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Die nivellitische Refraktion ist proportional zum Temperaturgradienten,

zum Quadrat der Zielweite und annähernd proportional zur
gemessenen Höhendifferenz.

Bei dem finnischen Landesnivellement wurde die Temperaturdifferenz
zwischen den Höhen von 0.5 und 2.5 m mit einem Widerstandsthermometer

gemessen und auf Grund dieser Temperaturdifferenzen die
nivellitische Refraktion berechnet und in den Nivellementsergebnissen
berücksichtigt. Die angewandten Zielweiten bewegten sich zwischen 40
und 60 m; die Arbeit ist bei möglichst kleinem Temperaturgradienten
ausgeführt worden. Unter solchen Verhältnissen beträgt die mittlere
nivellitische Refraktion +0.06 mm auf eine gemessene Höhendifferenz von
+ 1 m.

Wenn man größere Zielweiten anwendet oder die Messungen bei
größeren Temperaturgradienten, d. h. um Mittag und in der Nacht
ausführt, steigt die nivellitische Refraktion wesentlich über den oben
angegebenen Wert. In jedem Fall hat sie eine wesentliche Bedeutung in
Gegenden, wo größere Höhenunterschiede zu nivellieren sind, wie z. B.
in der Schweiz.

Bei negativem Temperaturgradienten verursacht die Luftrefraktion
einen zufälligen Fehler, das Flimmern, das durch Verkürzung der
Zielweite zu bekämpfen ist.

Bei positivem Temperaturgradienten kommt langsames Schweben
des Zielbildes vor, was dadurch zu vermeiden ist, daß man nicht zu früh
am Morgen und nicht zu spät am Abend arbeitet.

Genauigkeitsuntersuchung über das Verfahren
von Bohnenberger-Collins für das Rückwärtseinschneiden

mit dem Meßtisch

von C. F. Baeschlin, Zollikon

Das Verfahren von Bohnenberger-Collins ist in der neuesten
Lehrbuchliteratur beschrieben in M. Näbauer, Vermessungskunde, 3.
Auflage, 1949, Seiten 179 und 180, und in B. G. Manton, Highway Surveying
and Setting out, London 1948, p. 183 and 184, also in je einer bedeutenden

deutschen und englischen Publikation. Dieses Verfahren besteht darin,

den Collinschen Hilfspunkt durch Vorwärtseinschneiden von zwei
Tischpunkten aus zu bestimmen, womit dann die Orientierung des Meß-
tisches nach dem dritten Punkt erfolgen kann.

Da das Verfahren in der Schweiz nicht allgemein bekannt sein dürfte,
sei es kurz beschrieben.

a, b, c sei das gegebene Tischdreieck, p der zu bestimmende Neu-
|)unkt. Man legt die Kippregelkante an b a an, so daß die Ziellinie von b

nach a berichtet ist. Der Tisch wird so gedreht, daß die Ziellinie durch den

Feldpunkt A geht. Bei dieser Tischorientierung, die gegenüber der rieh-
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tigen um den Winkel tpa verdreht ist, wird die Kippregel nach dem
Feldpunkt C gerichtet und längs der Linealkante mit Hilfe des Parallellineals
die Linie durch b gezogen (Linie b q). Ein zweites Mal legen wir die Linealkante

so an a b an, daß die Ziellinie von a gegen b gerichtet ist und drehen
den Tisch so, daß die Ziellinie gegen den Feldpunkt B geht. Hier ist der

î I

%

S*

ex.

n

e i

Figur 1

Tisch gegenüber der richtigen Orientierung um den Winkel cpb verdreht
(cpb hat das entgegengesetzte Vorzeichen von cpa). Bei dieser zweiten
Orientierung des Tisches zielen wir mit der Kippregel gegen den
Feldpunkt C; längs der Linealkante ziehen wir die Gerade a q durch a. Wie
aus der Figur 1 zu ersehen ist, liegt der so vorwärts eingeschnittene Punkt
q auf dem Kreis durch a, b und p, weil nach der Konstruktion cp'a tp„
und cp'b cpb ist. Die Wirkungen der bei den Tischdrehungen entstehenden

