Zeitschrift: Schweizerische Zeitschrift für Vermessung, Kulturtechnik und

Photogrammetrie = Revue technique suisse des mensurations, du

génie rural et de la photogrammétrie

Herausgeber: Schweizerischer Verein für Vermessungswesen und Kulturtechnik =

Société suisse de la mensuration et du génie rural

Band: 47 (1949)

Heft: 6

Artikel: Die Fehlerellipse des Neupunktes beim Rückwärtseinschnitt aus

fehlerhaften Festpunkten [Schluss]

Autor: Ackerl, Franz

DOI: https://doi.org/10.5169/seals-206570

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Generalversammlung

des Schweiz. Vereins für Vermessungswesen und Kulturtechnik

Nach dem Beschluß des SVVK. findet die diesjährige Generalversammlung am *Montag*, den 22. August 1949, in Lausanne, unmittelbar vor dem internationalen Geometerkongreß statt.

Die Versammlung beginnt um 16.30 Uhr in der Aula der "Ecole polytechnique de l'Université", Avenue de Cour 29 (Trolleybus Nr. 12 vom Bahnhof, Haltestelle "Les Cèdres").

Um 20.00 Uhr findet ein offizielles Bankett im Hotel Beau-Rivage in Ouchy statt.

Wir hoffen, daß sich viele Kollegen aus der ganzen Schweiz zur Generalversammlung und zum anschließenden internationalen Geometerkongreß im Kanton Waadt einfinden werden.

Damit für das Übernachten vom 22./23. August rechtzeitig gesorgt werden kann, bitten wir um baldige Anmeldung an den Unterzeichneten, wobei die Anzahl der Personen, die am Bankett teilnehmen oder nur zu übernachten wünschen, gesondert anzugeben ist. Die Anmeldung für das Übernachten vom 22./23. August kann mit der Anmeldung zum Kongreß kombiniert werden. Hiefür werden in den nächsten Tagen nochmals entsprechende Anmeldeformulare abgeschickt.

Der Präsident des Organisationskomitees: Dr. L. Hegg

Adresse: Direction du Cadastre, Lausanne, Bel-Air Métropole 1, Telephon 36922.

Die Fehlerellipse des Neupunktes beim Rückwärtseinschnitt aus fehlerhaften Festpunkten

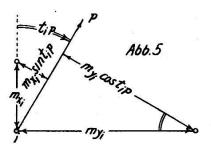
Von Prof. Dr. Franz Ackerl, Wien

(Schluß)

Die Ausdrücke (R^2_i) sind charakteristische Merkmale für den Einfluß des Lagefehlers im Punkt i=A, B, M auf die Richtung zum Neupunkt P, denn die Größen m_{x_i} sin t_{iP} , bzw. m_{y_i} cos t_{iP} sind nach Abb. 5 die Projektionen der Koordinatenfehler m_{x_i} , m_{y_i} auf die Normale zur Netzrichtung iP.

Die Koeffizienten der Ausdrücke (R^2i) aber sind allein durch die Größe der Netzstrecken, bestimmt und wenn man die gegebene geometrische Figur, ähnlich wie in der o. a. A. [1], durch den Betrag

$$G^2 = \frac{c^2 d^2 S^2}{a^2 b^2 s^2} \tag{62}$$


kennzeichnet, so erhalten wir schließlich aus (61)

$$\mu^{2}_{A} = G^{2} \frac{b^{2}}{S^{2}} (R^{2}_{A}), \ \mu^{2}_{B} = G^{2} \frac{a^{2}}{S^{2}} (R^{2}_{B}), \ \mu^{2}_{M} = G^{2} (R^{2}_{M}),$$

$$\mu^{2}_{\alpha} = G^{2} \frac{b^{2}}{S^{2}} \sigma^{2}_{1} m^{2}_{\alpha}, \qquad \mu^{2}_{\beta} = G^{2} \frac{a^{2}}{S^{2}} \sigma^{2}_{2} m^{2}_{\beta}.$$

$$(63)$$

Alle diese Koeffizienten können leicht berechnet werden, wenn man in einem maßstab- und lagetreuen Netzbild die zur Festlegung der Hilfspunkte C, D (Abb. 1,2) notwendigen Kreise, sowie auch den Punkt P' (2x, 2y) konstruiert und die erforderlichen Strecken abgreift.

