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Die nivellitische Refraktion ist proportional zum Temperaturgra-
dienten, zum Quadrat der Zielweite und annihernd proportional zur ge-
messenen Hohendifferenz.

Bei dem finnischen Landesnivellement wurde die Temperaturdiffe-
renz zwischen den Hohen von 0.5 und 2.5 m mit einem Widerstands-
thermometer gemessen und auf Grund dieser Temperaturdifferenzen die
nivellitische Refraktion berechnet und in den Nivellementsergebnissen
beriicksichtigt. Die angewandten Zielweiten bewegten sich zwischen 40
und 60 m; die Arbeit ist bei moglichst kleinem Temperaturgradienten aus-
gefilhrt worden. Unter solchen Verhiiltnissen betrigt die mittlere nivel-
litische Refraktion 4 0.06 mm auf eine gemessene Hohendiflerenz von
+ 1 m.

Wenn man gréBere Zielweiten anwendet oder die Messungen bei
groBeren Temperaturgradienten, d. h. um Mittag und in der Nacht aus-
fiihrt, steigt die nivellitische Refraktion wesentlich iiber den oben ange-
gebenen Wert. In jedem Fall hat sie eine wesentliche Bedeutung in
Gegenden, wo groflere Hohenunterschiede zu nivellieren sind, wie z. B.
in der Schweiz.

Bei negativem Temperaturgradienten verursacht die Luftrefraktion
einen zufilligen Fehler, das Flimmern, das durch Verkiirzung der Ziel-
weite zu bekdmpfen ist.

Bei positivem Temperaturgradienten kommt langsames Schweben
des Zielbildes vor, was dadurch zu vermeiden ist, da3 man nicht zu friih
am Morgen und nicht zu spit am Abend arbeitet.

Genauigkeitsuntersuchung iiber das Verfahren
von Bohnenberger-Collins fiir das Riickwirtseinschneiden
mit dem MeBtisch

von C. F. Baeschlin, Zollikon

Das Verfahren von Bohnenberger-Collins ist in der neuesten Lehr-
buchliteratur beschrieben in M. Ndbauer, Vermessungskunde, 3. Auf-
lage, 1949, Seiten 179 und 180, und in B. G. Manton, Highway Surveying
and Setting out, London 1948, p. 183 and 184, also in je einer bedeuten-
den deutschen und englischen Publikation. Dieses Verfahren besteht dar-
in, den Collinschen Hilfspunkt durch Vorwirtseinschneiden von zwei
Tischpunkten aus zu bestimmen, womit dann die Orientierung des Mel3-
tisches nach dem dritten Punkt erfolgen kann.

Da das Verfahren in der Schweiz nicht allgemein bekannt sein diirfte,
sel es kurz beschrieben.

a, b, ¢ sei das gegebene Tischdreieck, p der zu bestimmende Neu-
punkt. Man legt die Kippregelkante an b a an, so daf3 die Ziellinie von b
nach a berichtet ist. Der Tisch wird so gedreht, daB die Ziellinie durch den
Feldpunkt A geht. Bei dieser Tischorientierung, die gegeniber der rich-
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tigen um den Winkel ¢, verdreht ist, wird die Kippregel nach dem Feld-
punkt C gerichtet und lings der Linealkante mit Hilfe des Parallellineals
die Linie durch b gezogen (Linie b q). Ein zweites Mal legen wir die Lineal-
kante so an a b an, dal} die Ziellinie von a gegen b gerichtet ist und drehen
den Tisch so, daB3 die Ziellinie gegen den Feldpunkt B geht. Hier ist der

