Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 52 (1954)

Heft: 1

Artikel: Die Berechnung des Logarithmus einer Primzahl [Schluss]

Autor: Baeschlin, C.F.

DOI: https://doi.org/10.5169/seals-210926

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les exposés de MM. Favarger et Chenuz furent suivis avec un vif intérêt, et M. Pierre Deluz, président de la Société vaudoise des géomètres officiels, les remercia chaleureusement.

Ls H.

Die Berechnung des Logarithmus einer Primzahl

Von C. F. Baeschlin, Zollikon

(Schluß)

Setzen wir die Werte für die B in die Gleichung (6) ein, so erhalten wir

$$\begin{cases} \ln p = \frac{1}{2} \left[\ln (p+1) + \ln (p-1) \right] + \\ + \left[\ln (p+1) - \ln (p-1) \right] \left\{ \frac{1}{4p} + \frac{1}{24p^3} + \frac{7}{360p^5} + \frac{181}{15120p^7} + \frac{1903}{226800p^9} + \frac{23729}{3742200p^{11}} \right\} \end{cases}$$

Da $\log a = \text{Mod. } ln \ a$ und auf der rechten Seite lauter natürliche Logarithmen als Faktoren vorhanden sind, finden wir aus (11) sofort die Formel für den Briggschen Logarithmus von p, $\log p$., indem wir überall ln durch \log ersetzen, indem wir aus (11) auf beiden Seiten mit dem Modulus multipliziert denken.

So erhalten wir:

$$\begin{cases} \log p = \frac{1}{2} \left[\log (p+1) + \log (p-1) \right] \\ + \left[\log (p+1) - \log (p-1) \right] \left\{ \frac{1}{4p} + \frac{1}{24p^3} + \frac{7}{360p^5} + \frac{181}{15120p^7} + \frac{1903}{226800p^9} + \frac{23729}{3742200p^{11}} \right\} \end{cases}$$

Da $\log (p+1) - \log (p-1)$ klein ist, wenn p > 1000, ist die Formel (12) sehr viel rascher konvergent als die ursprüngliche Formel (5), in der die Reihe auf der rechten Seite noch mit dem Modulus multipliziert werden müßte, wenn wir $\log p$ erhalten wollten.

Wir können (12) noch in einer für die numerische Rechnung bequemeren Form erhalten, indem wir mit F. J. Duarte¹ setzen

(13)
$$S = \frac{1}{2} \left[\log (p+1) + \log (p-1) \right]$$

$$\Delta_0 = \frac{1}{4p} \left[\log (p+1) - \log (p-1) \right]$$

$$\Delta_k = \frac{\Delta_{k-1}}{6p^2} \quad (k=1, 2, 3, 4, 5)$$

Damit wird

$$\log p = S + \Delta_0 + \Delta_1 + \frac{28}{10} \Delta_2 + \frac{724}{70} \Delta_3 + \frac{30448}{700} \Delta_4 + \frac{1518656}{7700} \Delta_5 + R_5$$

wie man ohne weiteres aus (12) erkennt. Der Rest R_5 ist kleiner als ein Viertel der Einheit der 43. Dezimalstelle; das letzte hingeschriebene Glied mit Δ_5 ist $< 0.0^{38}5$, wenn p > 1000 ist. Da Duarte in dem zitierten Werk die Briggschen Logarithmen für alle Primzahlen von 1 bis 10007 auf 36 Dezimalen gibt, ist p > 10007.

Zur Erläuterung behandeln wir die Berechnung von $\log p$ mit p = 10009. Es ist

$$p + 1 = 10\ 010 = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$$

 $p - 1 = 10\ 008 = 2^3 \cdot 3^2 \cdot 139.$

Wir wollen log 10009 auf die 16. Stelle genau berechnen. Nach den genannten Tafeln von *Duarte* finden wir:

log 10010	4.0004	3407	7479	3186.	
log 10	1.				
log 13	1.1139	4335	2306	8367,	
log 11	1.0413	9268	5158	$\mathbf{2250_4}$	
log 7	0.8450	9804	0014	2568_3	

¹ F. J. Duarte, Nouvelles Tables logarithmiques à 36 décimales, Paris 1933. S VIII.