Exzentrizitäten werden vernachlässigt. Im allgemeinen ist dies ohne
weiteres zulässig, obwohl das ein Nachteil des Bohnenbergerschen
Verfahrens gegenüber dem Lehmannschen ist. Nachdem man den Collinschen
Hilfspunkt q erhalten hat, legt man die Linealkante an die Punkte q und c

an und dreht den Tisch, bis die Ziellinie nach dem Feldpunkt C gerichtet
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ist. Damit ist der Meßtisch definitiv orientiert. Bei dieser Orientierung
zielt man nach A und zieht mit Hilfe des Parallellineals die Tischlinie
a p; so erhält man p durch Seitwärtsabschneiden. Analog kann b, q

gezogen werden. Wenn fehlerlos operiert worden ist, müssen sich die 3

Geraden a p, b p, c p in einem Punkt, dem definitiven Tischpunkt p schneiden.

1st aber die Orientierung nicht genau gelungen, so wird ein kleines
fehlerzeigendes Dreieck entstehen, aus dem man nach den Lehmannschen
Sätzen den definitiven Tischpunkt p bestimmen müßte.

Es soll unsere Aufgabe sein, den mittleren Fehler in der Orientierung
des Meßtisches beim Verfahren von Bohnenberger zu berechnen und ihn
mit dem bei der Lehmannschen Methode entstehenden mittleren
Orientierungsfehler zu vergleichen.

Man erkennt ohne weiteres, daß das Bohnenbergersche Verfahren
nur anwendbar ist, wenn der Collinsche Hilfspunkt q auf das Meßtischblatt

fällt; das Lehmannsche Verfahren ist dagegen immer verwendbar.
Die genauigkeitstheoretische Schwäche des Bohnenbergerschen

Verfahrens liegt darin, daß man bei der Erhebung der Winkel tpa' und tpb

den Tisch mit Hilfe der eventuell kurzen Tischlinie a b orientieren muß.
Die definitive Orientierung des Tisches stützt sich auf die je nach den
Umständen kürzere oder längere Tischlinie q c. Es könnte scheinen, daß
man die beiden ersten Orientierungsfehler dadurch vermindern könnte,
wenn man beim ersten Anlegen des Lineales an b und a an den Enden des
Lineales Randmarken zieht. Damit würde bei der Bestimmung von tpb'
sehr genau dieselbe, wenn auch falsche Lage von a b verwendet. Wenn
durch falsches Erfassen von b a tpa' zu groß wird, ergibt sich cpb' um
denselben Betrag zu klein; der Collinsche Hilfspunkt q verschiebt sich dabei
systematisch nach links. Es ist daher zu empfehlen, das Anlegen der
Linealkante beidemal unabhängig vorzunehmen, da die zufälligen
Orientierungsfehler dann q z. T. auch in der Richtung von c p verschieben können,

womit keine Desorientierung von q c entsteht. Im Durchschnitt vieler

Fälle ergibt das unabhängige Verfahren mit zufälligen Orientierungsfehlern

einen kleineren mittleren Fehler der Tischorientierung.
Wir machen die Annahme, daß beim Anlegen der Linealkante an

einen scharf gestochenen Tischpunkt ein mittlerer Abstand der Linealkante

vom genauen Punkt von M Millimeter im Sinne eines mittleren
Fehlers entstehe. Nach den Bestimmungen der Eidg. Landestopographie
wiedergegeben von Dr. K. Kobelt in seiner Dissertation „Genauigkeitsuntersuchung

der graphischen Triangulation", Gebr. Lehmann & Co.,
Zürich, 1917, Seite 20, ist

M ± (0.077 ± 0.008) mm für den Maßstab 1:10000

M ± (0.066 ± 0.007) mm für den Maßstab 1:25000

M ± (0.054 ± 0.006) mm für den Maßstab 1:50000

Da für die Praxis auch größere Maßstäbe als 1:10000 in Betracht
kommen und wir zu beachten haben, daß die Bestimmungen auf der Eidg.
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Landestopographie von sehr geübten Topographen vorgenommen worden

sind, rechnen wir für unsere Untersuchungen mit

M ± 0.100 mm

Es handelt sich nun zunächst darum, daraus den mittleren
Orientierungsfehler beim Anlegen der Linealkante an die beiden Punkte a und
b zu bestimmen. Da die beiden Anlegefehler an a und b voneinander
unabhängig sind, ist nach dem Fehlerfortpflanzungsgesetz der mittlere
Querfehler für b in bezug auf das fehlerlos vorausgesetzte a

