Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 51 (1953)

Heft: 5

Artikel: Les compensations fractionnées et le contrôle des poids et erreurs

quadratiques moyennes

Autor: Ansermet, A.

DOI: https://doi.org/10.5169/seals-210080

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les compensations fractionnées et le contrôle des poids et erreurs quadratiques moyennes

Par A. Ansermet

Les compensations dites fractionnées se présentent parfois en géodésie lors qu'on a un système de n équations d'erreur contenant u inconnues et un groupe de r équations de condition liant ces u inconnues ou certaines de celles-ci. Le calculateur éprouve alors le besoin d'opérer certains contrôles et d'apprécier dans quelle mesure la précision est améliorée pour chacune des deux étapes que comporte la compensation.

Auparavant rappelons rapidement ce qui se passe quand il n'y a pas de conditions, en traitant un cas concret: la détermination d'un point P; le système d'équations ci-après fournit tous les éléments

visée
$$AP$$
 (longueur 6366 m) $l_1 + v_1 = +0.6 \ \delta y - 0.8 \ \delta x$ poids $p_1 = 2$ visée BP (longueur 6366 m) $l_2 + v_2 = -0.8 \ \delta y - 0.6 \ \delta x$ poids $p_2 = 2$ visée CP (longueur 6366 m) $l_3 + v_3 = +0.0 \ \delta y + 1.0 \ \delta x$ poids $p_3 = 3$ visée DP (longueur 6366 m) $l_4 + v_4 = +1.0 \ \delta y + 0.0 \ \delta x$ poids $p_4 = 4$

(unités: 1 cm. 1" centés.)

On a immédiatement ([1] p. 81-94):

$$M_{y^2} = \frac{m^2}{p_y} = \frac{m^2}{6}$$
 ou $m^2 \subseteq [pvv]: (n-u)$ et $M_{x^2} = \frac{m^2}{p_x} = \frac{m^2}{5}$

Ce sont des extrêmas pour l'ellipse d'erreur de plus: $p_1 m_1^2 = p_2 m_2^2 = \ldots = p_n m_n^2 = P_1 M_1^2 = P_2 M_2^2 = \ldots = P_n M_n^2 = m^2$ ou P_i et M_i sont les poids et erreurs moyennes des $(l_i + v_i)$

$$\frac{1}{P_1} = 0.36 \times \frac{1}{6} + 0.64 \times \frac{1}{5} = 0.188 = \frac{1}{5.3};$$

$$\frac{1}{P_2} = 0.64 \times \frac{1}{6} + 0.36 \times \frac{1}{5} = 0.179 = \frac{1}{5.6}$$

$$\left[p_i : P_i^2\right]_1^n = \left[M^2_i : m^2_i\right]_1^n = 2 \times 0.188 + 2 \times 0.179 + 3 \times \frac{1}{5} + 4 \times \frac{1}{6} = 2.001 = u \text{ (extrêmum)}$$

Chaque valeur M_i fournit une paire de tangentes à l'ellipse d'erreur moyennant multiplication de M_i par s_i/ρ'' ($s_i = 6355$ m). Les poids P_i suivent une loi mathématique ici, ce qui tient à la nature du problème.

En admettant $m = \pm 3'', 16 = \sqrt{10}$ on a:

$$M_{\text{max}}^2 = 2,00 \text{ cm}^2$$
 $M_1'^2 = 1,88 \text{ cm}^2$ $\left(M_i' = M_i \frac{s_i}{\varrho''}\right)$ $M_{\text{min}}^2 = 1,67 \text{ cm}^2$ $M_2'^2 = 1,79 \text{ cm}^2$ $M_2'^2 = 3,67 \text{ cm}^2$ $M_2'^2 = 3,67 \text{ cm}^2$ $M_2'' = 3,67 \text{ cm}^2$

On effectue une première compensation en faisant abstraction des conditions: [pav'] = 0, [pbv'] = 0, [pcv'] = 0...

Les résidus v_i sont fractionnés: $v_i = v_i + v''_i$.