Wir führen die Berechnung von Δ_0 mit 8stelligen Logarithmen durch, was, wie wir sehen werden, genügt, um die 16. Stelle von $\log p$ richtig zu erhalten.

$$S = 4.0003 9068 7082 3410_9$$

 $\Delta_0 = 0.0000 0000 2167 5690_5$
 $\Delta_1 = 0361$

 $\log 10009 = 4.0003 9068 9249 9101.$

Nach Thesaurus = 4.0003 9068 92

D.h. der log 10 009 im 10stelligen Thesaurus ist vollständig korrekt. Als Orientierung für die Berechnung auf 36 Stellen geben wir für unsern Fall noch

$$rac{28}{10} \, arDelta_{\mathbf{2}} = 168\ 0000\ 0000 \cdot 10^{-36}$$
 $rac{724}{70} \, arDelta_{\mathbf{3}} = 103._{\mathbf{2}} - 10^{-36}$ $rac{30\ 448}{700} \, arDelta_{\mathbf{4}} = 4.51 \cdot 10^{-44}$

d.h. die Glieder mit Δ_4 und Δ_5 liegen für $p > 10\,000$ weit unterhalb der Rechenschärfe, auch für die 36. Stelle; für diese Genauigkeit genügt also die Mitnahme von Δ_0 , Δ_1 , Δ_2 und Δ_3 .

Wenn $\log p$ auf die 36. Stelle genau berechnet werden soll, muß die Berechnung von Δ_0 und Δ_1 mit einer 16stelligen Rechenmaschine in zwei Gruppen vorgenommen werden, während für die Berechnung von Δ_2 einfache Rechnung genügt. Auf jeden Fall ist wegen der Stellenzahl von 6 p^2 eine 12stellige Maschine notwendig, wobei dann aber die Berechnung von Δ_0 in 3 Gruppen vorgenommen werden muß, während für Δ_1 2 Gruppen genügen. Weiter treten wir auf rechentechnische Fragen nicht ein.

L'étude du sol et les ouvrages d'assainissement

Par Pierre Regamey, Dr ing., Lausanne

Extrait de l'ouvrage publié à l'occasion du centenaire de l'Ecole polytechnique de l'Université de Lausanne

En matière d'assainissement de terrains agricoles, l'étude systématique du sol apporte à l'auteur du projet des renseignements utiles et souvent déterminants.

Diverses propriétés physiques des terres ont une influence directe sur le fonctionnement des ouvrages d'assainissement, drainages, canaux, ou pompages. Réciproquement, connaissant les caractéristiques du sol, notamment la vitesse de filtration par unité de pente et la perméabilité, il est possible de calculer les dimensions de ces ouvrages, en particulier les sections, profondeurs et surtout les écartements des conduites souterraines ou des canaux, ceci en fonction du rendement attendu de ces ouvrages et du régime pluviométrique.

Il est donc intéressant de savoir ce que, dans ce domaine, l'ingénieur peut attendre des résultats obtenus en laboratoire ou dans les sols en place. Il est utile surtout de connaître la répercussion des erreurs entachant les mesures, sur les calculs de dimensionnement. Notre intention est d'analyser ici les principales de ces sources d'erreurs.

Deux constatations préliminaires s'imposent:

Le caractère extensif des travaux d'assainissement en terrains agricoles ne permet pas une étude aussi approfondie des sols qu'en matière de génie civil. Et pourtant, il faut plus que partout ailleurs prévoir le minimum possible d'ouvrages, sans pouvoir admettre un coefficient de sécurité. Le capital investi ne serait, en effet, plus en rapport avec l'augmentation de rendement des surfaces assainies.