Wir schreiben nun mit den Symbolen (63) die Gleichungen (52), (55) und (58) an, nämlich

$$m_x^2 + m_y^2 = \mu_A^2 + \mu_B^2 + \mu_M^2 + \mu_\alpha^2 + \mu_\beta^2 = A^2 + B^2 = M_P^2,$$
 (64)

$$m_{x}^{2} - m_{y}^{2} = -\left\{\mu_{A}^{2} \cos 2 t_{P'D} + \mu_{B}^{2} \cos 2 t_{P'C} + \mu_{M}^{2} \cos 2 t_{PO} + \mu_{A}^{2} \cos 2 t_{P'C}\right\},$$

$$+ \mu_{\alpha}^{2} \cos 2 t_{P'D} + \mu_{\beta}^{2} \cos 2 t_{P'C},$$
(65)

$$m^{2}\xi - m^{2}\eta = -\left\{\mu^{2}A \sin 2 t_{P'D} + \mu^{2}B \sin 2 t_{P'C'} + \mu^{2}M \sin 2 t_{PO} + \mu^{2}\alpha \sin 2 t_{P'D} + \mu^{2}\beta \sin 2 t_{P'C}\right\}.$$
(66)

Damit sind jene Größen ermittelt, die im Hinblick auf die Gleichungen (15), (18), (19) die Elemente A, B, Θ der Fehlerellipse im Neupunkt bestimmen.

Verzichten wir vorläufig auf eine geschlossene Darstellung des Ausdruckes (18), nämlich

$$(A^2 - B^2)^2 = (m^2_x - m^2_y)^2 + (m^2_\xi - m^2_\eta)^2$$
 (67)

und schreiben die Gleichungen (65), (66) abgekürzt an mit

$$m^2_x - m^2_y = -[U], \qquad m^2_\xi - m^2_\eta = -[V], \qquad (68)$$

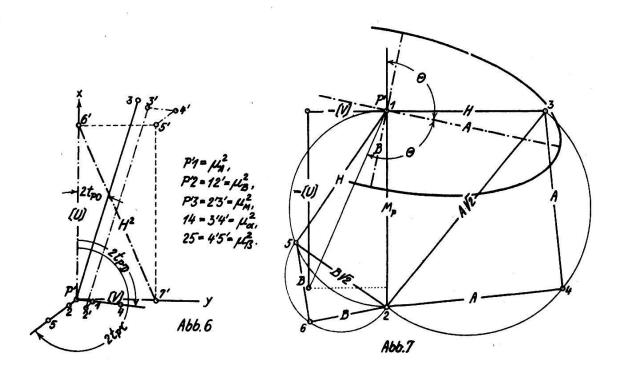
so sehen wir im Vergleich, daß die Größen [U], [V] aufgefaßt werden können als die Projektionen eines einzigen Vektorpolygons auf die gegebenen Koordinatenachsen x,y. Beachtet man noch, daß der in (65) bzw. (66) vorkommende Richtungswinkel t_{PO} , entsprechend der Bemerkung vor (35), auch ersetzbar ist durch $t_{P'O'}$ (siehe Abb. 4), so haben

wir sogar nur Richtungen weiter zu verarbeiten, die alle vom Hilfspunkt P' ausgehen. Wir werden also, für praktische Arbeit, im Netzbild den Umkreis mit dem Mittelpunkt O zum Dreieck ABP konstruieren und die Richtung PO parallel durch den Punkt P' legen, wodurch die geforderte Richtung P'O' gegeben ist.