Figur 1

Tisch gegeniiber der richtigen Orientierung um den Winkel ¢, verdreht
(¢p hat das entgegengesetzte Vorzeichen von ¢,). Bei dieser zweiten
Orientierung des Tisches zielen wir mit der Kippregel gegen den Feld-
punkt C; lings der Linealkante ziehen wir die Gerade a ¢ durch a. Wie
aus der Figur 1 zu ersehen ist, liegt der so vorwirts eingeschnittene Punkt
q auf dem Kreis durch a, b und p, weil nach der Konstruktion ¢’,= ¢,
und ¢’p = ¢p ist. Die Wirkungen der bei den Tischdrehungen entstehen-
den Exzentrizititen werden vernachlissigt. Im allgemeinen ist dies ohne
weiteres zulissig, obwohl das ein Nachteil des Bohnenbergerschen Ver-
fahrens gegeniiber dem Lehmannschen ist. Nachdem man den Collinschen
Hilfspunkt g erhalten hat, legt man die Linealkante an die Punkte g und ¢
an und dreht den Tisch, bis die Ziellinie nach dem Feldpunkt C gerichtet
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ist. Damit ist der MeBtisch definitiv orientiert. Bei dieser Orientierung
zielt man nach A und zieht mit Hilfe des Parallellineals die Tischlinie
a p; so erhilt man p durch Seitwirtsabschneiden. Analog kann b, ¢ ge-
zogen werden. Wenn fehlerlos operiert worden ist, miissen sich die 3 Ge-
raden a p, b p, ¢ p in einem Punkt, dem definitiven Tischpunkt p schnei-
den. Ist aber die Orientierung nicht genau gelungen, so wird ein kleines
fehlerzeigendes Dreieck entstehen, aus dem man nach den Lehmannschen
Sitzen den definitiven Tischpunkt p bestimmen miiBte.

Es soll unsere Aufgabe sein, den mittleren Fehler in der Orientierung
des MeBtisches beim Verfahren von Bohnenberger zu berechnen und ihn
mit dem bei der Lehmannschen Methode entstehenden mittleren Orien-
tierungsfehler zu vergleichen.

Man erkennt ohne weiteres, dal das Bohnenbergersche Verfahren
nur anwendbar ist, wenn der Collinsche Hilfspunkt ¢ auf das MeBtisch-
blatt fillt; das Lehmannsche Verfahren ist dagegen immer verwendbar.

Die genauigkeitstheoretische Schwiiche des Bohnenbergerschen Ver-
fahrens liegt darin, da3 man bei der Erhebung der Winkel ¢, und ¢p’
den Tisch mit Hilfe der eventuell kurzen Tischlinie a b orientieren muf.
Die definitive Orientierung des Tisches stiitzt sich auf die je nach den
Umstanden kiirzere oder lingere Tischlinie g ¢. Es konnte scheinen, dal}
man die beiden ersten Orientierungsfehler dadurch vermindern kénnte,
wenn man beim ersten Anlegen des Lineales an b und a an den Enden des
Lineales Randmarken zieht. Damit wiirde bei der Bestimmung von ¢’
sehr genau dieselbe, wenn auch falsche Lage von a b verwendet. Wenn
durch falsches Erfassen von b a ¢," zu grol3 wird, ergibt sich ¢p” um den-
selben Betrag zu klein; der Collinsche Hilfspunkt ¢ verschiebt sich dabei
systematisch nach links. Es ist daher zu empfehlen, das Anlegen der
Linealkante beidemal unabhingig vorzunehmen, da die zufilligen Orien-
tierungsfehler dann ¢ z. T. auch in der Richtung von ¢ p verschieben kon-
nen, womit keine Desorientierung von ¢ ¢ entsteht. Im Durchschnitt vie-
ler Fille ergibt das unabhingige Verfahren mit zufilligen Orientierungs-
fehlern einen kleineren mittleren Fehler der Tischorientierung.

Wir machen die Annahme, daB beim Anlegen der Linealkante an
einen scharf gestochenen Tischpunkt ein mittlerer Abstand der Lineal-
kante vom genauen Punkt von M Millimeter im Sinne eines mittleren
Fehlers entstehe. Nach den Bestimmungen der Eidg. Landestopographie
wiedergegeben von Dr. K. Kobelt in seiner Dissertation ,,Genauigkeits-
untersuchung der graphischen Triangulation, Gebr. Lehmann & Co.,
Zirich, 1917, Seite 20, ist

M = 4+ (0.077 + 0.008) mm fiir den MaBstab 1:10000
M = + (0.066 4+ 0.007) mm fiir den Ma@stab 1:25000
M = + (0.054 + 0.006) mm fiir den MaBstab 1:50000