En d'autres termes les valeurs provisoires des inconnues sont corrigées une première fois (corrections δx , δy ...), mais ces résultats ne sont pas définitifs. Les éléments fournis par cette première compensation doivent encore être modifiés (Surcorrections Δx , Δy , Δz) pour tenir compte des équations de condition qui peuvent revêtir la forme:

$$A_1 \Delta x + A_2 \Delta y + A_3 \Delta Z + \dots + W_1 = 0$$

$$B_1 \Delta x + B_2 \Delta y + B_3 \Delta Z + \dots + W_2 = 0$$

où $W_1, W_2...$ sont les termes absolus et expriment des discordances. Limitons le calcul au cas de 2 inconnues et admettons des poids égaux $(p_i = 1)$ puis calculons le poids P_1 de la fonction $(l_1 + v_1)$ par la formule connue ([2] p. 180):

$$\frac{1}{P_1} = a_1^2 [aa] + b_1^2 [\beta \beta] + 2 a_1 b_1 [a\beta] - \frac{[(A_1 a_i + A_2 \beta_i) (a_1 a_i + b_1 \beta_i)]^2}{[(A_1 a_i + A_2 \beta_i) (A_1 a_i + A_3 \beta_i)]}$$

développons le numérateur du dernier terme:

$$\left\{a_1(A_1[aa] + A_2[a\beta]) + b_1(A_1[a\beta] + A_2[\beta\beta])\right\}^2 = (a_1 T_1 + b_1 T_2)^2$$
 où T_1 et T_2 sont appelés parfois coefficients transitoires;

Remplaçons successivement (a_1, b_1) par (a_2, b_2) , (a_3, b_3) ... (a_n, b_n) et formons la somme: $\sum (a_i T_1 + b_i T_2)^2 = [aa] T_1^2 + [bb] T_2^2 + 2[ab] T_1 T_2 =$

$$A_{1}^{2}[aa]([aa] + [ab][a\beta]) + A_{2}^{2}[\beta\beta]([ab] + [bb][\beta\beta] + \\ + 2 A_{1} A_{2}([aa] + [ab] + [ab] + \\ + A_{1}^{2}[a\beta]([ab] + [bb] + \\ + A_{2}^{2}[a\beta]([aa] + [bb] + \\ + 2 A_{1} A_{2}[\beta\beta]([ab] + [ab] + \\ + 2 A_{1} A_{2}[\beta\beta]([ab] + [bb] + \\ + 2 A_{1} A_{2}[ab] + \\ +$$

Les 3 premiers binômes, entre parenthèses, sont égaux à 1 et les 3 autres sont nuls. Cette somme de numérateurs est égale au dénominateur commun; pour des poids inégaux il faut former les quotients

$$\frac{p_1}{P_1}$$
, $\frac{p_2}{P_2}$... $\frac{p_n}{P_n}$ et finalement:

$$[p:P]_1^n = 2-1$$
 (en général $[p:P]_1^n = u-r$)

Ce qui peut aussi être établi autrement.

Application: Deux points nouveaux P(x, y) et P'(x', y') sont rattachés à 4 points connus A, B, C, D au moyen de mesures donnant lieu au système ci-après d'équations d'erreur:

visée
$$AP$$
: $l_1+v_1=+0.6 \ \delta y -0.8 \ \delta x$ poids $p_1=2$ visée BP $l_2+v_2=-0.6 \ \delta y -0.8 \ \delta x$ poids $p_2=2$ angle APB : $l_3+v_3=-1.2 \ \delta y +0.0 \ dx$ poids $p_3=1$ visée CP' : $l_4+v_4=$ $-0.6 \ \delta y'+0.8 \ \delta x'$ poids $p_4=2$ visée DP' : $l_5+v_5=$ $+0.6 \ \delta y'+0.8 \ \delta x'$ poids $p_5=2$ angle $CP'D$: $l_6+v_6=$ $+1.2 \ \delta y'+0.0 \ \delta x'$ poids $p_6=1$

Les 4 visées ont la même longueur $s_i = 2063$ m (unités 1 cm et 1" sexag.) Cet exemple, comme le précédent, a un caractère didactique mais il suffit pour le but poursuivi ici.

