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Le ealeul semi-graphique de la déformation de réseaux
projetés dans un système conforme1

Par A. Ansermet

Le problème traité ici a pour but de faciliter, dans la mesure du
possible, le calcul des réseaux géodésiques dans le plan. Il convient au
préalable de procéder à un

Rappel de notions fondamentales

A cet effet suivons partiellement la voie tracée par G. Darboux qui
traita ce problème de façon magistrale. Notons en passant que ce
mathématicien rend dans son mémoire un hommage vibrant à l'œuvre de
C. F. Gauß ([3] p. 64).

Rapportée à son plan tangent et à des tangentes principales l'équation

d'une surface est
x2 ifl

Z h — h
2R 2R'

où R, R' désignent les rayons principaux de courbure ([3] p. 56)

/ xdx udu
(i) ds2 dx2 + dy2 + f —- + yy
A l'élément ds correspond dans le plan l'élément ds' m-ds

ds'2 dX2 + dY2 (X, Y coordonnées conformes)

où X x + u3+ Y y + v3+

u3 et v3 étant du 3e ordre en x, y.

I du* du* dv* dv* \ds'2 dx2 + dy2 + 2 — dx2 + sdxdy + —^dxdy + 3
dy2 )+dx dy dx dy

m2 ds2 «(1 + 2m0) dx2 + dy2 -\ - (xdx + ydy)2

où m0 désigne le groupe homogène de 2 e ordre dans m et en admettant
R R'. En identifiant les coefficients respectifs de dx2, dxdy, dy2 on a:

du* x2 du* dv* xy dv3 y2
2 ^— \- 2m0 - -i ; 2 — + 2m,.

dx R2 dy dx R2 dy R2 °

d'où:
x2 + y2

(2) m0 - - ~ + A (x2 — y2)+2 Bxy

1 Rédigé en hommage à M. le professeur Dr Baeschlin, Rédacteur en chef
du S.Z.f. V. à l'occasion de son 75e anniversaire.
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On pourrait substituer X, Y kx, y dans ce groupe de 2e ordre

(3x2y — y3)

(3)

(4)

rr3 + xy2 A B
+ -- (X'3 — 3xy2)-

4R2

if + x2y

d2m0 d2m0

dx2 dif

4R2

R2

| (y* — 3yx2)+B-(3y2x — x*)

ou
d2m.

cx-

o <?m0

dy2 RR
(R * R')

Résultats faciles à interpréter. Le système est à axe neutre si

A B

1

1

Tr2

B
4R2

0

C'est le cas le plus fréquent en pratique.
L'équation (2) définit un faisceau linéaire circonscrit à un carré si

m0 est donné ainsi que le quotient A : B. Dans cette équation (2) les
paramètres de forme et d'orientation ne sont pas dissociés. Pour le calcul
des courbures admettons à priori B 0; seul subsiste le paramètre A

(variables séparées).

Courbures. Considérons un côté PxPt et sa transformée plane en
faisant abstraction du cas où il y a un point d'inflexion sur cette
transformée. Celle-ci a donc une courbure 1: p qui ne change pas de signe entre
Px et P2. Le calcul de l:p dépend de la formule de C. M. Schols (voir [1]
p. 243-260).

(5) 1 : p m F0 + FA

où F0 est un binôme indépendant de A tandis que Fa est un binôme
contenant A linéairement ([4] p. 79).

Cette courbure donne lieu pour chaque transformée PXP2 à deux
corrections angulaires Sx et 82 et on peut calculer rapidement ou contrôler
par voie graphique les valeurs S | Sx | + | 821, la différence D | 8X\ —
| 82 | et même le quotient q Sx : 82. Le calcul de D est particulièrement

rapide.

(6) Si ds (ds élément de transformée)

Pi

Considérons l'origine O des coordonnées et le contour fermé OPxP20.
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On sait que le paramètre A, qui définit la projection, est éliminé dans
l'expression:

1
ds (contour OPxP20)il

A cet effet on applique la formule de Green-Riemann qui permet de
convertir une intégrale double en une intégrale curviligne et réciproquement;

cette formule sera rappelée ci-dessous. Les termes en A s'éliminent
aussi dans l'équation (6) si le côté PXP2 est une corde de l'hyperbole
equilatere: XY constante ce qui résulte de l'équation:

(7) i : .p g _L. |(i _ n)XsinV — (1 + n) Ycosvj

([4] p. 79, [5] p. 105)

— n 4Ri.A, V étant l'azimut de PXP2. Pour ce calcul on ne fait pas
la discrimination entre la corde et la transformée.

Désignons par 1 : p0 et 1 : psoo les courbures pour V 0 et V 90°

(8) 1/ 11.Y+ lTLY _L^ V(l-n)2X2 + (l TTfY2 1 : Pmax.V \p.I \P9oo! 2R2
(maximum)

car ce résultat subsiste pour deux azimuts quelconques V et (V + 90°)
au lieu de 0° et 90°. Si PXP2 est une corde commune à l'ellipse m0 const,
et à l'hyperbole X Y const, on réalise à la fois une valeur maximum
pour la somme S (équation [6]) et l'élimination du paramètre n (ou A).

