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Sur la
Compensation des observations conditionnelles

avec inconnues

Par W. K. Bachmann,
Professeur à l'Ecole Polytechnique de V Université de Lausanne

En voulant appliquer la méthode des moindres carrés à l'astronomie
de position, on rencontre fréquemment des difficultés, dues essentiellement

au fait que les problèmes ne se posent pas de la même façon qu'en
géodésie. Dans son ouvrage [1] «Die genauen Methoden der
astronomischgeographischen Ortsbestimmung», f T. H. Niethammer a souvent
recours à la théorie des erreurs, mais malheureusement en appliquant
certaines règles dont on cherche en vain la démonstration. C'est certainement

pour cette raison que M. le Professeur C. F. Baeschlin a repris
l'examen de ces questions dans un article [2] intitulé « Zwei Erweiterungen
der Theorie der vermittelnden Ausgleichung».

Dans tous ces problèmes d'astronomie de position, il s'agit en somme
d'observations conditionnelles avec inconnues qui se présentent cependant

sous une forme quelque peu spéciale. En traitant un problème
d'observations conditionnelles, avec ou sans inconnues d'après la méthode
des moindres carrés, on fait généralement intervenir les multiplicateurs
de Lagrange pour la formation des équations normales. Nous allons
indiquer ci-après une autre méthode de calcul, dont l'interprétation
géométrique est facile, et retrouverons ainsi d'une autre façon tous les résultats

qui ont été indiqués dans la publication [2] susmentionnée. Nous
nous bornerons au cas de deux inconnues et de trois grandeurs observées

par équation de condition. Mais il est entendu que les résultats ainsi
obtenus restent encore valables dans le cas d'un nombre quelconque
d'inconnues ou d'observations.

§ 1. Théorie générale
Soient

(1.1)

Nous admettrons que les grandeurs mesurées x,-, y;, z; se présentent
toujours sous forme d'impacts (xu y,-, zi) dans chacune des n équations de
condition et, de plus, nous supposerons toutes les mesures indépendantes.
Ainsi, Xi, yu z; peuvent par exemple représenter les trois coordonnées
cartésiennes d'un point de l'espace, raison pour laquelle nous utiliserons
souvent l'expression «point» pour un impact (x, y, z). Désignons les poids
des grandeurs mesurées par p en mettant la grandeur mesurée en indice;
ainsi, px. désignera par exemple le poids de la mesure Xj. La nature des

t, ai les inconnues à déterminer
-

(Xi, yi, z=) les impacts mesurés i 1,2. .,n ¦

(Xi, Yi, Zi) les impacts compensés i 1,2 n.
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problèmes qui se présentent en astronomie de position nous permet de

supposer

(1.2)

sans restreindre la généralité du problème.
Par hypothèse, les impacts compensés (Xt, Yi, Z{) doivent vérifier

les n équations de condition

PXX PXe. => • • • • Pxn Px

Pyx Pu2 ¦• • • Pvn Py

Pzx Pz2 ¦ • • Pzn Pz

(1.3) Ft (t, w, Xu Yi, Zi) =0 i =1,2 n.

En désignant par (Vx-, vSi, vZ{) les corrections que nous devons ajouter
à l'impact observé (x,-, y,-, z{) pour obtenir l'impact compensé (X{, Yj, Zj),
nous obtenons

(1.4)

En posant

(1.5)

X{ xt + vx. Yi yt + Vg. Zi Zi + i%f.

t t0 + dr ai <o0 + dco.

où t0 et w0 sont des valeurs approchées des inconnues t et co, les équations

(1.3) deviennent

(1.6)
Fi K + dr, Ct>o + dw,

i
Xi

1

+ ttxi,

2,

Yi +
n.

vUi> Zi + °*t\ 0

Etant donné que les accroissements dr, dai, vx., vy. et vZi sont toujours
petits, nous allons développer ces fonctions en série en négligeant les
termes supérieurs au premier ordre. Pour simplifier les écritures, nous
posons

(1.7)

Fì(t0,oi0; Xi,yi,Zi)
dFi ÔFi dFi dFi dFi

ßibi nSt0 daia dxi m dz0

1,2, ...,n



ai dr + bi dai + at

i
Vxi + ßi

L 2,

v»i

* 9

+
n.

Yi vz. ¦+ Wi 0
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et les équations de condition aux corrections deviennent ainsi

(1.8)

ce qui est du reste la forme classique.
Pour donner une interprétation géométrique aux formules (1.8),

nous introduisons un système de coordonnées cartésiennes orthogonales
(iu Vi* ti) pour chacune de ces équations en le définissant au moyen d'un
trièdre direct unitaire trirectangle (ij, /j, /c,); voir figure 1.1. Dans cet
espace euclidien, l'élément linéaire dsj est alors défini par la relation

(1.9) äst2 d&2 + dVi2 + dtf.