La visée PP' ne peut pas être effectuée mais la distance PP' a été mesurée avec assez de précision pour pouvoir être considérée comme définitive. Seule cette distance crée une corrélation entre P et P'. Admettons de plus $x \subseteq x'$. La compensation partielle donne:

$$p_{y} = 2,88 = p_{y1}; \ p_{x} = 2,56 = p_{x1};$$

$$\frac{1}{P_{1}} = 0,36 \times \frac{1}{2,88} + 0,64 \times \frac{1}{2,56} = \frac{3}{8} = 0,375$$

$$\frac{1}{P_{3}} = 1,44 \times \frac{1}{2,88} = 0,5;$$

$$[p_{i}: P_{i}]_{1}^{6} = [M_{i}^{2}: m_{i}^{2}]_{1}^{6} = 4 \times \frac{2}{8/3} + 2 \times \frac{1}{2} = 4 = u.$$

Résultats valables en faisant abstraction de la condition. Cette dernière revêt la forme générale ci-après:

$$\begin{array}{c} A_1 \, \delta y \, + \, A_2 \, \delta x \, + \, A_3 \, \delta y' \, + \, A_4 \, \delta x' \, + \, W \, = \, 0 \\ \text{où} \qquad A_1 \, = \, - \, A_3 \, = \, + \, 1 \quad \text{et} \qquad A_2 \, = \, A_4 \, = \, 0 \\ \\ \frac{1}{P_1'} \, = \, \frac{3}{8} \, - \, \frac{\left(a_1 \, A_1 \left[\frac{aa}{p}\right]\right)^2}{A_1^2 \left[\frac{aa}{p}\right] + \, A_3^2 \left[\frac{\gamma \gamma}{p}\right]} \, = \, \frac{3}{8} \, - \, \frac{\left(0, 6 \cdot \frac{1}{2,88}\right)^2}{\frac{1}{2,88} + \frac{1}{2,88}} \, = \\ \\ = \, \frac{3}{8} \, - \, 1,44 \, \cdot \frac{0,36}{(2,88)^2} \, = \, \frac{3}{8} \, - \, \frac{1}{16} \, = \, \frac{5}{16} \\ \\ \frac{1}{P_3'} \, = \, \frac{1}{2} \, - \, 1,44 \, \left(\frac{1,2}{2,88}\right)^2 \, = \, \frac{1}{2} \, - \, \frac{1}{4} \, = \, \frac{1}{4} \\ \\ \frac{1}{p_{'y}} \, = \, \frac{1}{2,88} \, - \, 1,44 \, \left(\frac{1}{2,88}\right)^2 \, = \, \frac{1}{5,76}, \qquad \frac{1}{p_{'x}} \, = \, \frac{1}{2,56} \, - \, 0 \, = \, \frac{1}{2,56} \end{array}$$

où les P'_i sont les P_i modifiés; groupons ces résultats:

on a admis
$$m \ \underline{\omega} \ m' = \pm 2'' \text{ sexag}$$

L'erreur moyenne d'une mesure de poids 1 peut être calculée de trois façons différentes.

$$p_i m^2_i = P'_i = M'_i^2 = m^2 \subseteq m'^2$$

de plus:
$$M_x=\pm 1,25~{
m cm}$$
 $M'_x=\pm 1,25~{
m cm}$ $M'_x=\pm 1,25~{
m cm}$ $M'_y=\pm 0,83~{
m cm}$ extrêmas

Rayon cercle orthoptique M = 1.72 cm.

Rayon cercle orthoptique M' = 1.50 cm.

Ce calcul fractionné permet d'apprécier le rôle des équations de condition; de plus le contrôle par la formule

$$[p_i: P'_i]_1^n = [M'_i^2: m^2_i] = u - r$$

est aisé. Le fractionnement fait donc apparaître 3 valeurs pour l'erreur moyenne d'une mesure de poids 1. On sait que l'échelle de l'ellipse d'erreur en dépend. Enfin, dans certains cas, les mesures doivent être corrigées pour tenir compte des «réductions d'azimut». Au sud du Tessin un côté de 4 km parallèle à l'axe neutre (x=0) donne lieu à des réductions de 4" centésimales environ.