Choix du paramètre. Ce problème est assez complexe car on peut
formuler diverses hypothèses ([3] p. 25, 60), par ex.:
1° rendre aussi petite que possible la valeur moyenne de (m — l)2 pour

tout le territoire considéré.
2° rendre aussi petite que possible la valeur moyenne du carré du gra¬

dient de log. m.

Cette seconde solution fut déjà traitée partiellement dans notre
Bévue; un bref rappel des résultats acquis suffit.

La valeur moyenne à rendre minimum s'obtient en divisant l'intégrale

double

(9) I jj A log. m. da (da élément de surface)

par la surface du territoire. G. Darboux a recours à la formule de Green-
Riemann ([2] p. 284, [3] p. 25) pour trouver une solution générale.

En représentation plane, qui nous intéresse ici, on a:

m\2 (d log • m\2l

(10) ' ' dQ 8P \ f
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D'une façon ou d'une autre ce calcul ne présente aucune difficulté;
le résultat est connu. Les variables sont donc ici dissociées.

Ces notions fondamentales étant rappelées on peut passer au

Calcul des corrections au moyen d'abaques.

Il suffit d'appliquer les formules relatives à la courbure des
transformées en tenant compte du paramètre choisi. Les éléments de l'abaque
dépendent de ce paramètre.

Désignons par 1 : px, 1 : pm et 1 : p2 les courbures respectives de la
transformée au premier tiers, au milieu et au second tiers de celle-ci.

AX PxP2cosV; AY PxP2sinV

,,11 i.Quotient q: \q\m s- 2>|ç|>0.5 (11)
Pl P2

Ce quotient est indépendant du paramètre n (ou A) si on a:

XXY2 — X2Yx 0, c.-à-d. si la corde PXP2 prolongée passe par l'origine

0.

n „ PXP2 /1 1 \
Différence D. D se AX ¦ A Y =—— (12)

6R2 2 \ px p2 /

en valeur absolue et en radians. [5] p. 105)

Pour une longueur donnée PXP2 et AX AY, cette différence D a une
valeur extrême, le paramètre étant aussi donné.

L'abaque à alignement de la Fig. 1 est applicable au réseau Suisse

(axe neutre). Considérons un cas concret:

Côté Feldberg-Lägern (corrections 6",76 et 5",65)

AX 43,35 km A Y 30,2 km
D 1",11 (sexag) (chiffres non soulignés)

Ce moyen de contrôle est rapide et efficace

quotient \q\ 1.20 (chiffres soulignés)

pour Xx + 102,75 km X2 + 59,4 km

Pratiquement ces abaques sont à dresser à une échelle suffisante et
moyennant la précision voulue. Les résultats ci-dessus furent obtenus
avec un tel abaque.

Somme S. Par ex. pour Feldberg-Lägern 12",41.

L'abaque de la Fig. 2 n'est pas conçu pour une projection à axe
neutre mais pour un paramètre n — 0,5. Une seule lecture ne suffit
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Fig. 1

alors plus car on a un binôme, mais le calcul graphique est cependant
rapide. Ici surtout il faut un abaque assez grand en pratique

S <û PXP2
1

pin
— P P— M1!

1

2R2
(l,5Xm sin V — 0,5 Ym cos V)

2R!
(l,5XmA Y — 0,5 Ym ¦ AX) (radians)

(indice m pour le
milieu de PXP2)

Exemple

Les deux termes du binôme ne sont pas toujours à additionner.
L'abaque convient surtout pour les réseaux de 2e et 3e ordre. Une sur-
corrrection peut être nécessaire dans certains cas ([4] p. 279). On peut
concevoir d'autres abaques que ceux des Fig. 1 et 2.

Effectivement la transformée fut assimilée à une courbe de 3e ordre:

xm + 80 km Ym + 100 km
A Y + 25 km AX — 35 km
S 7",61 + 4",43 + 12 ",04 (sexag)

7]= aç+ bf + cg

|=0 ou Ç=PXP2. a 8j

d V

de
2l> 6c£iC 1 : p
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Si on forme la différence D on constate que le terme 2b est éliminé
ce qui explique aussi pourquoi ce calcul de D est simple.

60-

6-

s
IO.fr
¦Co

r. -jro

-ito

30

Fig. 2

On vérifie en outre que:

1 / PXP*
S ça PXP2 PXP2 [2b + 6c- -Ts2

Pm \ 2
- f(2b + 6cç)dç

Pi

En résumé on voit qu'on peut rapidement calculer ou, tout au
moins, contrôler les corrections angulaires. Pratiquement la différence D
surtout constitue un contrôle rapide et bienvenu. La solution préconisée
ci-dessus n'est du reste pas la seule.
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