Passons à un autre système de coordonnées rectilignes Xj, yj, Zj en posant

(1.12) ii Vpi Xj rjj Vpy yt Ci Vpz Zi.

En attribuant aux variables (Xj, yj, z,) les accroissements vXi, vg., vz.t
les équations (1.12) nous donnent par differentiation

(1.13) dèi Vpx vx. dru Vp~g Vg. dd Vpz vz.

et l'élément linéaire (1.9) devient ainsi

(1.14) dSi2 px Vx? + Py Vg2 + Pz Vz2

c'est-à-dire que le déplacement différentiel drt, qui résulte d'un accroissement

(vx., vBl, vz.) des coordonnées (Xj, yj, Zj) peut s'écrire

(1-15) dn Vpx vXi u + VT7 v„. ji + Vpz vz. k{.

Mais les corrections vx., vg., vz. doivent vérifier les équations de condition

(1.8) et rendre minimum l'expression

[PX VX VX] + [Pg Vg Vy] + [pz VZ VZ]
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ce qui nous donne, en considérant les équations (1.14) et (1.15)

(1.16) E dsj2 E dri • dri minimum.

Voilà donc un premier résultat important:

(D
Il faut que la somme des carrés des distances des « points
observés» (Xj, pt, zi) aux «points compensés* (Xi, Yi, Zj)
soit minimum.

Mais ce n'est pas tout, nous devons encore tenir compte des équations
de condition (1.8) ou (1.3).

L'expression

(1.17) Ft Fi (t, w; Xi, yu Zj)

représente une fonction scalaire de (xj, yj, Zj) lorsqu'on fixe les valeurs
de t et de co.

Si nous attribuons à (xf, yj, Zj) les accroissements vX(, vBi, vZi, la
fonction Fj subit une variation dFi donnée par la formule

(1.18)

qui peut s'écrire, si nous faisons usage des notations (1.7):

aFj dF, dF,
dFi

dxi Vxf + 8yi V»i + dzi
VZi

(1.19) dFj at vx. + ßi Vg. + yi vz..

Introduisons le gradient de la fonction Fj, qui est défini par la relation

(1.20) dFj grad Fj • drt

où d>j représente le déplacement différentiel du point Pi (Xj, yj, Zj) dont
les composantes orthogonales sont données par l'équation (1.15). Nous
écrivons l'équation (1.19) sous la forme
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(1.21)

et obtenons ainsi

• VP* vx. + —T- ¦ Vpg Vg + —V-y • Vpz vz.
aidFj

Vp VPg VPz

(1.22) grad Fj =-^U +-^îi +J?Lki.
Vpx "Tpy *Tpz

Les équations de condition aux corrections deviennent

(1.23)
Oj dr + bi dai + Wi + grad Fj • d7j 0

i 1, 2, n. |

Chacune des équations (1.3) définissant une surface Si si nous considérons

(Xj, Yj, Zj) comme variables et (r, ai) comme constantes, les rela¬

xations (1.23) nous donnent tous les déplacements drj qu'on peut imprimer
au «point observé» (xj, yj, Zj) pour l'amener sur la surface Sj. Voilà donc
le second résultat important. En appelant les surfaces Sj «surfaces de
condition», nous pouvons dire que

(II)

Les équations de condition aux corrections nous donnent

tous les déplacements dr qu'on peut imprimer aux «points
observés» (x;, yj, Zj) pour les amener sur les surfaces de
conditions S,-.

Au point de vue géométrique, la compensation des observations
conditionnelles avec inconnues est ainsi ramenée aux conditions (I) et (II)
indiquées.

¦f

Ili\

-*
Ji

Fig. 1.1
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En reprenant l'équation (1.16), on constate que chacune des gran-
*- •*-

deürs dri • drj i =1,2, n doit être minimum, puisqu'elles sont
**-

toutes positives. Mais ceci ne peut avoir lieu que si le déplacement dri
est orthogonal à la surface Sj. Il en résulte, aux différentielles d'ordre

supérieur près, que les vecteurs grad Fi et dr{ doivent être parallèles.
Nous obtenons, par conséquent, en élevant l'équation (1.23) au carré

(a( dr + btdco + uh)2 (grad Fj)2. (dri)2

d'où nous tirons

(1.24) (dri)2
(a( dr + bi dw + w{)2

(grad Fj)2

et le principe des moindres carrés (1.16) devient dès lors

(1.25) E (dîi)2 t-dr + bi dai + w{)2
minimum

f=i (grad Fj)2

Mais cette équation peut être écrite plus simplement si l'on tient compte
de (1.22) qui donne

