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Darin bezeichnet a,- die dem (Brechungs-)Winkel a,- gegenüberliegende
Seite, si und sm die diesen Winkel einschließenden Netzseiten, an, a,-m
die Orthogonalprojektion der Seite Oj auf s{ und sm und F/m, die von
si sm eingeschlossene Dreiecksfläche.

Das Formelsystem (13) geht in (7) über, wenn nur 2 Dreiecke (Grundfigur)

betrachtet und die Bezeichnungen entsprechend geändert werden.

Sur un théorème de la méthode des moindres carrés

par A. Ansermet

Considérons un système de n équations à u inconnues (n > u):

Fi Fi (x, y, z li y v,) 0 i 1,2 n (1)

que l'on ramène à la forme linéaire grâce aux valeurs provisoires x0, y0,
z0 des inconnues

x x0 + £ y y0 + -n z z0 y £

[vv] minimum (poids des /,- égaux)

Les équations primitives prendront la forme classique

Ft' vi + at f + h -q + a i + + fî 0 (i 1, 2, 3 n) (2)

où fi est le terme absolu.
Le système d'équations normales peut s'écrire

axvx + a2v2 + an vn 0 f, (vx, v2 vn)

bx vx + b2 v2 + bn vn 0 f2 (vx, v2 vn)

c, vx + c, vt + cn vn 0 f3 (vx, v2 vn) (3)

"i «i + «t "a + "n Vn 0 f„(vx, v2 vn)

Donc en tout (n + u) équations ä (n + u) inconnues soit n résidus v
et u inconnues Ç, v, C

Dans le numéro de juin 1948, M. le Prof. Dr Baeschlin a établi, avec
toute la clarté désirable, dans quelles conditions le calcul des inconnues
£, rj, Ç devenait indéterminé. Le but de ces lignes est de signaler une
solution qui est peut-être mieux à la portée de certains lecteurs.

Au lieu de considérer le déterminant fonctionnel relatif aux inconnues

£, r\, £ nous grouperons les systèmes (2) et (3) à (n + u)
inconnues; le déterminant devient

D ë(pTF2' Fn', fx, U /„)
d ((,1), £ vx, v2, vn)
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La complication n'est qu'apparente; posons pour faciliter le
raisonnement: n 5, u 3.

D

ax h <"l 1 0 0 0 0

a2 b* c2 0 1 0 0 0

a3 K c3 0 0 1 0 0

at ba ct 0 0 0 1 0

«5 bs cs 0 0 0 0 1

0 0 0 «1 a2 «3 «4 «5

0 0 0 *>, b. »3 b. b.

0 0 0 C, e. c3 Ci c5

(4)

Le développement de ce déterminant symétrique est simple et
élégant; il suffit d'appliquer le théorème connu de Laplace (voir par exemple
Kowalewski, G., Einführung in die Determinantentheorie, 1909, p. 37).
On considère les mineurs d'ordre u (u 3)

M
ak bk ck

at bi ci
où les indices k, l, m sont choisis à volonté
dans la série 1, 2, 3 n

Pour n 5 on a en permutant (k, l, m) (1, 2, 3), (1, 2, 4), (1, 2, 5),
(1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5) et (3, 4, 5).

Désignons par M les mineurs complémentaires (ordre

D E M. M.

Par exemple le complémentaire de

/i 5)

a3 b3 c3

a, h ct

«6 6. Ci

M

Et finalement

est M

1 0 0 0 0

0 1 0 0 0

"l a2 «3 «4 «5

<>! b. b3 h b.

Cl c2 c3 Ci cs

M

ak bk Ck

ai b, Cl

"m b,n cm

D

Bien entendu on aboutit aux mêmes conclusions que M. le Prof. Dr
Baeschlin et au même théorème.
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