Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 51 (1953)

Heft: 3

Artikel: Die Genauigkeit des Rückwärtseinschneidens

Autor: John, R.K.C.

DOI: https://doi.org/10.5169/seals-210070

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Genauigkeit des Rückwärtseinschneidens

Von Dr. R. K. C. Johns, Geodetic Survey of Canada

In Jordan-Eggerts "Handbuch der Vermessungskunde", Band II/1, 9. Auflage, ist auf den Seiten 450-452 die Ableitung des mittleren Punktfehlers dargestellt.

Wir wollen eine andere Darstellung des mittleren Punktfehlers entwickeln, welche die direkten geometrischen Zusammenhänge der Fehlerfortpflanzung enthält.

I

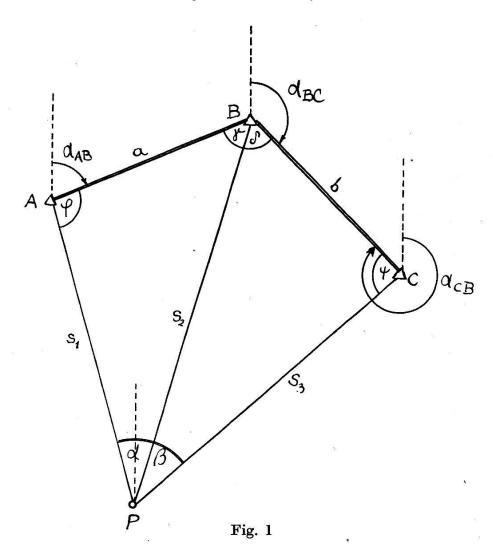
Gemäß der Fig. 1 können folgende Gleichungen aufgestellt werden, welche die Berechnung der Koordinaten x_p , y_p des Neupunktes P ermöglichen.

Gegeben: Koordinaten der Punkte A, B, C

Gemessen: Winkel α , β mit mittleren Fehlern $\pm m_{\alpha}$, $\pm m_{\beta}$

Gesucht: mittlerer Punktfehler

$$m_p = \sqrt{m_x^2 + m_y^2}$$



Aus den bekannten Azimuten berechnen wir

$$\gamma + \delta = a_{BA} - a_{BC}$$

Weiter, aus dem Viereck ABCP

(2)
$$\varphi + \psi + \alpha + \beta + \gamma + \delta - 360^{\circ} = 0$$

und

(3)
$$\frac{\sin\varphi}{\sin\psi} - \frac{b}{a} \frac{\sin\alpha}{\sin\beta} = 0$$

Die Gl. (2) und (3) erlauben uns, φ und ψ als Funktionen von α und β zu bestimmen

(4)
$$\varphi = \varphi (\alpha, \beta); \psi = \psi (\alpha, \beta)$$

Sind φ und ψ bekannt, dann erhalten wir aus den Dreiecken ABP und BCP:

(5)
$$\gamma = 180^{\circ} - (\alpha + \varphi)$$

$$\delta = 180^{\circ} - (\beta + \psi)$$

und die Distanzen:

$$AP = s_1 = \frac{a}{\sin a} \sin \gamma$$

(7)
$$CP = s_3 = \frac{b}{\sin \beta} \sin \delta$$

Als Rechenkontrolle haben wir:

(8)
$$BP = s_2 = \frac{a \sin \varphi}{\sin \alpha} = b \frac{\sin \psi}{\sin \beta}$$

Die Azimute sind durch die Gleichungen bestimmt:

$$\alpha_1 = \alpha_{AP} = \alpha_{AB} + \varphi$$

$$a_2 = a_{BP} = a_1 + a = a_3 - \beta$$

$$a_3 = a_{CP} = a_{CB} - \psi$$

Als Endergebnis erhalten wir die Koordinaten, mit den Rechenkontrollen:

(12)
$$Y_P = Y_A + s_1 \sin \alpha_1 = Y_C + s_3 \sin \alpha_3$$

(13)
$$X_P = X_A + s_1 \cos \alpha_1 = X_C + s_3 \cos \alpha_3$$

Nachdem die obigen Gleichungen vorliegen, welche die Berechnung der Koordinaten als Funktion der gemessenen Winkel α , β ermöglichen, wollen wir uns mit dem Problem des mittleren Punktfehlers befassen.