Da fiir die Praxis auch groBlere MaBstidbe als 1:10000 in Betracht
kommen und wir zu beachten haben, daf3 die Bestimmungen auf der Eidg.
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Landestopographie von sehr geiibten Topographen vorgenommen wor-
den sind, rechnen wir fiir unsere Untersuchungen mit

M = + 0.100 mm

Es handelt sich nun zunichst darum, daraus den mittleren Orien-
tierungsfehler beim Anlegen der Linealkante an die beiden Punkte a und
b zu bestimmen. Da die beiden Anlegefehler an a und b voneinander un-
abhingig sind, ist nach dem Fehlerfortpflanzungsgesetz der mittlere
Querfehler fir b in bezug auf das fehlerlos vorausgesetzte a

+V2M
Der mittlere Orientierungsfehler wird daher, wenn wir die Distanz
von a bis b mit @ 6 mm bezeichnen

vVaMm | . .
Mab = + = p’ (sexagesimale Minuten)
a

oder indem wir die Zahlenwerte einsetzen

0.141 - 3438

486 - 2
Pab = £ - ﬁ"mn'l T

" ab 0

Tabelle I fiir den mittleren Orientierungsfehler

% Mittlerer Orientierungsfehler
a
in Radiaus in sex. Minuten | in cent. Minuten

mm

10 0.0141 48°.6 90¢.0

50 0.0028 9.6 18.0
100 0.0014 4.9 9.0
200 0.0007 2.4 4.5
300 0.00047 1.6 3.0

a g und b g werden also um den Punkt a, resp. b verdreht sein, mit
einem der Distanz a b entsprechenden Fehler p; das ergibt bei ¢ einen
mittleren Querfehler

!

qa =a—‘;}"; " =

bgp
, _ ag ,_ by
Qa = — 0.141; qy = —— 0.141
ab ab

Wir miissen aber damit rechnen, dal die Linealkante nicht genau
durch a und b geht; es besteht hier vielmehr eine mittlere Querverschie-
bung M.
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Somit wird der gesamte mittlere Querfehler

Quer zu agq ga = M I/2 ( (il ) + 1
ab
57\
Quer zu b gq gp = M 2( — + 1
ab

Aus diesen mittleren Parallelverschiebungen ¢, und g, der Bestim-
mungsgeraden a ¢ und b ¢ 1aBt sich die mittlere Fehlerellipse des Punk-
tes ¢ bestimmen. Der Winkel, unter dem sich die beiden Bestimmungs-
geraden bei g schneiden, sei ¢

(2)

[<s ist fiir die Figur 2
¢ = ¢a + ¢b
Die beiden Parallelenpaare im Abstand 2¢, und 2q,; stellen konjugierte

Tangenten, die Parallelen durch ¢ zwei konjugierte Durchmesser der
mittleren Fehlerellipse von ¢ dar.

Figur 2
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Bezeichnen wir die halben konjugierten Durchmesser mit r, und r,,
so erkennen wir aus der Figur 2

=l =B (3)
sin ¢ sin ¢

Es handelt sich nun darum, aus r;, ry und ¢ die Lage der groen Achse
wie auch die beiden Halbachsenlingen «¢ und b zu bestimmen.
Aus der Theorie der Ellipse entnehmen wir die 2 bekannten Bezie-
hungen
rn® +r,2 = a® + b® (4)

rprysing = ab (9)

Wir multiplizieren (5) mit Zwei und addieren es so zu (4), resp.
subtrahieren es davon; damit erhalten wir

N +ry? +2rrpsing = (a + b)® (ba)
rn® +ryd —2r rgsin g = (a — b)? (6b)

Daraus folgt

a+ b= \/r"l"_I_l-'_zz + Q}l'"r, sin ¢ = A (ba)’
a—b = \/r124~r33—2rlr2 sing = B (6b)’
Durch Addieren und Subtrahieren dieser beiden Gleichungen finden
wir
A+ B
a =-———— 7a
5 (7a)
A—B
b = —— 7b
5 (7b)

Ersetzen wir in (6a)’ und (6b)’ r, durch g4, r, durch g, nach (3), so
erhalten wir
N e e
A =i+ b= 92" + .+ Ga Gp SIN ¢ (6a)"
sin ¢

V.t : 2 sin
Be=a—b— da® + qp . 9a 9» ¢ (6b)”
sin ¢

Aus (7) folgt noch

(A— By b?