± Vi M

Der mittlere Orientierungsfehler wird daher, wenn wir die Distanz
von a bis b mit a b mm bezeichnen

V2 M
Hab — à: ^-r— />' (sexagésimale Minuten)

a b

oder indem wir die Zahlenwerte einsetzen

3438
P-ab

0.141 ¦ 486 • 2

Vb (1)

Tabelle I für den mittleren Orientierungsfehler

a b
Mittl

in Radiaus

erer Orientierungs

in sex. Minuten

fehler

in cent. Minuten

mm
10 0.0141 48'.6 90c.0
50 0.0028 9.6 18.0

100 0.0014 4.9 9.0
200 0.0007 2.4 4.5
300 0.00047 1.6 3.0

a q und b q werden also um den Punkt a, resp. b verdreht sein, mit
einem der Distanz a b entsprechenden Fehler p.; das ergibt bei q einen
mittleren Querfehler

qa aq ya; Qb' bqp.

qa' 41-0.141; <?„'= ^-0.141
ab ab

Wir müssen aber damit rechnen, daß die Linealkante nicht genau
durch a und b geht; es besteht hier vielmehr eine mittlere Querverschiebung

M.



— 87 —

Somit wird der gesamte mittlere Querfehler

Quer zu a q qa M 1/ 2 "_! Y +
(2)

Quer zu b q

Aus diesen mittleren Parallelverschiebungen qa und qb der Bestim-
liiungsgeraden a q und b q läßt sich die mittlere Felllerellipse des Punktes

q bestimmen. Der Winkel, unter dem sich die beiden Bestimmungsgeraden

bei q schneiden, sei cp

Es ist für die Figur 2

<P <Pa + 9b

Die beiden Parallelenpaare im Abstand 2qa und 2qb stellen konjugierte
Tangenten, die Parallelen durch q zwei konjugierte Durchmesser der
mittleren Fehlcrellipse von q dar.

a>

tf

A
«: O

V
Figur 2
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Bezeichnen wir die halben konjugierten Durchmesser mit rx und r8,
so erkennen wir aus der Figur 2

rx -. ; r2 — (3)
sin tp sin cp

Es handelt sich nun darum, aus rx, r2 und tp die Lage der großen Achse
wie auch die beiden Halbachsenlängen a und b zu bestimmen.

Aus der Theorie der Ellipse entnehmen wir die 2 bekannten
Beziehungen

rx* y r22 a2 + b2 (4)

r, r2 sin cp ab (5)

Wir multiplizieren (5) mit Zwei und addieren es so zu (4), resp.
subtrahieren es davon; damit erhalten wir

f\ + r,* + 2 rx rt sin tp - (a y b)2 (lia)

r,2 y rt2 — 2 rt r8 sin tp (a — b)2 (6b)

Daraus folgt

a + b Vf!» + r28 + 2 rt r2 sin tp A (6a)'

a — fc Vr^ + r22 — 2 r, r2 sin cp B (6b)'

Durch Addieren und Subtrahieren dieser beiden Gleichungen finden
wir

A + B
2

(7a)

A — B
b - —- (7b)

Ersetzen wir in (6a)' und (6b)' r, durch 9a, r2 durch gj, nach (3), so
erhalten wir

_ * -ia i io i — -ta -to -"" Y itr \ i,a + b ; (6a)
Vqa* + «?(,' + 2 Qa 9b sin 9

sin 9

Vqa* + 9fr2 2 Qa °b sin 9B a — b -^——^ ^-^ (6b)"
sin ?>

Aus (7) folgt noch

(A-B)2 _ Jfi_

(A + B)2 u« '
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Für die weitere Behandlung der mittleren Fehlerellipse machen wir
die folgenden Festsetzungen:

Von den beiden supplementären Winkeln, welche die beiden
konjugierten Durchmesser 2 rx und 2 r2 miteinander bilden, bezeichnen wir
stets denjenigen mit tp, der kleiner als 90° ist. Im Grenzfall der Achsen ist
tp 90°. Den Winkel < 90°, zwischen der großen Achse und dem
Durchmesser 2 r, bezeichnen wir im Sinne eines Absolutwertes mit a, den
Winkel < 90° zwischen der großen Achse und dem Durchmesser 2 r2 nennen

wir ß, ebenfalls im Sinne eines Absolutwertes. Es ist dann stets

a + ß tp (9)

Aus der Theorie der konjugierten Durchmesser einer Ellipse
entnehmen wir die Beziehung

tga tg /S — (10)
or

Dabei ist der Winkel der großen Halbachse mit dem größeren der
beiden Werte r, oder rt der kleinere. Wenn rx r2 ist, ergibt sich

a ß \ (11)

Aus (9) und (10) ergibt sich

b2
tg a tg (<p — a) —-

a2

tg cp — tg a b2
tg a

1 + tg tp tg a a2

Ordnen wir nach Potenzen von tg <z, so folgt

a2 — b2 b2
tg' a tg cp tg a + — 0 (12)

a2 a2

Das ist eine in tg a quadratische Gleichung; deren beide Wurzeln
werden

1 a2 — b2 1 fl a2 — b2 \» b2

tga=2j—-~tg, ± |^__j tg" - 4-
oder

tg cp —- (a2 — b2) tg tp ± V(a2 — b2)2 tg *
<p — 4 a2 b2 (13)

Es scheint auf den ersten Blick, daß tg a imaginär werden könne,
so daß keine reellen Lösungen für a resultieren könnten. Dem ist aber
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nicht so; bei gegebenen Werten von a und b kann nämlich cp nicht unter
einen gewissen Wert gehen, den wir mit <I> bezeichnen wollen.

Wir bezeichnen die beiden Wurzeln von (13) mit tg a und mit tg ß.
Es sei

tg a —— j(a2 — b2) tg cp + V(a2~yi2)2ïgrcp — 4 a2T2\ (14a)
2a2 I •

tg ß s-^ {(a2 — b2) tg cp — V(a2 — b2)2 ig2 ~T— 4a^b2\ (14b)

Nach den Sätzen von Vieta haben wir dann

tgatg0 -; tg a + tg ß ~TTL-tg cp (15)
a2 a2

Aus der 2. Gleichung (15) folgt durch Division beider Seiten durch

1 — tg a tg ß

tg a + tg ß a2 — b2

r-"tir tg ß =tg (a + ß) ^nr-tTTt^tg *

Setzen wir hier auf der rechten Seite tg a tg /3 —-, so finden wir

a2 — b2

tg(a + ß) --. tgcp =tg<p (16)

"•('->)
Da a, ß und ^ nach unseren Festsetzungen alle im ersten Quadranten

liegen, folgt aus (16)
a + ß cp (17)

Aus (15a) und (17) geht hervor, daß der hier eingeführte Winkel ß
der sich aus (14b) ergibt, identisch dem in der Figur 2 eingezeichneten
Winkel ß zwischen rt und a ist. Aus (15) ergibt sich

a2 b2 \ a* tg a + b* cotg a^9 —. 77 tga + -y COtg a 5— (18)

Daraus können wir das Minimum von tg cp bestimmen. Es muß

a2 b2

d (tg cp) COS2 a sin2 a

da a" — b*

oder
a2 b2

COS2 a sin2 a
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sein. Bezeichnen wir den Wert von a, für den cp ein Minimum, gleich
<I> wird, mit a0, so gilt

b2
tg2 a0 —a2

oder da a0 wie alle Werte von a im ersten Quadranten liegt

tg a0 — (19)
a

Für diesen Wert a0 von a wird nach (18)