Die Gl. (2) und (3) können als implizite Funktionen von α , β , φ (α , β) und ψ (α , β) folgendermaßen geschrieben werden:

(2a)
$$f[a, \beta, \varphi(a, \beta), \psi(a, \beta)] = 0$$

und

(3a)
$$g[\alpha, \beta, \varphi(\alpha, \beta), \psi(\alpha, \beta)] = 0$$

Nach den Regeln der Differentiation der impliziten Funktionen erhalten wir aus (2)

(14)
$$1 + \frac{\partial \varphi}{\partial \alpha} + \frac{\partial \psi}{\partial \alpha} = 0$$
$$1 + \frac{\partial \varphi}{\partial \beta} + \frac{\partial \psi}{\partial \beta} = 0$$

und aus (3), nach goniometrischen Umformungen

$$-\operatorname{ctg} \alpha + \operatorname{ctg} \varphi \frac{\partial \varphi}{\partial \alpha} - \operatorname{ctg} \psi \frac{\partial \psi}{\partial \alpha} = 0$$

$$+ \operatorname{ctg} \beta + \operatorname{ctg} \varphi \frac{\partial \varphi}{\partial \beta} - \operatorname{ctg} \psi \frac{\partial \psi}{\partial \beta} = 0$$

Aus den Gl. (14) und (15) werden die partiellen Ableitungen $\frac{\partial \varphi}{\partial a}$, $\frac{\partial \varphi}{\partial \beta}$, $\frac{\partial \psi}{\partial a}$, $\frac{\partial \psi}{\partial \beta}$ berechnet. Da aber

(16)
$$d\varphi = \frac{\partial \varphi}{\partial \alpha} d\alpha + \frac{\partial \varphi}{\partial \beta} d\beta$$
$$d\psi = \frac{\partial \psi}{\partial \alpha} d\alpha + \frac{\partial \psi}{\partial \beta} d\beta$$

erhalten wir:

(17)
$$d\varphi = -\frac{\operatorname{ctg} \psi - \operatorname{ctg} a}{\operatorname{ctg} \varphi + \operatorname{ctg} \psi} da - \frac{\operatorname{ctg} \beta + \operatorname{ctg} \psi}{\operatorname{ctg} \varphi + \operatorname{ctg} \psi} d\beta$$

(18)
$$d\psi = -\frac{\operatorname{ctg}\varphi + \operatorname{ctg}\alpha}{\operatorname{ctg}\varphi + \operatorname{ctg}\psi}d\alpha - \frac{\operatorname{ctg}\beta - \operatorname{ctg}\varphi}{\operatorname{ctg}\varphi + \operatorname{ctg}\psi}d\beta$$

Es kann weiter gefunden werden, aus (5):

$$(19) d \gamma = - d a - d \varphi$$

$$(20) d\delta = -d\beta - d\psi$$

aus (6):
$$(21) \qquad ds_1 = -s_1 \ (\operatorname{ctg} \gamma + \operatorname{ctg} \alpha) \ d\alpha - s_1 \ \operatorname{ctg} \gamma \ d\varphi$$
 aus (7):
$$(22) \qquad ds_3 = -s_3 \ (\operatorname{ctg} \beta + \operatorname{ctg} \delta) \ d\beta - s_3 \ \operatorname{ctg} \delta \ d\psi$$
 aus (9):
$$d\alpha_1 = d\varphi$$
 aus (11):
$$d\alpha_3 = -d\psi$$
 aus (12):
$$dY_p = \sin \alpha_1 ds_1 + s_1 \cos \alpha_1 d\alpha_1$$
 aus (13):

 $(26) dX_p = \cos \alpha_1 ds_1 - s_1 \sin \alpha_1 d\alpha_1$

Die obigen Gleichungen erlauben uns, die vollständigen Differentiale der Koordinaten des Neupunktes P nach α und β zu erhalten.