Bibliographie

- [1] Baeschlin C. F. Ausgleichungsrechnung und Landesvermessung (I, II).
- [2] Jordan-Eggert. Vermessungskunde I
- [3] Ansermet A. Les calculs de Compensation (Revue suisse mensurations 1945, No. 8).

Die Kläranlage der Stadt Winterthur

Bn. Die Stadt Winterthur hat im Jahre 1950 eine neue Kläranlage in Betrieb genommen, die für schweizerische Verhältnisse verschiedene Neuerungen aufweist. Dem ersten Ausbau der Anlage, dessen Oberleitung Herr Stadtingenieur Textor innehatte, wurde eine Einwohnerzahl von 65000 zugrunde gelegt und eine Erweiterungsmöglichkeit auf 130000 Einwohner vorgesehen. Die natürliche Vorflut für die Ableitung der Ab-

aufmerksam. Die Schlußbetrachtung ist jedem Kenner aus der Seele geschrieben.

Ich kann das vorliegende, außerordentlich billig angebotene Buch, das als Dissertation natürlich über ein eingehendes Literaturverzeichnis von 4 Seiten verfügt, aus voller Überzeugung zur Anschaffung empfehlen.

F. Baeschlin

Errata

Page 136, ligne 24: lire P_i (au lieu de P_i^2)

Page 136, ligne 27: lire 6366 (au lieu de 6355)

Page 139, ligne 12: lire $P_{i'} \times M'_{i'}$ (au lieu de $P_{i'} = M'_{i'}$)

Betr. Inserat über den Reduktions-Distanzmesser WILD RDS

Bei diesem Inserat ist bei der Genauigkeitsangabe ein bedauerlicher Irrtum unterlaufen. Der WILD RDS arbeitet nach dem Prinzip des Reichenbachschen Distanzmessers mit senkrechter Latte. Die Genauigkeit der Entfernungsmessungen beträgt deshalb 1 bis 2 Dezimeter auf 100 m Distanz und nicht 1 bis 2 Zentimeter. Der Irrtum beruhte von seiten unserer Firma auf einer Verwechslung mit dem Reduktions-Distanzmesser RDH, für den eine Genauigkeit von 1 bis 2 cm zutrifft, und von seiten der Druckerei durch Nichtbeachtung unserer Korrektur.

Sommaire

V. Gmür, ingénieur rural du Canton de Schaffhouse, Les améliorations foncières au Canton de Schaffhouse. – Dr. iur. K. Heer, Schaffhouse, Le droit des améliorations foncières du Canton de Schaffhouse. – Ed. Imhof, L'état actuel de la cartographie officielle en Suisse. – Ls. Hegg, Bericht über die Luzerner Hauptversammlung. – Progrès dans la mensuration cadastrale photogrammétrique: a) A. Pastorelli, Organisation und Ausführung der photogrammetrischen Grundbuchvermessung von Malvaglia (Schluß). – Un Tunnel sous la Manche. – Procès-verbal de la 24e conférence des présidents. – Orientation sur le Congrès international des Géomètres en 1953 à Paris. – Littérature: Analyse. – Errata.

Redaktion: Vermessungswesen und Photogrammetrie: Prof. Dr. C. F. Baeschlin, Zollikon, Chefredaktor; Kulturtechnik: Dr. Hans Lüthy, Dipl.-Ing., Wabern bei Bern, Seftigenstraße 345 Pianung und Aktuelles: Dipl.-Ing. E. Bachmann, Paßwangstraße 52, Basel

Redaktionsschluß am 1. jeden Monats

In sertion spreis: 25 Rp. per einspaltige Millimeter-Zeile + 10 $^{0}/_{0}$ Teuerungszuschlag. Bei Wiederholungen Rabatt. Schluß der Inseratenannahme am 6. Jeden Monats. Abonnementspreis: Schweiz Fr. 15.-; Ausland Fr. 20.- Jährlich.

Expedition, Administration und Inseratenannahme: Buchdruckerei Winterthur AG., Telephon (052) 2 22 52