Unbeschadet der Tatsache, daß einzelne Vektoren in (65), (66), nämlich μ^2_A bzw. μ^2_B , mit solchen gleicher Richtung, nämlich μ^2_a bzw. μ^2_β , zusammengefaßt werden könnten, erhalten wir für den Vektorzug die folgenden Bestimmungsstücke (Abb. 6)

$$(\mu^2_A, 2 t_{P'D}), (\mu^2_B, 2 t_{P'C}), (\mu^2_M, 2 t_{P'O'}), (\mu^2_\alpha, 2 t_{P'D}), (\mu^2_\beta, 2 t_{P'C}).$$

Sind die Absolutwerte dieser Vektoren aus den Gleichungen (63) ermittelt, dann liefern die Projektionen des Zuges (Abb. 6) nicht nur sehr rasch die Größen [U], [V] selbst, sondern durch diesen Vorgang wird auch in vortrefflicher Weise die Zusammenwirkung der einzelnen Fehlereinflüsse erläutert und aufgedeckt.


Als Hypotenuse zu den Achsabschnitten [U], [V] in Abb. 6 erhalten wir, zufolge (68) bzw. (67), den Betrag

$$\sqrt{[U]^2 + [V]^2} = (A^2 - B^2) = H^2. \tag{69}$$

Verbindet man dies mit (64), nämlich $(A^2 + B^2) = M^2P$, so ergibt sich

$$M^{2}_{P} + H^{2} = 2 A^{2}, \quad M^{2}_{P} - H^{2} = 2 B^{2}.$$
 (70)

Die Schlußstufe der Lösung betrachten wir an Hand der Konstruktionen von Abb. 7. Nach Auftragung der Katheten M_P und H erhalten wir, entsprechend (70), die Hypotenuse $A\sqrt{2}$, zeichnen über ihr den

Halbkreis und bestimmen die große Halbachse A der Fehlerellipse als Kathete des gleichschenklig rechtwinkligen Dreiecks.

Am Halbkreis über dem Durchmesser M_P schneiden wir, von Punkt 1 aus, die Sehne H ab, erzeugen hiedurch, entsprechend (70), die Kathete $\overline{52} = B\sqrt{2}$, zerlegen sie ähnlich wie vorhin in das gleichschenklig rechtwinklige Dreieck 5, 2, 6 und finden damit die kleine Halbachse B der Fehlerellipse.

Beachtet man schließlich noch Gleichung (19) zur Ermittlung des Richtungswinkels Θ der großen Halbachse, so ergibt sich mit den Symbolen von (68)

$$\operatorname{tg} 2 \Theta = \frac{-[V]}{-[U]}. \tag{71}$$

Wir können daher den Richtungswinkel 2 Θ sogleich in Abb. 7 herstellen, wenn wir nur für die vorzeichenrichtige Lage der dem Zähler und Nenner entsprechenden Abschnitte Sorge tragen.

Schließlich sei noch darauf hingewiesen, daß neben dem hier gewählten Weg zur Bestimmung der Elemente der mittleren Fehlerellipse auch andere Lösungsmöglichkeiten bestehen, die wohl recht interessant, aber nicht so übersichtlich sind, weshalb ein solcher andersartiger Gedankengang hier nur flüchtig angedeutet wird.

Geht man auf eine geschlossene Darstellung von (18) aus und bildet (67) durch Quadrierung der Gleichungen (65), (66), so entsteht, wie man leicht erkennt, ein Ausdruck, dessen einzelne Glieder durch spätere zweckmäßige Ergänzungen zusammengefaßt und geometrisch gedeutet werden können.

Betrachten wir die Entstehung des ersten derartigen Ausdrucks, so ergibt sich z. B. aus den ersten Gliedern von (65) und (66):

$$\mu^{4}_{A}\cos^{2}2 t_{P'D} + \mu^{4}_{B}\cos^{2}2 t_{P'C} + 2 \mu^{2}_{A}\mu^{2}_{B}\cos 2 t_{P'D}\cos 2 t_{P'C}$$

$$+ \mu^{4}_{A}\sin^{2}2 t_{P'D} + \mu^{4}_{B}\sin^{2}2 t_{P'C} + 2 \mu^{2}_{A}\mu^{2}_{B}\sin 2 t_{P'D}\sin 2 t_{P'C} \qquad (72)$$

$$= \mu^{4}_{A} + \mu^{4}_{B} + 2 \mu^{2}_{A}\mu^{2}_{B}\cos 2 (t_{P'D} - t_{P'C}) = E^{4}_{AB}.$$

Mit E^4_{AB} ist dabei der Einfluß bezeichnet, den die Lagefehler der gegebenen Punkte A, B zur Entstehung von $(A^2 - B^2)^2$ beitragen. Da die Formel (72) aber den Cosinussatz für ein Dreieck darstellt, in dem die Seiten μ^2_A und μ^2_B den Winkel (180° — W) einschließen, wobei W=2 $(t_{P'D}-t_{P'C})$, so kann die Größe E^2_{AB} unmittelbar als dritte Seite des entsprechend konstruierten Dreiecks gedeutet und abgegriffen werden.