@+pr @ @
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Fiir die weitere Behandlung der mittleren Fehlerellipse machen wir
die folgenden Festsetzungen:

Von den beiden supplementiren Winkeln, welche die beiden konju-
gierten Durchmesser 2 r, und 2 r, miteinander bilden, bezeichnen wir
stets denjenigen mit ¢, der kleiner als 90° ist. Im Grenzfall der Achsen ist
¢ = 90° Den Winkel < 90° zwischen der grolen Achse und dem
Durchmesser 2 r; bezeichnen wir im Sinne eines Absolutwertes mit a, den
Winkel < 90° zwischen der groB3en Achse und dem Durchmesser 2 r, nen-
nen wir B, ebenfalls im Sinne eines Absolutwertes. Es ist dann stets

a+ B =9 (9)

Aus der Theorie der konjugierten Durchmesser einer Ellipse ent-
nehmen wir die Beziehung

b2

tg a tg,B=—a? (10)

Dabei ist der Winkel der groen Halbachse mit dem gré8eren der
beiden Werte r, oder r, der kleinere. Wenn r, = r, ist, ergibt sich

-B=- (11)

Aus (9) und (10) ergibt sich
b!
tgatg(e —a) = —

a?

tgo —tga  B?
*1+tgotga

tg ==

a*
Ordnen wir nach Potenzen von tg a, so folgt

a® — b2 b3
tf'a — ————tgotga + — =0 (12)
a a

Das ist eine in tg a quadratische Gleichung; deren beide Wurzeln
werden

1 [ a2 — b2 a® — bp2\t b2

oder

tg o = 22, {(a=— ) tg e + V(at — bt tgty —4a? 5“_] (13)

Es scheint auf den ersten Blick, da3 tg a imaginiar werden konne,
so dafl keine reellen Losungen fiir a resultieren kénnten. Dem ist aber
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nicht so; bei gegebenen Werten von a und b kann namlich ¢ nicht unter
einen gewissen Wert gehen, den wir mit ® bezeichnen wollen.

Wir bezeichnen die beiden Wurzeln von (13) mit tg a und mit tg 8.
Es sei

1 N
tga = l@ — b tg g + V(e — b)rtgr o — 4 a* b2} (14a)

tgh = 55 {(a= — ) tgo — V(e — b)tglo — 4 a° b=] (14b)

Nach den Sitzen von Vieta haben wir dann

at — b?

a2

bﬂ
tgatgf = a-,;;tga%—tgﬁ: tg ¢ (15)

Aus der 2. Gleichung (15) folgt durch Division beider Seiten durch
1—tgatgp

tga +tgf _ a® — b?
if—tgatgﬁ =g +h ﬁa’(l——tgatgﬁ)

tg ¢

bi
Setzen wir hier auf der rechten Seite tg a tg 8 = —, so finden wir
a

a® — b2
tgla +B) = — —  Be=1tgy (16)
e (1 —5)

Da a, f und ¢ nach unseren Festsetzungen alle im ersten Quadranten
liegen, folgt aus (16)
a+B=y¢ (17)

Aus (15a) und (17) geht hervor, dafl der hier eingefiihrte Winkel B
der sich aus (14b) ergibt, identisch dem in der Figur 2 eingezeichneten
Winkel B zwischen r, und a ist. Aus (15) ergibt sich

a? b2 attg a + b?cotga
tggﬁ = -az—"_—bT tg(l + ?cotga = a® — b (18)

Daraus kéonnen wir das Minimum von tg ¢ bestimmen. Es muB3

a? bt

d(tgg)  cos’a sin? a

. =0
da ad — p2

oder
a? b?

cos? a sin? g




sein. Bezeichnen wir den Wert von a, fiir den ¢ ein Minimum, gleich
O wird, mit a,, so gilt
b2

el =

oder da a, wie alle Werte von a im ersten Quadranten liegt

b
tg a, = "a‘ (19)

Fir diesen Wert a, von a wird nach (18)

a
B = s o e (20)

Fir diesen kleinsten Wert ® von ¢ (man erkennt leicht, daB es sich

e d* (tg ¢) : . :
um ein Minimum handelt, da g < 0ist) nimmt der Radikand
a

fiire =@
von (14) den Wert Null an, da

4 a® b?