III

Wenn in (25) die entsprechenden Werte für ds_1 , da_1 und $d\varphi$ eingesetzt werden, erhalten wir nach der Durchführung von Umformungen:

(27)
$$dY_p = (-M_1 \Delta Y_A - M_2 \Delta X_A) d\alpha - (+N_1 \Delta Y_A + N_2 \Delta X_A) d\beta$$
 sowie auch von (26):

(28)
$$dX_p = (-M_1 \Delta X_A + M_2 \Delta Y_A) d\alpha - (-N_1 \Delta X_A + N_2 \Delta Y_A) d\beta$$
 wo

(29)
$$M_{1} = + \frac{\operatorname{ctg} \alpha \operatorname{ctg} \psi + 1}{\operatorname{ctg} \varphi + \operatorname{ctg} \psi} \qquad M_{2} = + \frac{\operatorname{ctg} \psi - \operatorname{ctg} \alpha}{\operatorname{ctg} \varphi + \operatorname{ctg} \psi}$$

$$N_{1} = + \frac{\operatorname{ctg} \beta + \operatorname{ctg} \psi}{\operatorname{ctg} \varphi + \operatorname{ctg} \psi} \operatorname{ctg} (\alpha + \varphi)$$

$$N_{2} = + \frac{\operatorname{ctg} \beta + \operatorname{ctg} \psi}{\operatorname{ctg} \varphi + \operatorname{ctg} \psi}$$

$$\Delta X_{A} = X_{P} - X_{A}$$

$$\Delta Y_{A} = Y_{P} - Y_{A}$$

bedeuten.

Aus den Gl. (27) und (28) können die entsprechenden mittleren Fehler der Koordinaten gebildet werden:

(30)
$$m_y^2 = (M_1 \Delta Y_A + M_2 \Delta X_A)^2 m_\alpha^2 + (N_1 \Delta Y_A + N_2 \Delta X_A)^2 m_\beta^2$$
 und

(31) $m_x^2 = (M_1 \Delta X_A - M_2 \Delta Y_A)^2 m_\alpha^2 + (N_1 \Delta X_A - N_2 \Delta Y_A)^2 m_\beta^2$ Der mittlere Punktfehler, definiert als

$$m^2_{D} = m^2_{x} + m^2_{y}$$

wird daher

(32)
$$m_p^2 = s_1^2 [(M_1^2 + M_2^2) m_\alpha^2 + (N_1^2 + N_2^2) m_\beta^2]$$

Mit $m_\alpha = m\beta = m$ erhalten wir

$$m^2_{p} = m^2 s_1^2 (M_1^2 + M_2^2 + N_1^2 + N_2^2)$$

Werden die Werte M_1 , M_2 , N_1 und N_2 von (29) in Gl. (33) eingesetzt, dann erhalten wir nach Umformungen für den mittleren Punktfehler:

(34)
$$m_p^2 = m^2 s_1^2 \frac{\sin^2 \varphi \left[\sin^2 \beta \sin^2 (\alpha + \varphi) + \sin^2 (\beta + \psi) \sin^2 \alpha \right]}{\sin^2 (\varphi + \psi) \sin^2 \alpha \sin^2 \beta \sin^2 (\alpha + \varphi)}$$

Stehen uns mehr als drei Fixpunkte zur Verfügung und haben wir die Auswahl der Punkte für die Neupunktbestimmung zu treffen, dann können wir folgendermaßen vorgehen:

Wir ermitteln näherungsweise die Werte s_1 , φ , ψ , a, β , wobei die Genauigkeit von einigen Graden vollständig genügt. Setzt man in (34) die ermittelten Werte für s_1 , a, β , φ , ψ sowie den mittleren Fehler der Winkelmessung m ein, dann erhält man den zu erwartenden mittleren Fehler der Punktbestimmung m_p . Haben wir solche Untersuchungen für einige Varianten der Fixpunkte durchgeführt, werden wir uns für jene Fixpunkte entschließen, die den kleinsten mittleren Punktfehler ergeben.

IV

Die Überprüfung der Gl. (34) ergibt, daß, wenn sich die Summe ($\varphi + \psi$) 180° nähert, der mittlere Punktfehler stark zunimmt. Der Fall $\varphi + \psi$ = 180° kommt vor, wenn alle vier Punkte auf einem Kreis liegen, der durch die Punkte A, B, C definiert ist. Folglich werden wir, bevor wir ins Feld gehen, jedes Rückwärtseinschneiden daraufhin untersuchen, ob nicht dieser Fall vorliegt.