(1.26) (gTTd Fj)2 T^°T + ÊLÊL + ytvi
Px Pu Pz

Si nous posons

(1.27)
ßißUj dj nn

Px Py

l'équation (1.25) devient

(1.28) Ê(d7i)2
n
E Pi («. dr + bi dai + Wi)2
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ce qui est une fonction des corrections inconnues dr et dai. Elle devient
minimum (ou stationnaire) lorsque ses dérivées partielles par rapport aux
inconnues dr et dw sont nulles, c'est-à-dire lorsqu'on a

(1.29)

(1.30)

n
E Pi ai (at dr + bi dco + wi) 0

n
E Pi bi (at dr + bi dco + Wi) 0

ou bien

(1.31)
[paa] dr + [pab] dco + [paw] 0

[pab] dr + [pbb] dai + [pbw] 0.

Nous avons ainsi obtenu les deux équations normales permettant de
calculer les corrections dr et dco qu'il faut ajouter aux valeurs provisoires
t0 et <u0 pour obtenir les valeurs compensées t et eu des inconnues.

Calculons encore l'erreur moyenne p. à craindre sur l'unité de poids.
Nous avons en tout n équations de condition dans lesquelles figurent les
inconnues r et eu. En éliminant ces dernières, il nous reste (n-2) équations
de conditions entre les grandeurs mesurées, d'où

(1.32) [pvv]
n — 2

La somme [pvv] peut être calculée à partir de l'équation (1.28) puisqu'on a

(1.35) Ê (dîi)2 --

i=l

n
E (px Vx2 + Py Vg2 + pz VZ2) [pW]
i=l

ou bien d'après (1.28)

(1.34)

[paa] dr + [pab] dco + [paw] \ dr

[pvv] j [pab] dr + [pbb] dai + [pbw] [ dai

| [paw] dr + [pbw] dco + [pww] \
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et si nous tenons compte des équations normales

(1.35) [pvv] [paw] dr + [pbw] dai + [pww]

formule bien connue de la théorie des observations médiates. Une règle
mnémotechnique permet de la déduire facilement des équations normales
(1.31)

§ 2. Introduction d'observations fictives

Les résultats que nous venons d'obtenir surprennent de prime abord;
on est notamment étonné de constater que les poids px, pg, pz des
observations ne figurent pas explicitement dans les équations normales (1.31)
et qu'ils n'y entrent que par la combinaison (1.27). Ce résultat s'explique
cependant lorsqu'on cherche la signification des grandeurs pj, introduites
par les équations (1.27). En effet, reprenons les équations de condition
aux corrections (1.8) en les écrivant sous la forme

(2.1) (aj vx. + ßi Vy. + yi vH) + (at dr + bt dai + wt)

où nous avons placé dans le membre gauche tous les termes contenant
des corrections à apporter aux observations. Nous nous bornons maintenant

à ne considérer que le membre gauche de l'équation (2.1). En y
remplaçant les corrections par les mesures Xj, yj, Zj, il prend la forme

(2.2) «i aj Xj + ßi yt + yi zt.

Calculons le poids p<j>. de la fonction <ï>j. Nous avons, en introduisant
d'abord les coefficients de poids

(2.3) Qd>j$j Qxx — Quu Qzz
Px PuP®i Pz

(2.4) ö<E>j<I>j ai ai Qxx + ßi ßi Qyy + yi yi Qzz

et en passant ensuite au poids

(2.5)
1

_ ai ai ßi ßi yi yi
P®i Px Py Pz
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En comparant les deux équations (1.27) et (2.5), nous voyons qu'on a

(2.6) P<Bj Pi

d'où il résulte que les grandeurs pj précédemment introduites ne sont rien
d'autre que les poids des fonctions *j définies par l'équation (2.2). Mais
si nous posons dans (2.1)

(2.7)

ces équations s'écrivent

(2.8)

Vi — (a{ Vx. + ßi Vg. + yi VZ()

Vi + (ai dr + b, dai + wi)

ce qui est la forme caractéristique des équations aux erreurs d'observations

médiates. Ainsi, les relations (2.8) peuvent être interprétées comme
équations aux erreurs de n observations médiates fictives. En leur
attribuant respectivement les poids pj, précédemment définis, et en formant
les équations normales, nous retombons sur les équations (1.31) et sur
la formule (1.32) pour l'erreur moyenne à craindre sur l'unité de poids.
Nous constatons donc que

Dans le problème de compensation d'observations médiates avec
inconnues, que nous venons de traiter, la combinaison linéaire des
corrections

ai vx. + ßi Vy. + yi vZi

rentrant dans les équations de condition aux corrections peut être
remplacée par une correction fictive Vi définie par l'équation

Dj ttj Vx. + ßi Vg. + y{ VH

dont le poids pj est donné par

1 ai ai ßißi Yiyi
Pi Px Py Pz

et l'on est ainsi amené à un problème de compensation d'observations

médiates.