«2 ± + *2 -i
a fr 2aö

tg<1>= ^r> - ^nr> (20)

Für diesen kleinsten Wert $ von cp (man erkennt leicht, daß es sich
/ d2 (tg cp) \um ein Minimum handelt, da < 0 ist) nimmt der Radikand
\ da.2 J

für cp $
von (14) den Wert Null an, da

(a2 — b2)2 — 4 a2 b2 0
(a2 — ft2)2

Wenn ^ > <P, wird der Radikand stets positiv. Die Formel (13) für
tg a hat also stets 2 reelle Wurzeln, die für tp fl> zusammenfallen.

Dann wird

1 er2 — b2 2a b b
tg <p0 tg 0„ — —

2 a2 a2 — o2 a

Es läßt sich leicht zeigen, daß

Denn es ist

Da aber nach (20)

b <D

— tg —
a 2

<£ sin *tg
2 1 + cos <b

2 a b
tg <t>8 a2—b

wird
1 * tgo

cos <P —- ; sin fl> —-—
Vi + tg2 $ V1 + tg2 $
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Setzen wir diese Werte in die Formel für tg ein, so erhalten wir

tg*
<i> Vi + tg21> tg *

tg
2 i + -- i + Vi + tg2 <t

Vi y tg2 o

Setzt man rechts tg <I> nach (20) ein, so folgt

2 a b 2 a b

4> a2 — b2 a2 — b2

1 / "
4 a' b' i / (a2 — fc2)' + 4 a2 fc2

^ + Tä2 —~fc2)2
' h

V (a2— fc2)2

1 |/ 1 +

2 ab
a2 — fc2 2 a fc fc

a2 + fc2 a2-- b2 y a2 y b2 a

a2 — fc2

Es ist also wirklich
<t> fc

tg -5- — tga0 tgjS, (21)
2 a

Aus der Figur 2 erkennt man, wie man diesen Wert O und a0, ß„ für
eine gegebene Ellipse bestimmen kann.

Die Schnittpunkte der konjugierten Durchmesser liegen also für diesen

Fall auf den beiden Achsen. Ohne Beweis sei bemerkt, daß die Schnittpunkte

konjugierter Tangenten einer Ellipse auf einer zu ihr ähnlichen
und ähnlich gelegenen Ellipse mit den Halbachsen V 2a und V 2 fc liegen.

Damit sind wir nun in der Lage, die Fehlerellipse des vorwärts
eingeschnittenen Collinschen Hilfspunktes q zu bestimmen. Die Richtung
von dem Punkte q nach c gibt uns den Querfehler bei q für diese Richtung.

Wenn i/r der Winkel von q c mit der großen Achse der Fehlerellipse
ist, beträgt der mittlere Querfehler

Mqc Va* sin* 0 + fc2 cos2 <f> (22)

Damit finden wir den mittleren Orientierungsfehler der Geraden q c,

wenn wir beachten, daß wir beim Anlegen an c einen mittleren Fehler M
machen

Vm\c + M2
OJqc (23)

qc

Wir müssen nun zur Vergleichung noch den mittleren Orientierungsfehler
des Tisches bei Verwendung der Lehmannschen Sätze bestimmen.
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Diese Aufgabe ist in der vorhin zitierten Publikation von Dr. K. Kobelt
behandelt worden.

Wir wollen die Grundidee hier wiedergeben. Wir denken uns mit
Hilfe des Lehmannschen Verfahrens, wenn nötig nach Wiederholungen,
einen Punkt q erreicht, in dem sich die drei Strahlen durch die
entsprechenden Feld- und Tischpunkte einwandfrei schneiden. Die Richtung der