Zur Vereinfachung der Untersuchungen wollen wir den symmetrischen Spezialfall des Rückwärtseinschneidens untersuchen, wo $\alpha = \beta$, $\varphi = \psi$, dann erhalten wir:

$$m_p = \frac{\pm m \cdot s_1}{\sqrt{2} \cos \varphi \sin \alpha}$$

Wird weiter berücksichtigt, daß im Dreieck $ABP \varphi = 180^{\circ} - (a + \gamma)$, so erhalten wir nach Umformung:

(36)
$$m_p = \frac{\pm m \cdot s_1}{\sqrt{2} \cos (\alpha + \gamma) \sin \alpha}$$

Aus der Diskussion der Gl. (36) können wir folgende Schlüsse ziehen:

- 1. Der mittlere Punktfehler wird ein Maximum sein, wenn $\varphi = 90^{\circ} = a + \gamma$ ist. Dieser Fall kommt vor, wenn der Neupunkt auf dem Kreis liegt, der durch die Fixpunkte gegeben ist. Das ist der Fall des sog. gefährlichen Kreises.
- 2. Ein anderer Spezialfall liegt vor, wenn $\alpha = 90^{\circ}$ ist; dann liegt der Neupunkt im Zentrum des Kreises, der durch die Fixpunkte bestimmt ist. Aus (36) erhalten wir:

$$m_p = \frac{\pm m \cdot s_1}{\sqrt{2} \sin \gamma}$$

Da hier $\gamma=45^{\circ}$ ist, wird damit $m_p=\pm ms_1$, was dem günstigsten Fall des Vorwärtseinschneidens entspricht. (Vgl. Jordan-Eggert, Band II/1, S. 429.)

3. Wenn die Punkte A,B,C auf einer Geraden liegen, dann wird $\gamma=90^{\circ}$ sein, und der mittlere Punktfehler ist

$$m_p \stackrel{\cdot}{=} \pm \frac{m \cdot s_1}{\sqrt{2} \sin^2 \alpha}$$

Es wird daher vorteilhaft sein, a groß zu machen.

4. Wenn $\alpha + \gamma$ nahezu 180° wird, erhalten wir für den mittleren Punktfehler

$$m_p = \pm \frac{m \cdot s_1}{\sqrt{2} \sin a}$$

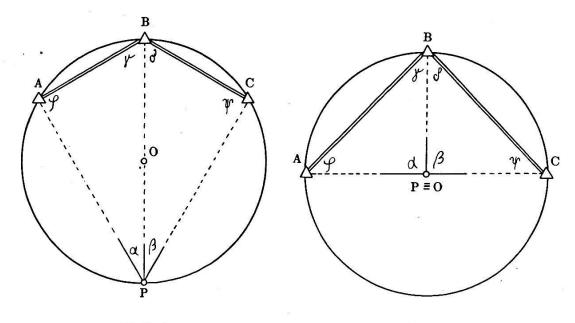
Für kleine α wird m_p groß werden.

5. Der mittlere Punktfehler ist direkt proportional der Länge der Visur s_1 . Folglich ist es ungünstig, lange Visuren zu wählen.

Wollen wir rasch eine überschlägige Orientierung über die Fehlerfortpflanzung des Rückwärtseinschneidens erhalten, dann kann es in manchen Fällen genügen, den mittleren Punktfehler mit Hilfe der Gl. (36) zu berechnen, wobei für s_1 , α , γ

$$s_1^* = \frac{s_1 + s_3}{2}, \quad \alpha^* = \frac{\alpha + \beta}{2} \quad \gamma^* = \frac{\gamma + \delta}{2}$$

einzusetzen sind. Diese Formulierung dürfte für den Praktiker von Interesse sein, falls α und β sowie γ und δ nicht stark voneinander differieren, und wir bloß an einer überschlägigen Berechnung interessiert sind.



