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A propos de deux invariants relatifs aux
projections conformes en géodésie

par A. Ansermet

A l'occasion du 100e anniversaire de la mort de C. F. Gauß notre
Rédacteur en chef, qui comme on le sait est un des meilleurs connaisseurs
des travaux du génial mathématicien et géodésien, a rappelé tout ce que
lui doit la science géodésique. Le but de la présente note est de rendre plus
accessible aux lecteurs de notre Revue certains de ces problèmes en les
présentant sous une forme aussi peu abstraite que possible.

Remarques préliminaires

Faisons tout d'abord l'hypothèse que le domaine considéré autour
de l'origine des coordonnées est relativement restreint; les calculs se

prêtent alors à des développements en série.
Partons de l'équation initiale ([1] p. 253):

1 + n ufV" \ 1—n /V" \
(1) A cos h —— x cos —— u o < n < 1

2n \ R J 2n \ R J ~~

définissant une projection conforme dite parfois à «variables séparées».
A est le rapport de similitude, n le paramètre de la projection tandis que
R — VMN (rayon sphère de référence). En faisant subir aux axes de
coordonnées (x, y) une rotation les variables ne sont plus séparées mais
les invariants dont il sera question ici sont indépendants de l'orientation
des axes; les calculs sont seulement un peu moins simples.

L'équation (1), développée, devient ([4] p. 109):

1 1
(2) (A — 1) H (1 + n) x2 + (1 + n) n x4- +\ i \ >

^jr-vja v / 4SR*

-1 (1 — n)y2 (1 — n) n yi +4R* 48R* v ' y
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Pour le calcul des déformations et altérations de courbure géodésique

on peut s'en tenir en général aux valeurs principales (2e ordre).
Pour A donné et n variable l'équation (2) représente donc un faisceau
linéaire de coniques (Büschel) circonscrit à un carré. Si A varie (n constant)

ce sont des ellipses homothétiques. Ces notions connues étant
rappelées il est aisé de calculer

l'altération totale de courbure géodésique
subie par un contour fermé (invariant).

L'équation initiale sera ici ([1] p. 260):

(3) dd- — | -—- sin '& — cos & ds
A \ Sx Sy J

qui exprime, en radians, l'angle de contingence relatif à la transformée
plane d'un arc de géodésique et calculons, pour un arc ou côté Px P2,

l'expression (voir [6]):

(4) fd& S E0 + Zn

Pi

qui est fractionnée en un terme indépendant de n et un terme variant
linéairement avec n:

(5) 270 sa -^ (x,. y2 — x2 yx); Zn QQ -^ (x2 y2 — x± y,)

E0 étant l'excès sphérique ou sphéroïdique du triangle
OPt P2 (O origine), tandis que pour n 1 :

(6) 27 sa (xx +x2) (y2 — y,), toujours en radians, qui est l'excès
2i?2

sphérique relatif au trapèze compris entre la transformée Px P2 et sa
projection orthogonale sur l'axe neutre (x o) de la projection conforme.
Ces résultats ne sont pas nouveaux.

Considérons maintenant un contour PXP2PS Pi, inscrit par ex.
dans une ellipse de centre O, l'indice i pouvant croître indéfiniment. Pour
ce contour fermé on a:

(7) j)d& Z01 + Em +-...+ Soi + ™ [(x2 y2 — x, y,) +

+ (x3 y3 — x2y2) + + (Xi yt — Xi y{)\ excès sph. total

Le groupe de termes en n est éliminé et l'invariance, par rapport à

n, de l'altération totale de courbure géodésique du contour fermé est
vérifiée. Ceci bien entendu dans la mesure où on peut s'en tenir aux
valeurs principales, ainsi qu'on l'a déjà énoncé. Cette solution d'un pro-
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blême fondamental paraît simple. C'est ce théorème que C. F. Gauß a
traité de façon magistrale sous une forme tout à fait générale.

Second problème d'inuariance; le critère de G. Darboux

Notre Revue a déjà fait allusion à cette théorie: L'éminent
mathématicien français, trouvant «quelque peu confuse» la théorie connue de
Tissot, ([1] p. 246) a énoncé le principe ci-après repris du reste de Tchebychef

([3], [5]):

1° Le contour du territoire à cartographier est une isomètre de la pro¬
jection conforme (A constant).

2° La valeur moyenne du carré du gradient de Log A, pour le dit terri¬
toire, est un extrêmum (critère de G. Darboux).

(8) ffi^l + (^)'] dXdy ¦* eXtrêmUm

Ce problème a été suffisamment étudié ([3], [5]):
Comparons l'équation des isomètres homothétiques (n donné)

(9) (A-— 1) m JL [(1 + n) x» + (1 — n) y-]

x* y2
et (10) —y + — 1 qui est l'équation de l'ellipse circonscrite au

a territoire.

(H)

Il faut distinguer 2 cas:

ft2 — a2 1 — n a2

ft2 -I- a2 1 + n 62

c'est celui qui répond à la condition (8)

ft2 — a2 / b1 — a2
ou ni I paramètre n'

ft2 + a2 \F ft2 + a2

Le calcul de l'extrêmum est facile en fonction des moments d'inertie:

JJ x2 do- — cPb et J7 y*da TL a/j3 où da dx dy

et en remarquant que JJ do- ir ab.

La fonction variable a la forme, après division par ir ab:

(12) C {(1 + n)2 a2 + (1 — n)2 b*\

où C est un facteur. Il y a extrêmum pour:
(1 + n) a2 — (1 — n) è2 o
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L'ellipse-enveloppe est une isomètre et, en comparant les expressions
(9) et (12), on voit que:

(A — 1) (A — 1)
(i + ^VrTT+^-^/V^r

est indépendant du paramètre de forme n. Pour une valeur A donnée c'est
un invariant.

En d'autres termes la valeur moyenne du carré du gradient de Log A
demeure inchangée pour toutes les ellipses-enveloppes appartenant à un
même faisceau linéaire (circonscrites à un carré).

L'orientation des axes de coordonnées ne joue pas de rôle; il suffit de
considérer qu'une des courbes du faisceau est un cercle.

La question se pose encore de savoir ce que devient cette propriété
d'invariance dans le cas général où le territoire est étendu et la surface
quelconque. C'est un problème de mathématiques pures.

Il faut se baser sur la théorie de G. Darboux ([3]); ce dernier a posé:

Log A cp

et, remarquant que le gradient de cp est égal à V Acp, introduit comme
relation initiale le paramètre différentiel de 1er ordre:

(13, J, - -i-i ^v-—(S L-
appelé aussi 1er différentiateur de Beltrami (voir [2]). La condition à
réaliser est donc:

(14) JJ Acp. du —s» extrêmum.

On sait que E, F, G sont les grandeurs fondamentales de 1er ordre
tandis que u et » sont des coordonnées curvilignes. Pour le surplus le
mémoire susmentionné contient tous les développements.

En résumé il a paru opportun de consacrer quelques lignes, d'une
part à un célèbre théorème de Gauß que l'on ne peut guère présenter sous
une forme plus simple. D'autre part une très modeste contribution à

l'étude des projections fait l'objet de la seconde partie de cet exposé.
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