(a® — b?)? — —— — 4 a*b® = 0
(a2 _— ba)%

Wenn ¢ > ®, wird der Radikand stets positiv. Die Formel (13) fiir
tg a hat also stets 2 reelle Wurzeln, die fiir ¢ = ® zusammenfallen.
Dann wird

1 at— bt 2ab b

B R e e T

b ()]
)
Denn es ist
() sin @

Da aber nach (20)

2ab
tg(b=aah_ba
wird
1 tg ©
cos & = ; 8in @ = - g




)
Setzen wir diese Werte in die Formel fiir tg 9 ein, so erhalten wir

tg @
o V14 tg? @ tg @
tg 2 —— mmeae e itR 1 — = e
1+ L 1+ V1 + tg?
V1 + tg? @

2albd 2ab
by o B a? — b2 a? — b2
2 S 4 oa® bt 1/ (@ — b3)* + 4 a® b?
1 + l/ 1 + — 1 + . A .
(a — b?)? (a® — b?)?
2ab
B a® — b, B 2ab
- 2 BT at— b® 4 ¢ 2_IL"b2 -
{4 a + a h: 4+ a a
a2 R b2

Es ist also wirklich

b
tg == tg a, = tg B, (21)

Aus der Figur2 erkennt man, wie man diesen Wert ® und a,, 8, fur
eine gegebene Ellipse bestimmen kann.

Die Schnittpunkte der konjugierten Durchmesser liegen also fiir die-
sen Fall auf den beiden Achsen. Ohne Beweis sei bemerkt, da3 die Schnitt-
punkte konjugierter Tangenten einer Ellipse auf einer zu ihr dhnlichen

und dhnlich gelegenen Ellipse mit den Halbachsen V' 2 a und Vv 2 b liegen.
Damit sind wir nun in der Lage, die Fehlerellipse des vorwirts ein-
geschnittenen Collinschen Hilfspunktes ¢ zu bestimmen. Die Richtung
von dem Punkte ¢ nach ¢ gibt uns den Querfehler bei g fiir diese Richtung.
Wenn ¢ der Winkel von ¢ ¢ mit der groBen Achse der Fehlerellipse
ist, betrigt der mittlere Querfehler

M,. = Va*sin® § + b? cos? y (22)

Damit finden wir den mittleren Orientierungsfehler der Geraden q c,
wenn wir beachten, dafl wir beim Anlegen an ¢ einen mittleren Fehler M
machen

vV mi,, + M?
Wge = — q'i.-+ (23)
gc

Wir miissen nun zur Vergleichung noch den mittleren Orientierungs-
fehler des Tisches bei Verwendung der Lehmannschen Sitze bestimmen.
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Diese Aufgabe ist in der vorhin zitierten Publikation von Dr. K. Kobelt
behandelt worden.

Wir wollen die Grundidee hier wiedergeben. Wir denken uns mit
Hilfe des LLehmannschen Verfahrens, wenn notig nach Wiederholungen,
einen Punkt g erreicht, in dem sich die drei Strahlen durch die entspre-
chenden Feld- und Tischpunkte einwandfrei schneiden. Die Richtung der