Fall 1

Fall 2

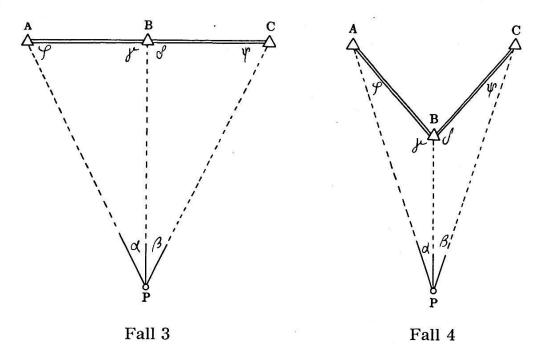


Fig. 2

Wir geben die von Jordan-Eggert auf S. 451 abgeleitete Gl. (8) an, indem wir $m_{\alpha}=m\beta=m$ gesetzt haben

(37)
$$m_{p}^{2} = \frac{\pm m^{2}}{4 \Delta^{2}} \left[(r_{2}^{2} + r_{3}^{2} - 2 r_{2} r_{3} \cos [\varphi_{3} - \varphi_{2}]) + (r_{1}^{2} + r_{2}^{2} - 2 r_{1} r_{2} \cos [\varphi_{2} - \varphi_{1}]) \right]$$

Es bedeuten:

$$(38) \begin{cases} 2 \Delta = -(r_{2} \sin \varphi_{2} - r_{1} \sin \varphi_{1}) (r_{3} \cos \varphi_{3} - r_{2} \cos \varphi_{2}) \\ + (r_{3} \sin \varphi_{3} - r_{2} \sin \varphi_{2}) (r_{2} \cos \varphi_{2} - r_{1} \cos \varphi_{1}) \end{cases}$$

$$r_{1} = \frac{1}{s_{1}}; \quad r_{2} = \frac{1}{s_{2}}; \quad r_{3} = \frac{1}{s_{3}}$$

$$\tan \varphi_{1} = \frac{Y_{A} - Y_{P}}{X_{A} - X_{P}}; \quad \tan \varphi_{2} = \frac{Y_{B} - Y_{P}}{X_{B} - X_{P}}; \quad \tan \varphi_{3} = \frac{Y_{C} - Y_{P}}{X_{C} - X_{P}}$$

Die Gleichung (37) ist mit (34) zu vergleichen. Die Gl. (36), die aus (34) abgeleitet wurde, hat uns die fehlertheoretische Diskussion der Spezialfälle des Rückwärtseinschneidens ermöglicht.

Pilze in Holzkastendrainagen

Von E. Schibli, Chur

Die Holzkastendrainagen nach dem System Butz haben schon zu Beginn dieses Jahrhunderts in der Schweiz Eingang gefunden und sind zuerst vorwiegend in unseren Berggebieten angewendet worden. Die Verwendung von Holz für die Drainageleitungen ist vor allem unter Hinweis auf die jahrtausendalten Überreste der Pfahlbauten an den Ufern unserer Seen des Mittellandes propagiert worden. Den Bergbauern war dieses neue Entwässerungssystem insofern willkommen, als es die Verwendung einheimischen Materials und dessen Verarbeitung auf den fast überall vorkommenden eigenen Gemeindesägen ermöglichte. Das geringere Gewicht der Holzbretter - im Vergleich zu dem der Tonröhren brachte eine erwünschte Reduktion der Transportkosten, was sich speziell in abgelegenen Gebieten merkbar auswirkte. Der Verlad und der Transport der erst auf der Baustelle zusammezunagelnden Bretter war zudem handlicher und bequemer als das Sperrgut der in den Ziegeleien des Flachlandes fertigfabrizierten Tonröhren. Trotz der im allgemeinen eher konservativen Einstellung der Bergbauern ist es nicht verwunderlich, daß im Hinblick auf die augenfälligen Vorteile das neue Entwässerungssystem relativ häufig angewendet worden ist. Die heute 30 bis 40 Jahre alten Holzkastendrainagen in den Berggebieten haben sich fast ausnahmslos auch bewährt.

Als in den letzten Kriegsjahren die Entwässerungstätigkeit im ganzen Schweizerland brüsk intensiviert werden mußte, um früher Versäumtes möglichst rasch nachzuholen, wurden nicht nur die Kulturingenieure und Techniker, sondern auch die Ziegeleien mit Arbeit überhäuft und vermochten ihre Aufträge nicht laufend zu bewältigen. Die ungenügende Kohlenzufuhr aus dem Ausland hat die gewünschte Steigerung der Tonröhrenfabrikation nicht erlaubt. Die früher im Flachland fast ausschließ-