Il est entendu que ce résultat aurait pu être obtenu plus rapidement.
Si nous nous somme arrêtés un peu plus longuement sur ce point, c'est
p our mieux montrer que
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Les corrections des inconnues ne rentrent pas individuellement dans
la compensation, mais uniquement par leurs combinaisons linéaires
figurant dans les équations de- condition aux corrections et les poids
de ces combinaisons peuvent être déterminés en appliquant la loi
de la propagation des erreurs.

Ce résultat est d'une grande importance pratique. Il montre en
particulier qu'il n'est pas nécessaire de connaître toutes; les grandeurs
entachées d'erreurs. Nous pouvons, en effet, toujours remplacer l'équation de
condition aux corrections (1.8) par l'équation aux erreurs fictive (2.8)
en choisissant convenablement son poids pj. Il est entendu que le poids
Pi est relié à px, pg et pz par les équations (1.27), mais il sera souvent
plus simple de le déterminer directement plutôt que de passer par px, ps, pz.

Nous constatons donc qu'il suffit d'introduire une correction, fictive
ou non, dans chacune des équations de condition aux corrections, à
condition de choisir convenablement son poids.

Ainsi, nous pouvons par exemple nous borner à ne considérer que la
correction de x dans le problème précédent: En la désignant par vx/ les

équations (1.8) deviennent

(2.9) Oj dr + bi dco + ai Vx/ + Wi 0

Si px.' représente dans ce cas le poids de cette observation fictive, nous
devons avoir

(2.10)

ce qui nous donne les px.' en fonction de px, py et pz.
Mais rien ne nous empêche de considérer une observation fictive de

l'une des inconnues r par exemple. Dans ce cas, Xj, yj, Zj jouent le rôle
de paramètres, exempts d'erreurs, et les équations de condition aux
corrections (1.8) deviennent

ßißiai uj Uj Uj Yiyi
PXi Px Pu Pz

(2.11) Oj dr + bi dai + Wi + ai vT. 0

le poids pT. de l'observation fictive tj étant donné par la relation

(2.12)

On peut même aller plus loin en considérant comme observation fictive
une fonction de l'une ou de plusieurs des incormues. Soit çoj cp, (r, ai)

ßißiat ai yiytai ai

Pri Px Pu
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cette fonction. Nous écrivons alors les équations de condition aux corrections

sous la forme

(2.13) aj dr + bi dcu + Wi + vtn o

et il suffit maintenant de choisir pour poids py. de cette fonction

(2.14)
ßißia-i ai nn

P<Pi Px Pu

Mais nous tournons dans un cercle vicieux et arrivons chaque fois
au même résultat. L'essentiel dans ce que nous venons de dire est que
les équations (1.8) peuvent toujours être remplacées par des équations
aux erreurs fictives de la forme

(2.15) Oj dr + 6j dco + Wi

sans préciser la nature des »j à condition de choisir convenablement les
poids de ces dernières équations aux erreurs.

Pour bien se rendre compte de l'importance pratique de ces résultats,
on est obligé de considérer des problèmes particuliers et notamment des

problèmes d'astronomie de position. Mais comme ceci nous amènerait
trop loin, nous espérons pouvoir y revenir plus tard.

Publications:
[1] Th. Niethammer «Die genauen Methoden der astronomisch-geographischen

Ortsbestimmung ».

[2] C. F. Baeschlin « Zwei Erweiterungen der Theorie der vermittelnden Aus-
gleichung». Schweiz. Zeitschrift für Vermessung und Kulturtechnik, 1948.

Le calcul d'une paire d'ellipses d'erreur
dont la forme est circulaire

Par A. Ansermet, Professeur, La Tour-de-Peilz

Le calcul des réseaux géodésiques est effectué tantôt point par point,
tantôt par groupes de points. Les deux modes de détermination présentent
des avantages et des inconvénients qui sont bien connus des praticiens.
En opérant point par point il est aisé de fixer a priori les conditions pour
lesquelles l'ellipse d'erreur a une forme circulaire (voir [1] p. 239-243 et
[2] p. 29-33).
indéterminée:

(D

Il faut exprimer que l'orientation des axes de l'ellipse est

tg2N
[sin

2 cp 1yyl _o_
(N azimut des axes)
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