Figur 3

Tischlinien nehmen wir als fehlerlos an, einerseits, weil die Zielfehler
mit dem Kippregelfernrohr nach den Feldpunkten von der Größenordnung

der Sexagesimalsekunde sind, die graphische Interpretation einer
Linie aber Richtungsfehler von der Größenordnung einer Sexagesimal-
minute erzeugt, andererseits, weil wir die gezeichneten Tischlinien als
Gerade annehmen dürfen. Dagegen müssen wir annehmen, daß die durch
q gehenden Linien nicht genau durch die Tischpunkte a, fc, c gehen, daß
sie vielmehr einen Querabstand vx, v2, vt von a, fc, c haben. Dabei zählen
wir v positiv, wenn von q aus gesehen die Linie durch q rechts vom
betreuenden Tischpunkt durchgeht. In der Figur 3 sind vx und vt positiv,
v3 negativ. Ziehen wir nun Parallele zu den Tischlinien, die genau durch
rlie Tischpunkte a, fc, c gehen (strichpunktierte Linien), so erhalten wir
ein fehlerzeigendes Dreieck, woraus hervorgeht, daß der Tisch noch einer
Orientierungsverbesserung cu bedarf. Bezeichnen wir die Abstände des
fehlerlosen Punktes p von den strichpunktierten Tischlinien mit dx, d2, d3,

so ist, wenn Sx, S2, S3 die Distanzen des Punktes p zu den Tischpunkten
darstellen, bekanntlich

dx a> Sx; dt cu S2; d3 a> .S's

Ks genügt, die Distanzen des Punktes q statt Sx, S2, S3 zu nehmen.
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Wir denken uns durch p als Ursprung ein beliebiges rechtwinkliges
Koordinatensystem p x, p y gelegt. Die Distanz p q bezeichnen wir mit
p, die Amplitude mit cp. Die Winkel der Tischlinien durch q mit der Parallelen

zur X-Achse durch q bezeichnen wir mit a,, a2, a3. Die Koordinaten
von q werden

x p cos cp; y p sin cp

Die Abstände des Punktes p von den Tischlinien durch q sind, bzw.:

p sin (ax—cp); p sin (a2—cp); p sin (as—cp)

oder

p [sin a, cos tp — cos ax sin tp]; p [sin at cos tp — cos at sin (p]\

p [sin a3 cos tp — cos a3 sin cp]

x sin a, — y cos a,; x sin a2 — y cos a2; x sin a3 — y cos a3

Diese Abstände von den Linien durch q gehen in die Abstände durch
die strichpunktierten Linien über durch Zufügung von v. Damit bekommen

wir die Beziehungen

dx x sin a1 — y cos ax + vx o» Sx

rf2 x sin a2 — y cos a2 + v2 cu S2

rf„ x sin a3 — y cos as + v3

Damit erhalten wir die Fehlergleichungen

w S,

vx y cos at — x sin at + co S\ Gewicht 1

vt y cos a2 — x sin a2 + w S2 Gewicht 1

vs y cos a3 — x sin a3 + w S3 Gewicht 1

(24)

Da zur Bestimmung der drei Unbekannten x, y, oj nur drei Beobachtungen

vorliegen, bekommt man eine widerspruchsfreie Bestimmung,
indem man

vx vt v3 0

setzt. Um die Bestimmung der mittleren Fehler der drei Unbekannten
x, y, ca nach der Theorie der Äquivalenz zu bestimmen, bilden wir aus
den Gleichungen (24) die Normalgleichungen, bzw. die Gewichtsnormal-
gleichungen. Da wir nur den mittleren Fehler von cu bestimmen wollen,
stellen wir das Gewichtsgleichungssystem bezüglich w auf. Wir erhalten

[cos2 a] [ay] + [— sin a cos a] [ßy] + [S cos a] [yy] ±0 0

[— Sin a COS a] [ay] + [sin2 a] [ßy] — [S sin a] [yy] ± 0 0

[S cos a] [ay] — [S sin a] [ßy] + [S S] [yy] — 1 0

(25)
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Indem man diese Gleichungen nach dem Gaußschen Algorithmus
reduziert, erhält man [S S ¦ 2]. Dann wird der mittlere Fehler von cu

-u\f. 1

[SS ¦ 2]
(26)

Da ja M der mittlere Fehler der
in (24) auftretenden Gewichtseinheit
ist, d. h. der mittlere Fehler eines Ab-
standes der Linealkante von einem
Punkt. Damit ist auch diese Frage
gelöst.

