontrolle :
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cos ax ¦ cos a2 + cos ßx ¦ cos ß2 + cos yi • cos y2 0 (— 0 • 002)
cos a2 • cos a3 + cos ß2 ¦ cos /33 + cos y2 • cos y3 — 0 (— 0 • 002)
cos ax • cos a3 + cos ßx - cos ß3 + cos yx ¦ cos y3 0 (— 0 • 003)

In unserem Beispiel stimmt diese Kontrolle mit genügender
Annäherung.
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Nebenstraßen, Durchgangsstraßen, Autobahnen

Von H. Braschler, dipi. Ing.

Obwohl wir in letzter Zeit in unserem Lande, gerade auch im
Zusammenhang mit der schweizerischen Planungskommission, fast
ausschließlich von den geplanten Autobahnen lesen und hören, habe ich
im Titel die verschiedenen Straßentypen in der Reihenfolge ihrer Bedeutung

für unser Land aufgeführt.
Wir können weder gegen den Strom schwimmen noch das Bad der

Zeit zurückdrehen. Dem stets ansteigenden Motorfahrzeugbestand ist
unser Straßennetz einfach nicht mehr gewachsen, und wir müssen
unverzüglich an den Bau von reinen Autostraßen herantreten. Das haben
glücklicherweise auch unsere Bauersame und ihre Vertreter eingesehen.

Ein wesentliches Problem bildet der Landerwerb, denn ohne Land
kann man keine Straßen bauen. Hier gibt es eigentlich zwei Möglichkeiten:

1. durch Expropriation;
2. durch Landankauf und anschließende Umlegung.

Die Expropriation wäre ähnlich wie seinerzeit beim Eisenbahnbau
rechtlich durchaus möglich, dürfte jedoch aus finanziellen Gründen heute
bei der praktischen Durchführung auf ganz erhebliche Schwierigkeiten
stoßen. Die Inkonvenienzen bei zahlreichen durch die Autostraßen
durchschnittenen Betrieben wären dermaßen groß, daß viele Bauern auf
die weitere Bewirtschaftung mit Recht verzichten müßten.

Besser ist es, wenn die öffentliche Hand Land ankauft und so den
Bedarf für die Durchgangstraße oder Autobahn deckt. Durch eine Umlegung
könnten dann einzelne Liegenschaften wieder in eine befriedigende Form
gebracht werden. Wir müssen aber bedenken, daß dieser Maßnahme alle
Nachteile, Fehler und Mängel einer nur lokalen Zusammenlegung an-
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