Tischlinien nehmen wir als fehlerlos an, einerseits, weil die Zielfehler
mit dem Kippregelfernrohr nach den Feldpunkten von der GroB3enord-
nung der Sexagesimalsekunde sind, die graphische Interpretation einer
Linie aber Richtungsfehler von der GroBenordnung einer Sexagesimal-
minute erzeugt, andererseits, weil wir die gezeichneten Tischlinien als
Gerade annehmen durfen. Dagegen miissen wir annehmen, da3 die durch
q gehenden Linien nicht genau durch die Tischpunkte a, b, ¢ gehen, daB3
sie vielmehr einen Querabstand v,, v,, vy von a, b, ¢ haben. Dabei zihlen
wir v positiv, wenn von ¢ aus gesehen die Linie durch ¢ rechts vom be-
treffenden Tischpunkt durchgeht. In der Figur 3 sind v, und v, positiv,
v, negativ. Ziehen wir nun Parallele zu den Tischlinien, die genau durch
die Tischpunkte a, b, ¢ gehen (strichpunktierte Linien), so erhalten wir
ein fehlerzeigendes Dreieck, woraus hervorgeht, da3 der Tisch noch einer
Orientierungsverbesserung « bedarf. Bezeichnen wir die Abstinde des
fehlerlosen Punktes p von den strichpunktierten Tischlinien mit d,, d,, d;,
so ist, wenn S,, S,, §; die Distanzen des Punktes p zu den Tischpunkten
darstellen, bekanntlich

dl ‘—‘wsll (12 =w82; d3:w53

IXs genitigt, die Distanzen des Punktes ¢ statt S,, S,;, S; zu nehmen.
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Wir denken uns durch p als Ursprung ein beliebiges rechtwinkliges
Koordinatensystem p x, p y gelegt. Die Distanz p ¢ bezeichnen wir mit
p, die Amplitude mit ¢. Die Winkel der Tischlinien durch ¢ mit der Paral-
lelen zur X-Achse durch g bezeichnen wir mit a,, a,, a;. Die Koordinaten
von q¢ werden

T = pcCcos ¢, y=psing
Die Abstinde des Punktes p von den Tischlinien durch ¢ sind, bzw.:
p sin (a;—¢); p sin (ay—¢); p sin (a;—¢)
oder
p [sin a, cos ¢ — cos a, sin ¢]; p [sin a, cOs ¢ — cOS a, Sin ¢|;
p [sin a3 cos ¢ — cos ay sin ¢]

X sin a; — Y €OS ay; X sin ay — Y €OS a,; T sin ay — y cos a;,

Diese Abstidnde von den Linien durch g gehen in die Abstinde durch

die strichpunktierten Linien {iber durch Zufiigung von v. Damit bekom-
men wir die Beziehungen

d =xsing, —ycosa, +v, = w S,
dy = xsina;—Yycosa, + 0y = wS,

dy = xsinag— Yy cos ag + Vg = w S,

Damit erhalten wir die Fehlergleichungen
v, =Yycosa —xsinag, + wS; Gewichtl l

Vg = Yycosay,—Tsinay, + w S, Gewicht 1 (24)

Vg = JCcosSag— xrsina; + w S35 Gewicht 1 l

Da zur Bestimmung der drei Unbekannten x, y, w nur drei Beobach-
tungen vorliegen, bekommt man eine widerspruchsfreie Bestimmung,
indem man

0, =03 =03=0

setzt. Um die Bestimmung der mittleren Fehler der drei Unbekannten
x, Yy, w nach der Theorie der Aquivalenz zu bestimmen, bilden wir aus
den Gleichungen (24) die Normalgleichungen, bzw. die Gewichtsnormal-
gleichungen. Da wir nur den mittleren Fehler von « bestimmen wollen,
stellen wir das Gewichtsgleichungssystem beziiglich w auf. Wir erhalten

[cos? a] [ay] + [— sin a cos a] [By] + [S cos a] [yy] + 0 =

0
[— sin a cos a] [ay] + [sin? a] [By] — [Ssina][yy] £ 0 =0 (25)
o |

[S cos a] [ay] — [Ssina] [By] + [SS][yy] —1 =



Indem man diese Gleichungen nach dem GauB3schen Algorithmus
reduziert, erhilt man [S S - 2]. Dann wird der mittlere Fehler von w

1
Mo = M l/ [SS - 2] 28y

Da ja M der mittlere Fehler der
in (24) auftretenden Gewichtseinheit
ist, d. h. der mittlere Fehler eines Ab-
standes der Linealkante von einem
Punkt. Damit ist auch diese Frage
gelost.