Wir wollen nun noch zwei
Beispiele behandeln.

1. Beispiel. Das Tischdreieck ist
ein gleichseitiges Dreieck mit den
Seiten 100 mm. Der gesuchte Punkt p
liegt im Mittelpunkt des Dreieckes.
Dieser Fall ist bekanntlich für das
Bückwärtseinschneiden am günstigsten.

Wir wählen p q als + x-Achse.
Dann wird

a, 60°
a2 —60°
a3 180°

S,

qc
Q P

171.44 mm
113.70 mm

JO» a

c
Figur 4

Die Fehlergleichungen werden

+ 0.500 y — 0.866 x + 57.74 cu 0

+ 0.500 y + 0.866 x + 57.74 cu 0

— 1.000 y ± 0.000 x + 57.74 cu 0

Die Gewichtsnormalgleichungen für cu werden:

+ 1.500 y ± 0 x ± 0 • cu ±0
± 0.000 y + 1.500 x ± 0 • cu ± 0

± 0.000 y ± 0.000 x + 10 000 cu — 1

Daraus folgt [c c ¦ 2] 10 000

m 0.1 1/ ± 0.001 in Radians
"> V 10 000

0

0

0

0.001 • 3438 ± 3.438 (Minuten sex.)
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Dies ist der mittlere Orientierungsfehler nach dem Lehmannschen
Verfahren. Nach dem Verfahren von Bohnenberger hat die Fehlerellipse von
q die Halbachsen

a 0.241 mm
fc 0.141 mm

Die große Achse liegt in Richtung von q c, mc ist daher gleich fc.

Der Querfehler wird

Viy+TÜ2 ±0.171 mm

Da qc 171.44 mm ist, wird der mittlere Orientierungsfehler

0.171
w 171

0.001 in Radians

mw 0.001 • 3438 3'44 (Minuten sex.)

Für diesen günstigsten Fall des Rückwärtseinschneidens liefern also
beide Verfahren denselben mittleren Orientierungsfehler; sie sind also
hier gleich günstig.

2. Beispiel.

7°

a

9
Figur 5

a b 100 mm; Winkel bei c 90°

pc 50 mm

qc 75 mm

aq b q 55.90 mm
9a fb 26° 34' tp 53° 08'
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Damit wird für die mittlere Fehlerellipse in q

a 0.2371 mm; fc 0.1185 mm

Die große Achse liegt senkrecht zu q p. Hier ist also mc a; damit
wird

V 0.2371«+ 0.1« „.„_ 11on/V(. fm„. 3438 11.80 (Minuten sex)w 75.00
v ;

nach Bohnenberger.

Die Gewichtsnormalgleichungen für cu werden, wenn man q c als

+ x-Achse wählt

2.60 [ay] ± 0.00 [ßy] + 250.00 [yy] ± 0 0

± 0.00 [ay] + 0.400 [ßy] ± 0.00 [yy] ± 0 0

+ 250.00 [ay] ± 0.00 [ßy] + 27500 [yy] — 1 =0
Damit wird [cc ¦ 2] 3461

0.1 1/-1
V 346

3438 ± 5'84 (Minuten sex)
3461 v

nach Lehmann.

In diesem Falle wird also mw nach Bohnenberger mehr als doppelt
so groß wie nach Lehmann. Ich habe auch noch einige andere Fälle
durchgerechnet und stets den mittleren Orientierungsfehler nach Bohnenberger

beträchtlich größer als nach Lehmann gefunden. Die einzige
Ausnahme stellt der Fall des Beispieles 1 dar.

Ich glaube daher berechtigt zu sein, den folgenden Satz aufzustellen:
Das Lehmannsche Verfahren für das Rückwärtseinschneiden mit dem

Meßtisch ist weitaus günstiger als das Verfahren von Bohnenberger, selbst
wenn man die Exzentrizitätseinflüsse vernachlässigt, die beim Lehmannschen
Verfahren Null sind.