In ähnlicher Weise lassen sich die Einflüsse aller anderen auftretenden Kombinationen einzeln ermitteln und schließlich zum Gesamtbetrag $(A^2 - B^2)^2$ vereinigen. Die Bestimmung der Elemente der mittleren Fehlerellipse folgt darauf dem vorhin angegebenen Weg.

Von der Darstellung eines Beispiels wird aus Raumgründen abgesehen. Es wird jedoch erwähnt, daß die hier entwickelte Lösung der gestellten Aufgabe sich als Zwischenstufe ergeben hat, bei der Ermitt-

lung des Fehlerellipsoides für einen Punkt, der durch räumlichen Rückwärtseinschnitt bestimmt wird, und zwar aus Punkten, deren räumliche Lagefehler bekannt sind.

So wie der zu fehlerfrei angenommenen Ausgangspunkten gehörige gefährliche Kreis des ebenen Rückwärtseinschnittes, in ein bandförmiges gefährliches Gebiet übergeht, wenn man die Fehlerhaftigkeit der gegebenen Punkte berücksichtigt, führt die räumliche Aufgabe, bei zusätzlicher Berücksichtigung der Lagefehler der Anschlußpunkte, auf die Abgrenzung eines Raumes, der die an sich bestehenden gefährlichen Örter und Flächen einschließt.

Das Studium des erwähnten Fehlerellipsoides bestätigt und ergänzt in mancher Hinsicht die Ergebnisse der Arbeiten von W. K. Bachmann, Kasper, Killian und insbesonders von Krames, über die Bedeutung der gefährlichen Örter bzw. Flächen und damit verbundenen Raumgebiete in ähnlicher Weise, wie die in Einzelheiten eingehende Betrachtung der Fehlerellipse beim ebenen Rückwärtseinschnitt aus fehlerhaften Festpunkten, interessante Ausblicke verschafft auf die Form des zugehörigen, den gefährlichen Kreis einschließenden, gefährlichen ebenen Gebietes.

Diese Überlegungen sollen in späteren Arbeiten dargestellt werden.

Zur Verwendung der Photogrammetrie bei Güterzusammenlegungen

von Emil Müller, Grundbuchgeometer, Laufenburg

Der Aufsatz des Herrn Dipl.-Ing. Braschler auf Seite 137/138 der Z.f. V.u. K. könnte beim Unkundigen den Eindruck erwecken, als bestehe in den Kreisen der selbständig erwerbenden Geometer eine Opposition gegen die Einführung wissenschaftlich begründeter neuer Methoden im Vermessungswesen im allgemeinen und gegen die Verwendung der Photogrammetrie als Aufnahmemethode für den alten Besitzstand bei Güterzusammenlegungen im besondern. Daß weder das eine noch das andere zutrifft, ist für den Unvoreingenommenen evident. Es sei nur erinnert an die heute allgemein im Gebrauch stehende optische Distanzmessung, für welche mehrere Privatgeometer die notwendige Pionierarbeit geleistet haben, und zwar unter Hintansetzung des wirtschaftlichen Momentes.

In bezug auf die Einführung der Photogrammetrie für die Aufnahme des alten Besitzstandes darf darauf hingewiesen werden, daß schon in den Jahren 1941 und 1942 von privater Seite, wiederum auf eigenes Risiko, umfangreiche Versuche im Aargauer Jura unternommen worden sind, also lange vor dem durch Ing. Braschler erwähnten Versuche, der kürzlich im Kanton St. Gallen auf Risiko des Staates vorgenommen wurde. Trotzdem unsere Versuche gelungen sind, wurde bisher darüber noch kein Bericht veröffentlicht, weil beabsichtigt war, gleichzeitig über