Wir wollen nun noch zwei Bei-
spiele behandeln.

1. Beispiel. Das Tischdreieck ist
cin gleichseitiges Dreieck mit den
Seiten 100 mm. Der gesuchte Punkt p
liegt im Mittelpunkt des Dreieckes.
Dieser Fall ist bekanntlich fiir das
Riickwiirtseinschneiden am giinstig-
sten.

Wir wihlen p g als + x-Achse.
Dann wird

ay = 600
ag = _‘*600
@, — 1800

S, =8, = 8; = 57.74 mm
gc = 171.44 mm
gp = 113.70 mm

Die Fehlergleichungen werden

+ 0.500 y — 0.866 ¢ + 57.74 w = 0
+0.500 y + 0.866  + 57.74 w = 0
—1.000y + 0.000x + 57.74 w = 0

Die Gewichtsnormalgleichungen fiir w werden:

%
]

+1500y £+0x 40 -w +£0=
£ 0000y +1.500x + 0w 40 =
4+ 0.000 y 4+ 0.000 2 + 10000 w — 1 = 0

|
o

Daraus folgt [cec-2] = 10000
0.1 l/_l | 4 0.001 in Radians
m — . —_—_—m 4
w 10 000
m = 0.001 - 3438 = 4 3.438 (Minuten sex.)
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Dies ist der mittlere Orientierungsfehler nach dem Lehmannschen Ver-
fahren. Nach dem Verfahren von Bohnenberger hat die Fehlerellipse von
g die Halbachsen

a = 0.241 mm

b = 0.141 mm

Die grofle Achse liegt in Richtung von ¢q ¢, m, ist daher gleich b.
Der Querfehler wird

. vV b2 -{:M’: + 0.171 mm

Da gc = 171.44 mm ist, wird der mittlere Orientierungsfehler

0.171
mg, = 11 0.001 in Radians

mg, = 0.001 - 3438 = 3’44 (Minuten sex.)

Fiir diesen giinstigsten Fall des Riickwirtseinschneidens liefern also
beide Verfahren denselben mittleren Orientierungsfehler; sie sind also
hier gleich giinstig.

2. Beispiel.

P

a
Figur 5
ab = 100 mm; Winkel bei ¢ = 90°
pec = 50 mm
gc = 75 mm
aq = bg = 55.90 mm

Ya = ¢p = 26934’ ¢ = 53008
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Damit wird fiir die mittlere Fehlerellipse in ¢ .
= 0.2371 mm; b = 0.1185 mm
Die grofle Achse liegt senkrecht zu ¢ p. Hier ist also m; = a; damit

wird

V05T 000
My, == 0'2‘;';10()+ 0.1 3438 = 11.80 (Minuten sex)

nach Bohnenberger.

Die Gewichtsnormalgleichungen fiir w werden, wenn man ¢c¢ als
+ x-Achse wahlt

2.60 [ay] + 0.00 [By] + 250.00 [yy] + 0 = 0
£ 0.00[ay] + 0.400 [By] + 0.00[yy] + 0 = 0
+ 250.00 [ay] + 0.00 [By] + 27500 [yy] — 1 = 0

Damit wird - 2] = 3461

m, = + 0.1 l/m— 3438 = + 5’84 (Minuten sex)

nach L.ehmann.

In diesem Falle wird also m, nach Bohnenberger mehr als doppelt
so gro wie nach Lehmann. Ich habe auch noch einige andere Fille
durchgerechnet und stets den mittleren Orientierungsfehler nach Bohnen-
berger betrachtlich gréBer als nach Lehmann gefunden. Die einzige Aus-
nahme stellt der Fall des Beispieles 1 dar.

Ich glaube daher berechtigt zu sein, den folgenden Satz aufzustellen:

Das Lehmannsche Verfahren fiir das Riickwdrtseinschneiden mit dem
Meftisch ist weitaus giinstiger als das Verfahren von Bohnenberger, selbst
wenn man die Exzentrizildtsein fliisse vernachldssigt, die beim Lehmannschen
Verfahren Null sind.