Da andere in der Literatur angegebene Verfahren, wie etwa die
sogenannte Pauspapiermethode oder die Methode mit zwei fehlerzeigenden

Dreiecken bestimmt ungünstiger sind als das Lehmannsche Verfahren,

ziehe ich den Schluß, daß wohl das Lehmannsche Verfahren
überhaupt das günstigste sei. Es kann daher allen Praktikern angelegentlich
empfohlen werden, trotzdem es vielleicht etwas mehr Zeit in Anspruch
nimmt als das Bohnenbergersche Verfahren, das aber versagt, wenn der
Collinsche Hilfspunkt nicht auf das Zeichenblatt fällt. Wenn die provisorische

Orientierung des Meßtisches mit der Boussole bestimmt wird,
kommt man bei nicht gar zu ungünstigen Fällen meist direkt zu dem
Schlußresultat, indem sich nach der Bestimmung des Orientierungswinkels

(bzw. des Lehmannschen Punktes) die drei Tischlinien auf
Stichgenauigkeit in einem Punkte schneiden, was bei der Anwendung des Ver-
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fahrens von Bohnenberger im allgemeinen nicht der Fall ist. Es bleibt
dann wohl für den seriösen Topographen nichts anderes übrig als nach
Lehmann weiterzufahren, da er das Rückwärtseinschneiden erst dann als

abgeschlossen betrachten kann, wenn kein fehlerzeigendes Dreieck mehr
entsteht, weil sonst die Höhenbestimmung eine unbefriedigende Genauigkeit

liefert.
Zollikon, im Januar 1950 F. Baeschlin.

Ein numerisches Verfahren des Folgebildanschlusses
für gebirgiges Gelände

Von //. Kasper, 1 feerbrugg

Es gibt Auswerter, die bei der gegenseitigen Orientierung von
Senkrechtaufnahmen rechnerische Verfahren den optisch-mechanischen
vorziehen. Sie verwenden meist ein Formalverfahren, welches erstmalig B.
Hallert publiziert hat [1[. Eine numerische Variante mit Restparallaxenabschätzung

empfahlen auch M. Zeller und A. Brandenberger [2].
G. Schut [3] verglich kürzlich diese Verfahren mit dem graphischen

Orientierungsverfahren von G. Poivilliers und kam zu dem Ergebnis, daß
sie für ebene Modelle genauigkeitsmäßig und wirtschaftlich dem letzteren
eindeutig überlegen sind. Wenn jedoch das Gelände nicht relativ eben ist,
verliere die numerische Methode rasch an Genauigkeit, und es sei die Poi-
villlerssche vorzuziehen.

Wendet man die Aerotriangulation im Gebirge oder bei größeren
Maßstäben im Hügelland an, so sind die Höhenunterschiede relativ zur
Flughöhe oft so beträchtlich, daß alle für die Ebene abgeleiteten Formeln
versagen. Es ist jedoch auch in diesen Fällen nicht notwendig, die
verschiedenen schwerfälligen graphischen Verfahren heranzuziehen, sondern
man kann für nicht ebenes Gelände recht gut brauchbare Formeln zur
numerischen Orientierung ableiten.

Geht man davon aus, daß dieselben sechs charakteristischen Punkte
in der Bildebene gewählt werden wie bei dem rechnerischen Verfahren von
Hallert und die vier Randpunkte gleiche Bildordinaten haben, so ist
absolut genommen das Verhältnis

(1)

konstant. Von dieser Vereinfachung machte schon L. Pauwen bei seinem
hauptsächlich für Weitwinkelaufnahmen auf Film gedachten
Orientierungsverfahren mit 15 Punkten Gebrauch [4]. Bei Aufnahmen auf Platten,

wie sie z. B. mit der Präzisions-Plattenkammer Wild RC 7 auch für
großmaßstäbliche Aerotriangulationen gemacht werden, wird man jedoch
keine Bilddeformationen wie bei Film zu befürchten haben und mit den
üblichen sechs Punkten für die gegenseitige Orientierung auskommen.

k
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