Da andere in der Literatur angegebene Verfahren, wie etwa die
sogenannte Pauspapiermethode oder die Methode mit zwei fehlerzeigen-
den Dreiecken bestimmt ungiinstiger sind als das Lehmannsche Verfah-
ren, ziehe ich den Schlull, daB wohl das Lehmannsche Verfahren iber-
haupt das giinstigste sei. Es kann daher allen Praktikern angelegentlich
empfohlen werden, trotzdem es vielleicht etwas mehr Zeit in Anspruch
nimmt als das Bohnenbergersche Verfahren, das aber versagt, wenn der
Collinsche Hilfspunkt nicht auf das Zeichenblatt fallt. Wenn die proviso-
rische Orientierung des MeQtisches mit der Boussole bestimmt wird,
kommt man bei nicht gar zu ungiinstigen Fallen meist direkt zu dem
SchluBresultat, indem sich nach der Bestimmung des Orientierungswin-
kels (bzw. des Lehmannschen Punktes) die drei Tischlinien auf Stich-
genauigkeit in einem Punkte schneiden, was bei der Anwendung des Ver-



fahrens von Bohnenberger im allgemeinen nicht der Fall ist. Es bleibt
dann wohl fiir den seriégsen Topographen nichts anderes iibrig als nach
Lehmann weiterzufahren, da er das Riickwiirtseinschneiden erst dann als
abgeschlossen betrachten kann, wenn kein fehlerzeigendes Dreieck mehr
entsteht, weil sonst die Hohenbestimmung eine unbefriedigende Genauig-
keit liefert.

Zollikon, im Januar 1950 F. Baeschlin,

Ein numerisches Verfahren des Folgehildanschlusses
fiir gebirgiges Gelinde

Von /1. Kasper, Heerbrugg

Es gibt Auswerter, die bei der gegenseitigen Orientierung von Senk-
rechtaufnahmen rechnerische Verfahren den optisch-mechanischen vor-
ziehen. Sie verwenden meist ein Formalverfahren, welches erstmalig B.
Hallert publiziert hat [1]. Eine numerische Variante mit Restparallaxen-
abschitzung empfahlen auch M. Zeller und A. Brandenberger [2].

G. Schut |3] verglich kiirzlich diese Verfahren mit dem graphischen
Orientierungsverfahren von G. Poivilliers und kam zu dem Ergebnis, dal3
sie fiir ebene Modelle genauigkeitsmiiflig und wirtschaftlich dem letzteren
eindeutig tiberlegen sind. Wenn jedoch das Gelande nicht relativ eben ist,
verliere die numerische Methode rasch an Genauigkeit, und es sei die Poi-
villierssche vorzuziehen.

Wendet man die Aerotriangulation im Gebirge oder bei griéBeren
MaBstiben im Hiigelland an, so sind die Hohenunterschiede relativ zur
Flughohe oft so betrachtlich, daB alle fiir die Ebene abgeleiteten Formeln
versagen. Es ist jedoch auch in diesen Fillen nicht notwendig, die ver-
schiedenen schwerfilligen graphischen Verfahren heranzuziehen, sondern
man kann fir nicht ebenes Gelande recht gut brauchbare Formeln zur
numerischen Orientierung ableiten.

Geht man davon aus, daB3 dieselben sechs charakteristischen Punkte
in der Bildebene gewiihlt werden wie bei dem rechnerischen Verfahren von
Hallert und die vier Randpunkte gleiche Bildordinaten haben, so ist ab-
solut genommen das Verhiltnis

-4 & (1)

konstant. Von dieser Vereinfachung machte schon L. Pauwen bei seinem
hauptsiachlich fiir Weitwinkelaufnahmen auf Film gedachten Orientie-
rungsverfahren mit 15 Punkten Gebrauch [4]. Bei Aufnahmen auf Plat-
ten, wie sie z. B. mit der Prazisions-Plattenkammer Wild RC 7 auch fiir
groBmafBstibliche Aerotriangulationen gemacht werden, wird man jedoch
keine Bilddeformationen wie bei Film zu befiirchten haben und mit den
tiblichen sechs Punkten fiir die gegenseitige Orientierung auskommen.
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